• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 290
  • 43
  • 31
  • 24
  • 13
  • 7
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 195
  • 146
  • 144
  • 135
  • 106
  • 73
  • 72
  • 65
  • 64
  • 62
  • 52
  • 46
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Spatio-temporal ultrafast laser tailoring for bulk functionalization of transparent materials / Mise en forme spatio-temporelle d’impulsions laser ultracourtes pour la fonctionnalisation dans le volume de matériaux transparents

Mauclair, Cyril 27 May 2010 (has links)
L’arrivée des sources lasers ultracourtes a bouleversé le domaine de la micro-structuration pour l’optique intégrée. Le plus souvent, le procédé se résume à l’utilisation d’une lentille de focalisation sur le trajet du faisceau laser. Cette méthode souffre de limitations intrinsèques sur la vitesse d’usinage et sur le spectre des modifications accessibles. Nous montrons dans ce mémoire que la mise en forme spatio-temporelle des impulsions lasers ultracourtes répond efficacement à ces défis. En particulier, nous indiquons la possibilité de multiplier le nombre de spots lasers pour la fabrication simultanée de plusieurs composants optiques, en répondant ainsi au besoin de rapidité. Cette avancée majeure est illustrée par la photoinscription en parallèle de guides, de diviseurs, de coupleurs ainsi que de démultiplexeurs de lumière en 2Det 3D dans la silice. Il est également reporté ici que le domaine de photoinscription peut être élargi à la focalisation profonde dans les matériaux grâce à la modulation du front d’onde ainsi que la mise en forme temporelle de l’impulsion permettant de préserver la densité d’énergie déposée. Le couplage d’énergie vers le matériau transparent en fonction de divers profils d’impulsions est étudié à l’échelle femtoseconde. La caractérisation du gaz d’électrons libres ainsi que de l’onde de pression nous permet de mettre en évidence l’efficacité des impulsions picosecondes `a déposer l’énergie de manière plus confinée dans différents verres. Ces études sont conduites sur un système de microscopie de type pompe-sonde permettant de mettre en forme l’irradiation pompe. / In the past decade, ultrashort laser sources have had a decisive impact on material processing for photonic applications. The technique is usually restricted to the elemental association of an ultrashort source with a focusing lens. It is thus limited in the achievable bulk modifications. Accompanying studies of material modifications in space and time, we propose here that automated spatio-temporal tailoring of the laser pulses is an efficient manner to overcome these limitations. More precisely, we demonstrate the generation of multiple processing foci for synchronous photomachining of multiple devices in the bulk. Thus, we report on the parallel photowriting of waveguides, light couplers, light dividers in 2D/3D in fused silica glass. We show that the domain of photowriting can be extended to deep focusing. We indicate that this can be achieved by wavefront shaping or temporal profile tailoring conducted by an evolutionary optimization loop. We also have unveiled a singular interaction regime where regular structuring takes place before the focal region. For the first time, the dynamics of the energy coupling to the glassy matrix is evaluated for various temporal pulse profiles. Enhanced energy confinement in the case of picosecond pulses is confirmed by characterization of the transient electronic gas and of the subsequent pressure. These pump-probe studies were carried out with a self-build time-resolved microscopy system with temporally shaped pump irradiation. We also developed a new method based on the Drude model to differentiate the electronic and matrix contributions to the contrast of the microscopy images.
202

Photoionization of isomeric molecules: from the weak-field to the strong-field limit

Zigo, Stefan John January 1900 (has links)
Doctor of Philosophy / Department of Physics / Carlos A. Trallero / Ultra-fast spectroscopy has become a common tool for understanding the structure and dynamics of atoms and molecules, as evidenced by the award of the 1999 Nobel Prize in Chemistry to Ahmed H. Zewail for his pioneering work in femtochemistry. The use of shorter and more energetic laser pulses have given rise to high intensity table-top light sources in the visible and infrared which have pushed spectroscopic measurements of atomic and molecular systems into the strong-field limit. Within this limit, there are unique phenomena that are still not well understood. Many of such phenomena involve a photoionization step. For three decades, there has been a steady investigation of the single ionization of atomic systems in the strong-field regime both experimentally and theoretically. The investigation of the ionization of more complex molecular systems is of great interest presently and will help with the understanding of ultra-fast spectroscopy as a whole. In this thesis, we explore the single ionization of molecules in the presence of a strong electric field. In particular, we study molecular isomer pairs, molecules that are the same elementally, but different structurally. The main goal of this work is to compare the ionization yields of these similar molecular pairs as a function of intensity and gain some insight into what differences caused by their structure contribute to how they ionize in the strong-field limit. Through our studies we explore a wavelength dependence of the photoionization yield in order to move from the multi-photon regime of ionization to the tunneling regime with increasing wavelength. Also, in contrast to our strong-field studies, we investigate isomeric molecules in the weak-field limit through single photon absorption by measuring the total ionization yield as a function of photon energy. Our findings shed light on the complexities of photoionization in both the strong- and weak-field limits and will serve as examples for the continued understanding of single ionization both experimentally and theoretically.
203

Femtosecond laser direct writing of 3D metallic structures and 2D graphite

Kang, Seungyeon 04 June 2016 (has links)
This thesis explores a novel methodology to fabricate three dimensional (3D) metal-dielectric structures, and two dimensional (2D) graphite layers for emerging metamaterials and graphene applications. The investigations we report here go beyond the limitations of conventional fabrication techniques that require multiple post-processing steps and/or are restricted to fabrication in two dimensions. Our method combines photoreduction mechanism with an ultrafast laser direct writing process in innovative ways. This study aims to open the doors to new ways of manufacturing nanoelectronic and nanophotonic devices. With an introductory analysis on how the various laser and chemical components affect the fabrication mechanism, this dissertation is divided into three sections. / Engineering and Applied Sciences
204

Ultrafast Laser Inscribed Waveguides on Chalcogenide Glasses for Photonic Applications

Sabapathy, Tamilarasan January 2013 (has links) (PDF)
Chalcogenide glasses are highly nonlinear optical materials which can be used for fabricating active and passive photonic devices. This thesis work deals with the fabrication of buried, three dimensional, channel waveguides in chalcogenide glasses, using ultrafast laser inscription technique. The femtosecond laser pulses are focused into rare earth ions doped and undoped chalcogenide glasses, few hundred microns below from the surface to modify the physical properties such as refractive index, density, etc. These changes are made use in the fabrication of active and passive photonic waveguides which have applications in integrated optics. The first chapter provides an introduction to the fundamental aspects of femtosecond laser inscription, laser interaction with matter and chalcogenide glasses for photonic applications. The advantages and applications of chalcogenide glasses are also described. Motivation and overview of the present thesis work have been discussed at the end. The methods of chalcogenide glass preparation, waveguide fabrication and characterization of the glasses investigated are described in the second chapter. Also, the details of the experiments undertaken, namely, loss (passive insertion loss) and gain measurements (active) and nanoindentation studies are outlined. Chapter three presents a study on the effect of net fluence on waveguide formation. A heat diffusion model has been used to solve the waveguide cross-section. The waveguide formation in GeGaS chalcogenide glasses using the ultrafast laser, has been analyzed in the light of a finite element thermal diffusion model. The relation between the net fluence and waveguide cross section diameter has been verified using the experimentally measured properties and theoretically predicted values. Chapter four presents a study on waveguide fabrication on Er doped Chalcogenide glass. The active and passive characterization is done and the optimal waveguide fabrication parameters are given, along with gain properties for Er doped GeGaS glass. A C-band waveguide amplifier has been demonstrated on Chalcogenide glasses using ultrafast laser inscription technique. A study on the mechanical properties of the waveguide, undertaken using the nanoindentation technique, is presented in the fifth chapter. This work brings out the close relation between the change in mechanical properties such as elastic modulus and hardness of the material under the irradiation of ultrafast laser after the waveguide formation. Also, a threshold value of the modulus and hardness for characterizing the modes of the waveguide is suggested. Finally, the chapter six provides a summary of work undertaken and also discusses the future work to be carried out.
205

Imaging Atoms and Molecules with Strong Laser Fields

Smeenk, Christopher January 2013 (has links)
We study multi-photon ionization of rare gas atoms and small molecules by infrared femtosecond laser pulses. We demonstrate that ionization is accurately described by a tunnelling model when many infrared photons are absorbed. By measuring photo-electron and photo-ion spectra, we show how the sub-Ångstrom spatial resolution of tunnelling gives information about electron densities in the valence shell of atoms and molecules. The photo-electron and photo-ion momentum distributions are recorded with a velocity map imaging (VMI) spectrometer. We describe a tomographic method for imaging a 3-D momentum distribution of arbitrary symmetry using a 2-D VMI detector. We apply the method to measure the 3-D photo-electron distribution in elliptically polarized light. Using circularly polarized light, we show how the photo-electron momentum distribution can be used to measure the focused laser intensity with high precision. We demonstrate that the gradient of intensities present in a focused femtosecond pulse can be replaced by a single average intensity for a highly nonlinear process like multi-photon ionization. By studying photo-electron angular distributions over a range of laser parameters, we determine experimentally how the photon linear momentum is shared between the photo-electron, photo-ion and light field. We find the photo-electron carries only a portion of the total linear momentum absorbed. In addition we consider how angular momentum is shared in multi-photon ionization, and find the photo-electron receives all of the angular momentum absorbed. Our results demonstrate how optical and material properties influence the photo-electron spectrum in multi-photon ionization. These will have implications for molecular imaging using femtosecond laser pulses, and controlling the initial conditions of laser generated plasmas.
206

Análise de Franck-Condon para pireno suportado em filmes poliméricos e estudo comparativo entre as espectroscopias Raman nos domínios da frequência e do tempo / Franck-Condon analysis for pyrene supported in polymeric films and comporative study between Raman spectroscopies in time and frequency domain

Dantas, Willian Francisco Cordeiro, 1989- 27 August 2018 (has links)
Orientador: René Alfonso Nome Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-27T06:54:35Z (GMT). No. of bitstreams: 1 Dantas_WillianFranciscoCordeiro_M.pdf: 2446830 bytes, checksum: a6ef77a86d65956736e20e7c5e22ff59 (MD5) Previous issue date: 2015 / Resumo: A espectroscopia vibracional de femtossegundos da vizinhança é ideal para caracterizar os movimentos moleculares da vizinhança acoplados com o sistema eletrônico captador de luz. No caso dos movimentos nucleares intramoleculares, isto pode ser realizado tanto por infravermelho quanto por Raman, ambos de femtossegundos. No caso de movimentos intermoleculares, a dinâmica de femtossegundos somente pode ser caracterizada com experimento Raman coerente, e, por essa razão, é importante sabermos qual é o comportamento do clorofórmio em um experimento de femtossegundo. Dessa forma, pode-se realizar a comparação entre os dados experimentais e teóricos e concluir se o comportamento observado experimentalmente é o mesmo que o esperado. Este trabalho explora a análise de Franck-Condon para os espectros de emissão do pireno com dependência da temperatura. Assume-se que uma progressão vibrônica de bandas no formato de Lorenzianas pode representar o formato das bandas de emissão do fluoróforo. Consequentemente, é possível obter alguns parâmetros, como a largura de linha das bandas obtidas, as intensidades relativas dos picos observados (valores que são utilizados para encontrar os fatores de Huang-Rhys), a variação do comprimento de onda de emissão com o aumento da temperatura e a área integrada dos espectros / Abstract: The femtosecond vibrational spectroscopy of the neighborhood is ideal to characterize the molecular movements of the neighborhood coupled with the electronics pickup light. In the case of intra-molecular nuclear movements, this can be accomplished either by infrared and Raman both femtosecond. In the case of intermolecular movements, the dynamics of femtosecond can only be characterized with coherent Raman experiment, and so it is important to know the behavior of chloroform in a femtosecond experiment. Thus, it is possible to make a comparison between experimental and theoretical data and conclude that the observed experimentally is the same behavior expected. This work explores the Franck-Condon analysis for the emission spectra of pyrene in dependence on temperature. It is assumed that a vibronic bands in the progression Lorenzianas shape may represent the format of fluorophore emission bands. Consequently, it is possible to obtain some parameters such as the line width of the bands obtained, the relative intensities of the observed peaks (values that are used to find the Huang-Rhys factors), the variation of emission wavelength with increasing temperature and the integrated area of the spectra / Mestrado / Físico-Química / Mestre em Química
207

Prebunching for an Inverse Compton Scattering Source via an Emittance Exchange

January 2020 (has links)
abstract: X-ray free electron lasers (XFELs) provide several orders of magnitude brighter x-rays than 3rd generation sources. However, the electron beamlines and undulator magnets required are on the scale of kilometers, costing billions of dollars with only a half dozen or so currently operating worldwide. One way to overcome these limitations is to prebunch the electron beam on the scale of the x-ray wavelength. In this paper one such scheme is discussed, which uses a nanopatterned grating called a dynamical beam stop. This uses diffraction from crystal planes of the etched portion of a grating to impart a transverse modulation which becomes a temporal modulation via an emittance exchange (EEX). To expand upon this topic, dynamical electron diffraction intensities for a 200 nm thick Si(001) unpatterned membrane are simulated via the multislice method and compared to experiment for various crystallographic orientations at MeV energies. From this as well as an analysis of the experimental inelastic plasmon diffuse scattering, it is determined that the optimal transverse modulation would be formed from a bright field image of the beam stop, with the nanopattern being etched all the way through the membrane. A model quantifying the quality of the modulation - the bunching factor - as a function of contrast and duty factor is formulated and the optimal modulation is determined analytically. A prototype beam stop is then imaged in a transmission electron microscope (TEM) at 200 KeV, with the measured bunching factor of 0.5 agreeing with the model and approaching a saturated XFEL. Using the angular spectrum method, it is determined that the spatial coherence of the MeV energy electron beam is insufficient for significant self-imaging to occur for gratings with pitches of hundreds of nanometers. Finally, the first-order EEX input requirements for the electron beam are examined in the transverse dimension as are newly proposed longitudinal requirements to compensate for lingering correlations between the initial and final longitudinal phase spaces. / Dissertation/Thesis / Doctoral Dissertation Physics 2020
208

Diagnostic performance of maximum slope: a kinetic parameter obtained from ultrafast dynamic contrast-enhanced magnetic resonance imaging of the breast using k-space weighted image contrast (KWIC) / 乳房領域における高速造影検査法(KWIC)を用いたMRI血流動態パラメータ:Maximum slopeの診断能評価

Ohashi, Akane 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22741号 / 医博第4659号 / 新制||医||1046(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 辻川 明孝, 教授 伊達 洋至, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
209

Adsorption and Self-Assembly of Surfactants at Air-Liquid and Liquid-Metal Interfaces Studied by Sum Frequency Generation (SFG) Spectroscopy

Khan, Md Rubel 10 September 2021 (has links)
No description available.
210

Optical and Temporal Carrier Dynamics Investigations of III-Nitrides for Semiconductor Lighting

Ajia, Idris A. 22 May 2018 (has links)
III-nitride semiconductors suffer significant efficiency limitations; ‘efficiency’ being an umbrella term that covers an extensive list of challenges that must be overcome if they are to fulfil their vast potential. To this end, it is imperative to understand the underlying phenomena behind such limitations. In this dissertation, I combine powerful optical and structural characterization techniques to investigate the effect of different defects on the carrier dynamics in III-nitride materials for light emitting devices. The results presented herein will enhance the current understanding of the carrier mechanisms in such devices, which will lead to device efficiency improvements. In the first part of this dissertation, the effects of some important types of crystal defects present in III-nitride structures are investigated. Here, two types of defects are studied in two different III-nitride-based light emitting structures. The first defects of interest are V-pit defects in InGaN/GaN multiple quantum well (MQW) blue LEDs, where their contribution to the high-efficiency of such LEDs is discussed. In addition, the effect of these defects on the efficiency droop phenomenon in these LEDs is elucidated. Secondly, the optical effects of grain boundary defects in AlN-rich AlGaN/AlGaN MQWs is studied. In this study, it is shown that grain boundary defects may result in abnormal carrier localization behavior in these deep ultraviolet (UV) structures. While both defects are treated individually, it is evident from these studies that threading dislocation (TD) defects are an underlying contributor to the more undesirable outcomes of the said defects. In the second part, the dissertation reports on the carrier dynamics of III-nitride LED structures grown on emerging substrates—as possible efficiency enhancing techniques—aimed at mitigating the effects of TD defects. Thus, the carrier dynamics of GaN/AlGaN UV MQWs grown, for the first time, on (2̅01) – oriented β-Ga2O3 is studied. It is shown to be a candidate substrate for highly efficient vertical UV devices. Finally, results from the carrier dynamics investigation of an AlGaN/AlGaN MQW LED structure homoepitaxially grown on AlN substrate are discussed, where it is shown that its high-efficiency is sustained at high temperatures through the thermal redistribution of carriers to highly efficient recombination sites.

Page generated in 0.0534 seconds