• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 41
  • 24
  • 22
  • 13
  • 11
  • 9
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 387
  • 142
  • 104
  • 84
  • 60
  • 59
  • 52
  • 48
  • 44
  • 39
  • 38
  • 36
  • 35
  • 34
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Anomalous nature of metamaterial inclusion and compact metamaterial-inspired antennas model for wireless communication systems : a study of anomalous comportment of small metamaterial inclusions and their effects when placed in the vicinity of antennas, and investigation of different aspects of metamaterial-inspired small antenna models

Jan, Naeem A. January 2017 (has links)
Metamaterials are humanly engineered artificial electromagnetic materials which produce electromagnetic properties that are unusual, yet can be observed readily in nature. These unconventional properties are not a result of the material composition but rather of the structure formed. The objective of this thesis is to investigate and design smaller and wideband metamaterial-inspired antennas for personal communication applications, especially for WiMAX, lower band and higher band WLAN applications. These antennas have been simulated using HFSS Structure Simulator and CST Microwave Studio software. The first design to be analysed is a low-profile metamaterial-inspired CPW-Fed monopole antenna for WLAN applications. The antenna is based on a simple strip loaded with a rectangular patch incorporating a zigzag E-shape metamaterial-inspired unit cell to enable miniaturization effect. Secondly, a physically compact, CSRR loaded monopole antenna with DGS has been proposed for WiMAX/WLAN operations. The introduction of CSRR induces frequency at lower WLAN 2.45 GHz band while the DGS has provided bandwidth enhancement in WiMAX and upper WLAN frequency bands, keeping the radiation pattern stable. The next class of antenna is a compact cloud-shaped monopole antenna consisting of a staircase-shaped DGS has been proposed for UWB operation ranges from 3.1 GHz to 10.6 GHz. The novel shaped antenna along with carefully designed DGS has resulted in a positive gain throughout the operational bandwidth. Finally, a quad-band, CPW-Fed metamaterial-inspired antenna with CRLH-TL and EBG is designed for multi-band: Satellite, LTE, WiMAX and WLAN.
322

Réseaux de capteurs sans fil enfouis ultra large bande : antenne et liens radios / Ultra wideband wireless underground sensor networks : antenna and radio links

Zemmour, Hamadache 16 September 2016 (has links)
Les réseaux de capteurs sans fils enfouis (RCSFE) sont des réseaux comportant des capteurs et leurs antennes enfouis dans la matière, en particulier enfouis dans le sol. Ils présentent un grand intérêt dans de nombreux domaines d’activités, comme le contrôle de l’environnement, l’agriculture de précision, la navigation et la sécurité. Les systèmes existants sont à bandes étroites et fonctionnent à des fréquences inférieures à 1 GHz. Ces systèmes impliquent l’utilisation d’antennes encombrantes, ce qui complique leur déploiement et peut conduire à des coûts élevés. De plus l’utilisation de largeurs de bandes étroites limite les débits de communications possibles et la résolution envisageables dans les applications de localisation. Enfin, les systèmes actuels sont gourmands en énergie, ce qui limite la durée de vie des éléments enfouis.Pour remédier à ces inconvénients pour certaines applications des RCSFE, on propose dans cette thèse d’utiliser la technique ultralarge bande (ULB) en bande normalisée 3,1 – 10,6 GHz dans les RCSFE. Cette technique permet l’utilisation d’antennes compactes, la simplification du déploiement, l’amélioration de la précision de localisation et l’augmentation du débit de communication et de la durée de vie des capteurs.Pour étudier la faisabilité des RCSFE ULB, nous avons conçu et réalisé trois antennes ULB compactes et en analyser l’effet du sol sur les performances de ces antennes ULB enfouies et sur les liens de communication ULB enfoui. En comparaison à un fonctionnement dans l’air, l’enfouissement dans le sol décale la bande passante de l’antenne vers les basses fréquences. Ce décalage augmente avec la teneur en eau du sol. L’atténuation apportée par le canal ULB enfoui augmente avec la fréquence de fonctionnement, la profondeur d’enfouissement et la teneur en eau du sol. Cependant, nous avons montré que des liaisons fiables sont possibles pour des distances de propagation dans le sol inférieures à 30 cm et des teneurs en eau inférieures à 20% / Wireless underground sensor networks (WUSN) consist of sensors which are buried in a medium with their antennas, in particular in soil. They attract a huge interest in different fields, like environment monitoring, precise agriculture, navigation and security. The existing narrowband systems operate at frequencies below 1 GHz. These systems imply the use of cumbersome antennas, which complicates the deployment and increases its cost. Furthermore, the use of narrow bandwidths limits the possible communication data rates and the potential resolution in localization applications. Finally, current systems are very energy consuming, which limits the lifetime of the underground elements.To overcome these drawbacks for certain applications of WUSN, we propose in this thesis the use of ultra wideband technology (UWB), in the normalized band 3.1 - 10.6 GHz, in WUSN. This technique allows the use of compact antennas, simplifying deployment, improving the localization accuracy and increasing communication data rates and the lifetime of the underground sensors.In order to assess the feasibility study of UWB WUSN, we have designed and realized three compact UWB antennas and analyzed the effect of soil on the performances of these underground UWB antennas and on the underground UWB communication links. Compared with operating in free space, burying the antenna shifts the antenna bandwidth towards low frequencies. This shift increases with soil water content. The attenuation introduced by the buried UWB channel, increases with the operating frequency, the burial depth and the soil moisture. However, we have shown that reliable communications are possible for distances of propagation in soil smaller than 30 cm and soil water contents below 20%
323

Analog and Digital Approaches to UWB Narrowband Interference Cancellation

Omid, Abedi January 2012 (has links)
Ultra wide band (UWB) is an extremely promising wireless technology for researchers and industrials. One of the most interesting is its high data rate and fading robustness due to selective frequency fading. However, beside such advantages, UWB system performance is highly affected by existing narrowband interference (NBI), undesired UWB signals and tone/multi-tone noises. For this reason, research about NBI cancellation is still a challenge to improve the system performance vs. receiver complexity, power consumption, linearity, etc. In this work, the two major receiver sections, i.e., analog (radiofrequency or RF) and digital (digital signal processing or DSP), were considered and new techniques proposed to reduce circuit complexity and power consumption, while improving signal parameters. In the RF section, different multiband UWB low-noise amplifier key design parameters were investigated like circuit configuration, input matching and desired/undesired frequency band filtering, highlighting the most suitable filtering package for efficient UWB NBI cancellation. In the DSP section, due to pulse transmitter signals, different issues like modulation type and level, pulse variety, shape and color noise/tone noise assumptions, were addressed for efficient NBI cancelation. A comparison was performed in terms of bit-error rate, signal-to-interference ratio, signal-to-noise ratio, and channel capacity to highlight the most suitable parameters for efficient DSP design. The optimum number of filters that allows the filter bandwidth to be reduced by following the required low sampling rate and thus improving the system bit error rate was also investigated.
324

Diversité spatiale, temporelle et fréquentielle pour la mesure précise de distance et d'angle d'arrivée en ultra large bande / Space, time and frequency diversity for accurate range and angle of arrival measurement in UWB

Vo, Tien Tu 13 June 2019 (has links)
De nos jours, la détection et la mesure de la distance avec les ondes électromagnétiques (Radar) sont utilisées dans de nombreux domaines tels que l’aéronautique, l’automobile ou bien la médecine. Dans cette thèse, nous nous intéressons plus particulièrement au Radar dans le domaine du bien-être pour le grand public : capteur sans contact pour le suivi du sommeil, et lunettes ou canne pour malvoyants pour la détection des obstacles sur la route. Le problème posé dans cette thèse est d’ajouter les fonctionnalités nécessaires suivantes à la solution Radar existante afin de répondre à ces applications : la mesure du rythme respiratoire issu du déplacement de la cage thoracique et de l'abdomen de quelques millimètres pendant la respiration et la mesure de la direction d'arrivée de l'onde électromagnétique rétro-diffusée des obstacles devant le malvoyant. Le contexte technologique de départ est celui de la technologie ultra large bande qui offre une résolution de l’ordre du centimètre pour la mesure de distance à une portée de quelques mètres et la discrimination des signaux rétro-diffusés des multiples obstacles. Suivant les besoins, les travaux décrits ici se sont concentrés sur le canal de propagation en rétro-diffusion sur corps humain. Ils se sont aussi portés sur les techniques de traitement du signal pour pouvoir estimer le rythme respiratoire dans le signal rétro-diffusé du corps humain, et sur l'estimation de la direction d'arrivée de l'onde à un réseau d'antennes avec une résolution au degré près. Enfin, cette thèse aborde l’architecture du système, et notamment du récepteur associé au réseau d'antennes, afin de pouvoir réaliser la mesure angulaire sans augmenter la complexité, le coût et la consommation du récepteur. / Detection and ranging with electromagnetic waves (Radar) are used in a number of domains such as aeronautics, automobile or even medecin. In this thesis, we are interested particularly on Radar in the wellness domain for widely use: sleep pattern tracking sensors, smart glasses or white cane with obstacles detection for visually impaired people. The problem, which so far has not been discussed, is to add necessary functionalities as follow to the exciting solution to resolve theses applications: the thoracic and abdominal displacement tracking with a millimetric resolution; and the measurements of arrival direction of backscattered signals from obstacles in front of visually impaired individuals. The technological starting point is the one of Ultra Wideband (UWB) technology, which offers a resolution of approximate one centimeter in the distance measurement within the range of few meters and in the discrimination of backscattered signals from multiple obstacles. To meet these criterias, the research focuses on the backscattering propagation channel in particularly from the human body. It also analyses the techniques in signal processing, aiming to estimate the breathing rate in the backscattered signal of human body, and to estimate the arrival direction to an antenna array to nearly one degree. Finally, it investigates the systematic architecture, especially in the receiver associated with the antenna array, in order to withstand the angular measurement without notably increasing the receiver complexity and consumption.
325

Anténa pro impulzní širokopásmový signál / Antenna for broadband impulse signal

Smutný, Martin January 2015 (has links)
The thesis describes retrievals of broadband antennas for VHF and UHF. It focuses on a compact antenna, potentially suitable for detecting electromagnetic impulses generated by electrical discharges in the dielectric oil in power transformers. This pulse signals are very steep with hundreds pico seconds rising edge. The thesis presents basic characteristics of antennas and selects those which have a major influence on the possibility of using the antenna in selected application. The appropriate antena is selected and proposal its geometrical parameters is discussed. The geometry of the selected antenna is designed for working bandwidth from about 200 MHz to about 1000 MHz. The newly designed double discon antenna is simulated and dimensions are optimized. Antenna is made and key characteristics of the antenna important for evaluate the ability of detecting the above-identified pulsed signals is measured. Antenna is compared with gain and characteristic of monocone antenna. Acquired knowledge and measured data are evaluated.
326

Analysis Of Time Synchronization Errors In High Data Rate Ultrawideban

Bates, Lakesha 01 January 2004 (has links)
Emerging Ultra Wideband (UWB) Orthogonal Frequency Division Multiplexing (OFDM) systems hold the promise of delivering wireless data at high speeds, exceeding hundreds of megabits per second over typical distances of 10 meters or less. The purpose of this Thesis is to estimate the timing accuracies required with such systems in order to achieve Bit Error Rates (BER) of the order of magnitude of 10-12 and thereby avoid overloading the correction of irreducible errors due to misaligned timing errors to a small absolute number of bits in error in real-time relative to a data rate of hundreds of megabits per second. Our research approach involves managing bit error rates through identifying maximum timing synchronization errors. Thus, it became our research goal to determine the timing accuracies required to avoid operation of communication systems within the asymptotic region of BER flaring at low BERs in the resultant BER curves. We propose pushing physical layer bit error rates to below 10-12 before using forward error correction (FEC) codes. This way, the maximum reserve is maintained for the FEC hardware to correct for burst as well as recurring bit errors due to corrupt bits caused by other than timing synchronization errors.
327

Saw Reflective Transducers And Antennas For Orthogonal Frequency Coded Saw Sensors

Santos, Bianca Maria 01 January 2009 (has links)
Passive sensors that vary its impedance per measured parameter may be used with surface acoustic wave (SAW) reflective transducers (SRT) for wireless acquisition of the measurand. The device is composed of two transducers, where one, which may be attached to an antenna, is used to launch the wave within the device substrate, and the other is where the sensor load is attached to. The latter is able to reflect the incident wave. How much power is reflected is determined by the attached sensor load. Amplitude variations as well as peak frequency variations of the SRT reflectivity response are explored in this thesis. SAW passive temperature sensors with an orthogonal frequency coded (OFC) time response were previously investigated and prove to be ideal for use in harsh environments. Each sensor is distinguishable from the other due to the OFC code embedded within its time response. However, this coding technique poses a difficulty in designing antennas for the sensor due to its inherently wide bandwidth, and capacitive, non-uniform input impedance. This work covers antenna design and testing for the 250MHz wireless temperature acquisition prototype with a 28% fractional bandwidth, and for the 912MHz system which has 10% fractional bandwidth. Apart from the tag, antennas for the transmitter and receiver were designed for 50 Ohm matching with the required bandwidth maintained. Wireless temperature acquisition runs for the 250MHz prototype were successfully performed and show good agreement with measurements made by a thermocouple. Since a transceiver for the 912MHz system is not complete, the performance of the antennas was gauged by observing the signal transmitted wirelessly by the SAW tag and by comparing this with the sensor time response measured directly by a vector network analyzer.
328

Bladder Monitoring Using Ultra-Wideband Radar and Vivaldi Antenna

Jonsson, Erica, Kovács, Attila January 2023 (has links)
Millions worldwide cannot tell when their bladder is nearing total capacity. The catheter, a tube to empty the bladder, is a vital part of life for many people. A catheter is, however, not a comfortable option, and it is the most common cause of infection in people staying in hospitals. This thesis aims to make the process more comfortable and non-invasive. The proposed idea is to use a UWB radar system with Vivaldi antennas to monitor the bladder state. Research shows that UWB radars can see a difference between a full and an empty phantom bladder. However, current research that explores the usage of UWB radar systems to monitor the bladder state does not consider regulations other than the ones set by FCC. They also only perform experiments on a phantom bladder. This thesis investigates the practical viability of using a UWB radar system designed per the restricted regulations set by Post- och Telestyrelsen. The thesis includes the design, simulations,manufacturing, and testing of the antennas as well as the radar system. The goal was to test the system in both simulations, with a phantom model and with a human body as a target, to advance the current state of research and determine its practicality forreal-life applications. The simulations showed a significant difference in reflections between full and empty bladders. The measurements from the experiments showed a slight difference in amplitude as well, although not as great as predicted due to a longer pulse. The Vivaldi antennas performed as expected according to both theory and simulations and they should work as desired in further experiments that use a UWB radar to monitor the bladder state per the PTS regulations. This thesis is solely based on an original idea and has not been influenced or derived from any external company.
329

Anomalous Nature Of Metamaterial Inclusion and Compact Metamaterial-Inspired Antennas Model For Wireless Communication Systems. A Study of Anomalous Comportment of Small Metamaterial Inclusions and their Effects when Placed in the Vicinity of Antennas, and Investigation of Different Aspects of Metamaterial-Inspired Small Antenna Models

Jan, Naeem A. January 2017 (has links)
Metamaterials are humanly engineered artificial electromagnetic materials which produce electromagnetic properties that are unusual, yet can be observed readily in nature. These unconventional properties are not a result of the material composition but rather of the structure formed. The objective of this thesis is to investigate and design smaller and wideband metamaterial-inspired antennas for personal communication applications, especially for WiMAX, lower band and higher band WLAN applications. These antennas have been simulated using HFSS Structure Simulator and CST Microwave Studio software. The first design to be analysed is a low-profile metamaterial-inspired CPW-Fed monopole antenna for WLAN applications. The antenna is based on a simple strip loaded with a rectangular patch incorporating a zigzag E-shape metamaterial-inspired unit cell to enable miniaturization effect. Secondly, a physically compact, CSRR loaded monopole antenna with DGS has been proposed for WiMAX/WLAN operations. The introduction of CSRR induces frequency at lower WLAN 2.45 GHz band while the DGS has provided bandwidth enhancement in WiMAX and upper WLAN frequency bands, keeping the radiation pattern stable. The next class of antenna is a compact cloud-shaped monopole antenna consisting of a staircase-shaped DGS has been proposed for UWB operation ranges from 3.1 GHz to 10.6 GHz. The novel shaped antenna along with carefully designed DGS has resulted in a positive gain throughout the operational bandwidth. Finally, a quad-band, CPW-Fed metamaterial-inspired antenna with CRLH-TL and EBG is designed for multi-band: Satellite, LTE, WiMAX and WLAN.
330

Ultra-wideband antenna design for microwave imaging applications. Design, optimisation and development of ultra-wideband antennas for microwave near-field sensing tools, and study the matching and radiation purity of these antennas within near field environment.

Adnan, S. January 2012 (has links)
Near field imaging using microwave in medical applications has gain much attention recently as various researches show its high ability and accuracy in illuminating object comparing to the well-known screening tools such as Magnetic Resonance Imaging (MRI), digital mammography, ultrasound etc. This has encourage and motivate scientists continue to exploit the potential of microwave imaging so that a better and more powerful sensing tools can be developed. This thesis documents the development of antenna design for microwave imaging application such as breast cancer detection. The application is similar to the concept of Ground Penetrating Radar (GPR) but operating at higher frequency band. In these systems a short pulse is transmitted from an antenna to the medium and the backscattered response is investigated for diagnose. In order to accommodate such a short pulse, a very wideband antenna with a minimal internal reflection is required. Printed monopole and planar metal plate antenna is implemented to achieve the necessary operating wide bandwidth. The development of new compact printed planar metal plate ultra wide bandwidth antenna is presented. A generalized parametric study is carried out using two well-known software packages to achieve optimum antenna performance. The Prototype antennas are tested and analysed experimentally, in which a reasonable agreement was achieved with the simulations. The antennas present an excellent relative wide bandwidth of 67% with acceptable range of power gain between 3.5 to 7 dBi. A new compact size air-dielectric microstrip patch-antenna designs proposed for breast cancer detection are presented. The antennas consist of a radiating patch mounted on two vertical plates, fed by coaxial cable. The antennas show a wide bandwidth that were verified by the simulations and also confirmed experimentally. The prototype antennas show excellent performance in terms the input impedance and radiation performance over the target range bandwidth from 4 GHz to 8 GHz. A mono-static model with a homogeneous dielectric box having similar properties to human tissue is used to study the interaction of the antenna with tissue. The numerical results in terms the matching required of new optimised antennas were promising. An experimental setup of sensor array for early-stage breast-cancer detection is developed. The arrangement of two elements separated by short distance that confined equivalent medium of breast tissues were modelled and implemented. The operation performances due to several orientations of the antennas locations were performed to determine the sensitivity limits with and without small size equivalent cancer cells model. In addition, a resistively loaded bow tie antenna, intended for applications in breast cancer detection, is adaptively modified through modelling and genetic optimisation is presented. The required wideband operating characteristic is achieved through manipulating the resistive loading of the antenna structure, the number of wires, and their angular separation within the equivalent wire assembly. The results show an acceptable impedance bandwidth of 100.75 %, with a VSWR < 2, over the interval from 3.3 GHz to 10.0 GHz. Feasibility studies were made on the antenna sensitivity for operation in a tissue equivalent dielectric medium. The simulated and measured results are all in close agreement.

Page generated in 0.0171 seconds