• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 10
  • 6
  • Tagged with
  • 38
  • 19
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Die Stiftung als Nachfolgeinstrument für Familienunternehmen : Handlungsempfehlungen für die Ausgestaltung und Überführung /

Fleschutz, Karin. January 2008 (has links)
Zugl.: Trier, Univ., Diss., 2007.
22

Formwechsel eines insolventen Unternehmens /

Friedemann, Susann. January 2004 (has links) (PDF)
Humboldt-Univ., Diss.--Berlin, 2002. / Literaturverz. S. [186] - 196.
23

Lattice instability in supersaturated solid solutions

Jurányi, Fanni. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Chemnitz.
24

Transformation ereignisgesteuerter Prozeßketten in Workflowbeschreibungen im XPDL-Format

Beer, Daniel, Dümmler, Jörg, Rünger, Gudula 15 December 2006 (has links)
Aufgrund des stetig zunehmenden Kostendrucks geht ein Trend in Richtung der rechnergestützten Abarbeitung von betrieblichen Geschäftsprozessen und behördlichen Verwaltungsvorgängen in Form von Workflows. Liegen die abzuarbeitenden Vorgänge bereits als Geschäftsprozeßmodell vor, kann durch eine Transformation in ein Workflowmodell eine komplette Neumodellierung vermieden werden. Dieser Bericht beschreibt ein Übersetzungswerkzeug, das eine derartige Transformation halbautomatisch durchführen kann. Als Ausgangspunkt dienen Geschäftsprozeßmodelle basierend auf ereignisgesteuerten Prozeßketten, die über mehrere Transformationsschritte in eine im XPDL Format kodierte Workflowbeschreibung überführt wird. Die einzelnen Transformationsschritte werden an einem konkreten Anwendungsfall aus dem Bereich des E-Governments verdeutlicht und die Bedienung des Werkzeugs, die über eine graphische Benutzeroberfläche erfolgt, erläutert.
25

Martensitische Umwandlung und Ermüdung austenitischer Edelstähle, Gefügeveränderungen und Möglichkeiten der Früherkennung von Ermüdungsschädigungen

Schoß, Volker 20 June 2001 (has links)
Metalle, die zyklischen Beanspruchungen ausgesetzt sind, zeigen bereits vor der Anrissbildung typische Veränderungen des Gefüges. Bei austenitischen Stählen verursacht Ermüdungsbelastung die Bildung charakteristischer Versetzungsanordnungen. Unter bestimmten Umständen tritt die Bildung von Verformungsmartensit auf, die von einer starken Veränderung der magnetischen Werkstoffeigenschaften begleitet wird. Zwischen der aufgebrachten Ermüdungsbelastung und den beschriebenen Gefüge- und Eigenschaftsveränderungen einerseits und Restlebensdauer eines Bauteils andererseits sollten Zusammenhänge systematisch untersucht werden. Hierfür wurden verschiedene zerstörungsfreie Methoden eingesetzt und ihre Empfindlichkeit verglichen. Die Gefüge der ermüdeten Zustände wurden auch mit metallographischen, elektronenoptischen und röntgenographischen Methoden charakterisiert. Zwischen den Ermüdungsparametern und den Gefügeveränderungen wird ein Zusammenhang hergestellt, insbesondere zwischen der Restlebensdauer und dem Volumenanteil an Martensit. Der Einfluss der chargenabhängigen Werkstoffeigenschaften und der Belastungsbedingungen auf das martensitische Umwandlungsverhalten wurde in statischen und zyklischen Experimenten untersucht. Anhand der Entwicklung des Martensitgehaltes im Verlauf der Ermüdung wird ein Bewertungsschema für die Abschätzung der Restlebensdauer vorgeschlagen.
26

Critical Phenomena in Topologically Disordered Systems / Kritische Phänomene in topologisch ungeordneten Systemen

Schrauth, Manuel January 2021 (has links) (PDF)
Clearly, in nature, but also in technological applications, complex systems built in an entirely ordered and regular fashion are the exception rather than the rule. In this thesis we explore how critical phenomena are influenced by quenched spatial randomness. Specifically, we consider physical systems undergoing a continuous phase transition in the presence of topological disorder, where the underlying structure, on which the system evolves, is given by a non-regular, discrete lattice. We therefore endeavour to achieve a thorough understanding of the interplay between collective dynamics and quenched randomness. According to the intriguing concept of universality, certain laws emerge from collectively behaving many-body systems at criticality, almost regardless of the precise microscopic realization of interactions in those systems. As a consequence, vastly different phenomena show striking similarities at their respective phase transitions. In this dissertation we pursue the question of whether the universal properties of critical phenomena are preserved when the system is subjected to topological perturbations. For this purpose, we perform numerical simulations of several prototypical systems of statistical physics which show a continuous phase transition. In particular, the equilibrium spin-1/2 Ising model and its generalizations represent -- among other applications -- fairly natural approaches to model magnetism in solids, whereas the non-equilibrium contact process serves as a toy model for percolation in porous media and epidemic spreading. Finally, the Manna sandpile model is strongly related to the concept of self-organized criticality, where a complex dynamic system reaches a critical state without fine-tuning of external variables. Our results reveal that the prevailing understanding of the influence of topological randomness on critical phenomena is insufficient. In particular, by considering very specific and newly developed lattice structures, we are able to show that -- contrary to the popular opinion -- spatial correlations in the number of interacting neighbours are not a key measure for predicting whether disorder ultimately alters the behaviour of a given critical system. / Ohne Zweifel stellen vollständig regelmäßig aufgebaute komplexe Systeme sowohlin der Natur als auch in technischen Anwendungen eher die Ausnahme als die Regel dar. In dieser Arbeit erforschen wir, wie sogenannte kritische Phänomene durch eingefrorene räumliche Unordnung beeinflusst werden. Konkret untersuchen wir physikalische Systeme, welche einen kontinuierlichen Phasenübergang aufweisen, in Gegenwart von topologischer Unordnung. Die räumliche Struktur, auf der sich das dynamische System entwickelt, ist in diesem Fall durch ein unregelmäßiges diskretes Gitter gegeben. Die Erlangung eines tiefergehenden Verständnisses des Zusammenspiels von physikalischer Dynamik und räumlicher Unordnung kann daher als das Hauptziel unserer Unternehmung angesehen werden. Ein gleichermaßen faszinierendes wie zentrales Konzept in der statistischen Physik stellt die sogenannte Universalität dar, gemäß welcher das kollektive Verhaltenvon Vielkörpersystemen im kritischen Bereich nahezu unabhängig von der spezifischen mikroskopischen Realisierung der Wechselwirkungen ist. Als Konsequenz sind selbst in völlig unterschiedlichen Systemen bemerkenswerte Ähnlichkeiten an den jeweiligen Phasenübergängen beobachtbar. Diese Dissertation geht nun der Frage nach, inwieweit diese universalen Eigenschaften erhalten bleiben, wenn das System topologischen Störungen ausgesetzt wird. Zu diesem Zweck werden umfangreiche numerische Monte-Carlo-Simulationen von einigen prototypischen Systemen, welche einen kontinuierlichen Phasenübergang aufweisen, durchgef ührt. Ein prominentes Beispiel für ein System im thermodynamischen Gleichgewicht stellt dabeidas Spin-1/2 Ising-Modell dar, welches unter anderem magnetische Eigenschaftenvon Festkörpern modelliert. Zusätzlich werden auch Systeme fernab des Gleichgewichts behandelt, wie etwa der Kontaktprozess, welcher ein vereinfachtes Modell für Perkolationsprozesse in porösen Stoffen oder auch für die Ausbreitung von Epidemien darstellt, sowie spezielle Modelle, welche in engem Zusammenhang mit selbstorganisiertem kritischen Verhalten stehen. Unsere Ergebnisse demonstrieren, dass der Einfluss von topologischen Störungen auf kritische Phänomene derzeit noch unzureichend verstanden ist. Insbesondere gelingt es uns mittels spezieller eigens entwickelter Gitterkonstruktionen zu zeigen, dass lokale räumliche Korrelationen in der Anzahl von wechselwirkenden Nachbarn, entgegen weitläufiger Meinung, kein adäquates Maß sind, um den Einfluss von Unordnung auf das Verhalten eines kritischen Systems vorhersagen zu können.
27

Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites

Song, Kaikai 27 November 2013 (has links) (PDF)
In the past, it has been found that CuZr-based BMG composites containing B2 CuZr crystals in the glassy matrix display significant plasticity with obvious work hardening. In this work, it was tried to provide a strategy for pinpointing the formation of CuZr-based BMG composites, to modify the microstructures of these composites, and to clarify their yielding and deformation mechanisms. In order to pinpoint the formation of CuZr-based BMG composites, the phase formation and structural evolution of 11 kinds of CuZr-based alloy systems, altogether 36 different compositions, during heating and quenching processes were investigated. An endothermic event between the crystallization and melting peaks was found to be associated with a eutectoid transformation of the B2 CuZr phase. With the addition of elements to the CuZr-based alloys, this endothermic peak(s) shifts to lower or higher temperatures, implying that minor element additions can change the thermal stability of the B2 CuZr phase. By considering the thermal stability of the supercooled liquid, i.e. its resistance against crystallization, and the thermal stability of the B2 CuZr phase, a new strategy to select compositions, which form metastable CuZr-based composites consisting of an amorphous phase and B2 CuZr crystals, is proposed. It is characterized by a parameter, K = Tf /TL, where Tf and TL are the final temperature of the eutectoid transformation during heating and the liquidus temperature of the alloy, respectively. Based on this criterion, the present CuZr-based alloys are classified into three types. For Type I alloys with lower K values, it is difficult to obtain bulk metallic glass (BMG) composites. For Type III alloys with higher K values, BMG composites with larger dimensions are prone to be fabricated, whereas only moderate-sized BMG composites can be obtained for Type II possessing intermediate K values. Accordingly, CuZr-based BMG composites containing B2 CuZr phase in the glassy matrix for different alloy systems were successfully fabricated into different dimensions. For the sake of controlling the formation of the B2 CuZr phase in the glassy matrix and then changing the deformability of CuZr-based BMG composites, different methods were also used to fabricate these composites by: (1) introducing insoluable/high-melting particles; (2) appropriate re-melting treatments of master alloys; and (3) a new flash heating and quenching method. It was demonstrated that the volume fraction, size and distribution of the B2 phase in the glassy matrix can be controlled as well using the methods above. In order to clarify the excellent mechanical properties of CuZr-based BMG composites, the yielding and plastic deformation mechanisms of CuZr-based BMG composites were investigated based on SEM, XRD, and TEM observations. With the volume fraction of amorphous phase (famor) decreasing from 100 vol.% to 0 vol.%, a single-to-“double”-to-“triple”-double yielding transition was found. For the monolithic CuZr-based BMGs and their composites with the famor ³ 97.5 ± 0.5 vol.%, only one yielding at a strain of ~2% occurs, which is due to the formation of multiple shear bands in the glassy matrix, and the associative actions of the shear banding and the martensitic transformation (MT), respectively. When the famor is less than 97.5 ± 0.5 vol.%, a “yielding” occurs at a low strain of ~1%, which results from the yielding of B2 CuZr phase and the onset of the MT within B2 CuZr phase. When the famor is larger than 55 ± 3 vol.%, a “yielding” observed at strains >8% is ascribed from the operation of dislocations with a high density as well as partial de-twinning. It was also found that with the famor decreasing, the deformation mechanism gradually changes from a shear-banding dominated process, to a process being governed by the MT in the crystalline phase, resulting in different plastic strains. Owing to the importance of the MT and the shear banding to the deformation of CuZr-based BMG composites, the details of the MT and the shear banding process were investigated. On one hand, it was found that the MT temperatures of CuZr-based martensitic alloys have a clear relationship with the respective electronic structure and the lattice parameter of the equiatomic CuZr intermetallics. The MT temperatures of the studied alloys can be evaluated by the average concentration of valence electrons. Additional elements with larger atomic radius can affect the stacking fault energy and the electronic charge density redistribution, resulting in the difference of the electronic structures. On the other hand, the formation and multiplication of shear bands for CuZr-based BMG composites is associated with the storage and dissipation of the partial elastic energy during the plastic deformation. When microstructural inhomogeneities at different length scales are introduced into the glassy matrix, the elastic energy stored in the sample-machine system during the plastic deformation is redistributed, resulting in a transition of shear banding process from a chaotic behavior to a self-organized critical state. All in all, our studies and observations provide an understanding of the formation, deformation, and microstrcutural optimization of CuZr-based BMG composites and give guidance on how to improve the ductility/toughness of BMGs. / In letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen.
28

Physikalische und technische Aspekte der Ortho-Para-Umwandlung von Wasserstoff

Essler, Jürgen 28 October 2013 (has links) (PDF)
Für die Speicherung und den Transport von Wasserstoff ist die Verflüssigung und anschließende Lagerung in flüssiger Form wegen der deutlich vergrößerten Dichte oft die wirtschaftlichste Lösung. Bei Umgebungstemperatur besteht Wasserstoff zu 75% aus Orthowasserstoff und 25% aus Parawasserstoff. Bei der Verflüssigung ist zu beachten, dass es unterhalb von etwa 250 K zu einer exothermen Umwandlung von Ortho- zu Parawasserstoff kommt. Dadurch wird der Energieaufwand zur Verflüssigung vergrößert. Die Entdeckung, dass es die Allotrope Ortho- und Parawasserstoff gibt, spielte eine wichtige Rolle bei der Entwicklung der Quantenphysik in den zwanziger und dreißiger Jahren des 20. Jahrhunderts. Heute sind vor allem die technischen Aspekte bei der Verflüssigung von Bedeutung. Im wissenschaftlichen Schrifttum fehlte bisher eine zusammenfassende Darstellung der physikalischen und technischen Aspekte. Diese Lücke soll mit dieser Arbeit geschlossen werden. Es werden die Aspekte der Theorie der Unterschiede der beiden Wasserstoffallotrope Orthowasserstoff und Parawasserstoff, die Umwandlung von einem Allotrop in das andere, die Auswirkungen der Unterschiede auf die Stoffgrößen, die mögliche Messung der Anteile, die Selbstumwandlung, die gewollte und ungewollte katalytische Umwandlung sowie die großtechnischen Anwendungen behandelt. Im Rahmen der Arbeit wurde insbesondere die Umwandlung an dem kommerziell erhältlichen Katalysatormaterial Eisenoxid sowie die katalytische Umwandlung an Adsorptionsmaterialien zur kryogenen Wasserstoffspeicherung und Wasserstoffreinigung untersucht. Neue Erkenntnisse der Arbeit sind zum einen ein verbessertes Verständnis der Aktivierung des kommerziell erhältlichen und eingesetzten Ortho-Para-Katalysators Eisenoxid, verbunden mit einer kostenoptimierten Möglichkeit der Aktivierung und zum anderen die ersten Messungen der katalytischen Aktivität neuer kryogener Speichermaterialien auf Basis der Wasserstoffadsorption.
29

Neues von binären Phosphorsulfiden und anderen Phosphorchalkogen-Molekülen und ihren Derivaten / News from phosphorus sulfides and other phosphorus chalcogen molecules and their derivatives

Nowottnick, Heike 25 July 2000 (has links)
Diese Arbeit liefert einen Beitrag zur Chemie der Phosphorsulfide. Die Sulfurierung von alpha-P4S4 mit Triphenylantimonsulfid führte zu den neuen Verbindungen delta-P4S6 und epsilon-P4S6, wobei die Entdeckung von delta-P4S6 die Lücke in der Verbindungsreihe der Phosphorsulfide mit beta-P4S5-Grundgerüst schließt. Die Reaktion von P4S10 mit Triphenylphosphin lieferte delta-P4S7. Der molekulare Aufbau dieser Phosphorsulfide wurde mit Hilfe der 31P-NMR-Spektroskopie ermittelt. Anhand der Produktverteilungen konnten Aussagen über mögliche Reaktionswege gemacht werden. Bei der Reaktion von P4S3 und P4Se3 mit NbCl5 konnten Einkristalle mit unerwarteter Struktur beobachtet werden: [beta-P4S4(NbCl5)2] und [P4Se3(NbCl5)]. [beta-P4S4(NbCl5)2 enthält als Strukturelement beta-P4S4 von dem bis heute noch keine Einkristallstrukturaufnahmen existieren. Die Verbindungsklasse alpha-P4S3((NHR)exo)2 und alpha-P4S3(NR) konnte durch weitere Moleküle dieser Art, jedoch mit größerem Rest R (R = Fluorenyl, Triphenylmethylphenyl, Adamantyl) ergänzt werden. Die Umsetzung von alpha-P4Se3I2 mit 1-Adamantanammoniumchlorid und tert.-Buytylammoniumchlorid führte zu den bislang noch nicht beschriebenen Verbindungen alpha-P4Se3Iexo(NHR)exo und alpha-P4Se3Iendo(NHR)exo. Die Untersuchung der beta-alpha-Umwandlung hat ergeben, daß bei der Reaktion an Licht die Produkte alpha-P4S3I2, P4S3 und PI3 entstanden sind. Bei der Reaktion unter Lichtausschluß erfolgt der Zerfall nur sehr langsam. Aufgrund der Reaktionen von beta-P4S3I2 und alpha-P4S3I2 mit Natriumthioslulfat und Stärke, sowie der Stabilität der Verbindung beta-P4S3(CH3)2, kann heute davon ausgegangen werden, daß freies Iod für die beta-alpha-Umwandlung notwendig ist.
30

Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites

Song, Kaikai 11 November 2013 (has links)
In the past, it has been found that CuZr-based BMG composites containing B2 CuZr crystals in the glassy matrix display significant plasticity with obvious work hardening. In this work, it was tried to provide a strategy for pinpointing the formation of CuZr-based BMG composites, to modify the microstructures of these composites, and to clarify their yielding and deformation mechanisms. In order to pinpoint the formation of CuZr-based BMG composites, the phase formation and structural evolution of 11 kinds of CuZr-based alloy systems, altogether 36 different compositions, during heating and quenching processes were investigated. An endothermic event between the crystallization and melting peaks was found to be associated with a eutectoid transformation of the B2 CuZr phase. With the addition of elements to the CuZr-based alloys, this endothermic peak(s) shifts to lower or higher temperatures, implying that minor element additions can change the thermal stability of the B2 CuZr phase. By considering the thermal stability of the supercooled liquid, i.e. its resistance against crystallization, and the thermal stability of the B2 CuZr phase, a new strategy to select compositions, which form metastable CuZr-based composites consisting of an amorphous phase and B2 CuZr crystals, is proposed. It is characterized by a parameter, K = Tf /TL, where Tf and TL are the final temperature of the eutectoid transformation during heating and the liquidus temperature of the alloy, respectively. Based on this criterion, the present CuZr-based alloys are classified into three types. For Type I alloys with lower K values, it is difficult to obtain bulk metallic glass (BMG) composites. For Type III alloys with higher K values, BMG composites with larger dimensions are prone to be fabricated, whereas only moderate-sized BMG composites can be obtained for Type II possessing intermediate K values. Accordingly, CuZr-based BMG composites containing B2 CuZr phase in the glassy matrix for different alloy systems were successfully fabricated into different dimensions. For the sake of controlling the formation of the B2 CuZr phase in the glassy matrix and then changing the deformability of CuZr-based BMG composites, different methods were also used to fabricate these composites by: (1) introducing insoluable/high-melting particles; (2) appropriate re-melting treatments of master alloys; and (3) a new flash heating and quenching method. It was demonstrated that the volume fraction, size and distribution of the B2 phase in the glassy matrix can be controlled as well using the methods above. In order to clarify the excellent mechanical properties of CuZr-based BMG composites, the yielding and plastic deformation mechanisms of CuZr-based BMG composites were investigated based on SEM, XRD, and TEM observations. With the volume fraction of amorphous phase (famor) decreasing from 100 vol.% to 0 vol.%, a single-to-“double”-to-“triple”-double yielding transition was found. For the monolithic CuZr-based BMGs and their composites with the famor ³ 97.5 ± 0.5 vol.%, only one yielding at a strain of ~2% occurs, which is due to the formation of multiple shear bands in the glassy matrix, and the associative actions of the shear banding and the martensitic transformation (MT), respectively. When the famor is less than 97.5 ± 0.5 vol.%, a “yielding” occurs at a low strain of ~1%, which results from the yielding of B2 CuZr phase and the onset of the MT within B2 CuZr phase. When the famor is larger than 55 ± 3 vol.%, a “yielding” observed at strains >8% is ascribed from the operation of dislocations with a high density as well as partial de-twinning. It was also found that with the famor decreasing, the deformation mechanism gradually changes from a shear-banding dominated process, to a process being governed by the MT in the crystalline phase, resulting in different plastic strains. Owing to the importance of the MT and the shear banding to the deformation of CuZr-based BMG composites, the details of the MT and the shear banding process were investigated. On one hand, it was found that the MT temperatures of CuZr-based martensitic alloys have a clear relationship with the respective electronic structure and the lattice parameter of the equiatomic CuZr intermetallics. The MT temperatures of the studied alloys can be evaluated by the average concentration of valence electrons. Additional elements with larger atomic radius can affect the stacking fault energy and the electronic charge density redistribution, resulting in the difference of the electronic structures. On the other hand, the formation and multiplication of shear bands for CuZr-based BMG composites is associated with the storage and dissipation of the partial elastic energy during the plastic deformation. When microstructural inhomogeneities at different length scales are introduced into the glassy matrix, the elastic energy stored in the sample-machine system during the plastic deformation is redistributed, resulting in a transition of shear banding process from a chaotic behavior to a self-organized critical state. All in all, our studies and observations provide an understanding of the formation, deformation, and microstrcutural optimization of CuZr-based BMG composites and give guidance on how to improve the ductility/toughness of BMGs.:Contents Abstract V Kurzfassung IX 1 Theoretical background 1 1.1 Development of metallic glasses 1 1.2 Formation of metallic glasses 3 1.2.1 Thermodynamic considerations 5 1.2.2 Kinetic considerations 7 1.2.3 Structural considerations 10 1.3 Mechanical properties of metallic glasses 14 1.4 Deformation mechanisms of metallic glasses 18 1.4.1 Shear transformation zone theory 18 1.4.2 Free volume model 20 1.4.3 Potential energy landscape theory 21 1.4.4 Cooperative Shearing Model 22 1.5 Strategies to improve the ductility of metallic glasses 24 1.5.1 Nano-scaled microstructural inhomogeneities 25 1.5.2 Micro-scaled microstructural inhomogeneities 28 1.5.3 CuZr-based BMG composites 31 2 Experimental techniques 37 2.1 Sample preparation 37 2.1.1 Arc melting/suction casting 37 2.1.2 Centrifugal casting 38 2.1.3 High-frequency melting/injection casting 39 2.1.4 Melt spinning 39 2.1.5 Ball milling and powder consolidation 40 2.2 Structure characterizations 41 2.2.1 X-ray diffraction 41 2.2.2 Optical microscopy and scanning electron microscopy 41 2.2.3 Transmission electron microscopy 42 2.3 Thermal analysis 43 2.3.1 Differential scanning calorimetry 43 2.3.2 Dilatometry 44 2.4 Measurement of the elastic constants 44 2.5 Compression and tensile tests 44 3 Strategy for pinpointing the formation of CuZr-based BMG composites 46 3.1 Theoretical analysis for the formation of CuZr-based BMG composites 46 3.2 Nature of the eutectoid B2 CuZr transformation 49 3.2.1 Shift of endothermic peak(s) related to the eutectoid B2 transformation 49 3.2.2 Thermal stability of the B2 CuZr phase 52 3.3 Formation of the amorphous phase and the B2 CuZr phase 54 3.4 A new parameter for pinpointing the formation of CuZr-based BMG composites 57 3.5 Conclusions 59 4 Synthesis of CuZr-based BMG composites 60 4.1 Formation of Type I alloys 60 4.2 Formation of Type II alloys 62 4.2.1 Formation and microstructures of the Cu50Zr50 BMG composites 62 4.2.2 Formation and microstructures of the Cu-Zr-Ti BMG composites 67 4.2.3 Formation and microstructures of the Cu-Zr-Al and Cu-Zr-Ag BMG composites 70 4.3 Formation of Type III alloys 74 4.4 Conclusions 76 5 Processing routes for CuZr-based BMG composites 78 5.1 Influence of the melting current/time 78 5.2 Adjusting the cooling rate 81 5.3 Re-melting of the pre-alloy 82 5.4 Introduction of boron nitride particles 84 5.5 Effect of TaW inoculation 87 5.6 “Flash annealing” 93 5.7 Conclusions 100 6 Yielding and deformation mechanisms of CuZr-based BMG composites 101 6.1 Formation and microstructures of Cu47.5Zr47.5Al5 BMG composites 101 6.2 Deformation behavior of Cu47.5Zr47.5Al5 BMG composites 105 6.3 Yielding and plastic deformation mechanisms 110 6.3.1 Yielding and plastic deformation during stage I 110 6.3.2 Yielding and plastic deformation during stage II 113 6.3.3 Yielding and plastic deformation during stage III 114 6.3.4 Plastic deformation during stage IV 118 6.3.5 Fracture behavior 120 6.4 Modeling of the “yielding” behavior 121 6.5 Conclusions 124 7 Martensitic transformation behavior in CuZr-based alloys 126 7.1 Electronic structures and martensitic transformation 126 7.1.1 Electronic structures of the B2 CuZr phase 127 7.1.2 Electronic structures of CuZr martensites 129 7.2 Effect of minor additions on the martensitic transformation 130 7.2.1 Formation of Cu-Zr-Ti crystalline samples 130 7.2.2 Effect of Ti element on the martensitic transformation 133 7.2.3 Effect of minor elements on the martensitic transformation temperature 135 7.3 Martensitic transformation in rapidly solidified alloys 139 7.3.1 Martensitic transformation in the as-cast Cu50Zr50 alloys 140 7.3.2 Martensitic transformation in the as-cast Cu-Zr-Al alloys 142 7.4 Conclusions 145 8 Shear banding process of CuZr-based BMG composites 146 8.1 Serrated flow in CuZr-based BMG composites 146 8.2 Statistical analysis of the serrations for brittle and ductile BMGs 148 8.3 Different statistical results of the serration events for CuZr-based BMG composites during deformation 152 8.4 Energy criteria for serrations in CuZr-based BMG and their composites 155 8.5 Conclusions 158 9 Summary and Outlook 160 Publications 162 Acknowledgements 163 References 164 Schriftliche Erklärung 191 / In letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen.:Contents Abstract V Kurzfassung IX 1 Theoretical background 1 1.1 Development of metallic glasses 1 1.2 Formation of metallic glasses 3 1.2.1 Thermodynamic considerations 5 1.2.2 Kinetic considerations 7 1.2.3 Structural considerations 10 1.3 Mechanical properties of metallic glasses 14 1.4 Deformation mechanisms of metallic glasses 18 1.4.1 Shear transformation zone theory 18 1.4.2 Free volume model 20 1.4.3 Potential energy landscape theory 21 1.4.4 Cooperative Shearing Model 22 1.5 Strategies to improve the ductility of metallic glasses 24 1.5.1 Nano-scaled microstructural inhomogeneities 25 1.5.2 Micro-scaled microstructural inhomogeneities 28 1.5.3 CuZr-based BMG composites 31 2 Experimental techniques 37 2.1 Sample preparation 37 2.1.1 Arc melting/suction casting 37 2.1.2 Centrifugal casting 38 2.1.3 High-frequency melting/injection casting 39 2.1.4 Melt spinning 39 2.1.5 Ball milling and powder consolidation 40 2.2 Structure characterizations 41 2.2.1 X-ray diffraction 41 2.2.2 Optical microscopy and scanning electron microscopy 41 2.2.3 Transmission electron microscopy 42 2.3 Thermal analysis 43 2.3.1 Differential scanning calorimetry 43 2.3.2 Dilatometry 44 2.4 Measurement of the elastic constants 44 2.5 Compression and tensile tests 44 3 Strategy for pinpointing the formation of CuZr-based BMG composites 46 3.1 Theoretical analysis for the formation of CuZr-based BMG composites 46 3.2 Nature of the eutectoid B2 CuZr transformation 49 3.2.1 Shift of endothermic peak(s) related to the eutectoid B2 transformation 49 3.2.2 Thermal stability of the B2 CuZr phase 52 3.3 Formation of the amorphous phase and the B2 CuZr phase 54 3.4 A new parameter for pinpointing the formation of CuZr-based BMG composites 57 3.5 Conclusions 59 4 Synthesis of CuZr-based BMG composites 60 4.1 Formation of Type I alloys 60 4.2 Formation of Type II alloys 62 4.2.1 Formation and microstructures of the Cu50Zr50 BMG composites 62 4.2.2 Formation and microstructures of the Cu-Zr-Ti BMG composites 67 4.2.3 Formation and microstructures of the Cu-Zr-Al and Cu-Zr-Ag BMG composites 70 4.3 Formation of Type III alloys 74 4.4 Conclusions 76 5 Processing routes for CuZr-based BMG composites 78 5.1 Influence of the melting current/time 78 5.2 Adjusting the cooling rate 81 5.3 Re-melting of the pre-alloy 82 5.4 Introduction of boron nitride particles 84 5.5 Effect of TaW inoculation 87 5.6 “Flash annealing” 93 5.7 Conclusions 100 6 Yielding and deformation mechanisms of CuZr-based BMG composites 101 6.1 Formation and microstructures of Cu47.5Zr47.5Al5 BMG composites 101 6.2 Deformation behavior of Cu47.5Zr47.5Al5 BMG composites 105 6.3 Yielding and plastic deformation mechanisms 110 6.3.1 Yielding and plastic deformation during stage I 110 6.3.2 Yielding and plastic deformation during stage II 113 6.3.3 Yielding and plastic deformation during stage III 114 6.3.4 Plastic deformation during stage IV 118 6.3.5 Fracture behavior 120 6.4 Modeling of the “yielding” behavior 121 6.5 Conclusions 124 7 Martensitic transformation behavior in CuZr-based alloys 126 7.1 Electronic structures and martensitic transformation 126 7.1.1 Electronic structures of the B2 CuZr phase 127 7.1.2 Electronic structures of CuZr martensites 129 7.2 Effect of minor additions on the martensitic transformation 130 7.2.1 Formation of Cu-Zr-Ti crystalline samples 130 7.2.2 Effect of Ti element on the martensitic transformation 133 7.2.3 Effect of minor elements on the martensitic transformation temperature 135 7.3 Martensitic transformation in rapidly solidified alloys 139 7.3.1 Martensitic transformation in the as-cast Cu50Zr50 alloys 140 7.3.2 Martensitic transformation in the as-cast Cu-Zr-Al alloys 142 7.4 Conclusions 145 8 Shear banding process of CuZr-based BMG composites 146 8.1 Serrated flow in CuZr-based BMG composites 146 8.2 Statistical analysis of the serrations for brittle and ductile BMGs 148 8.3 Different statistical results of the serration events for CuZr-based BMG composites during deformation 152 8.4 Energy criteria for serrations in CuZr-based BMG and their composites 155 8.5 Conclusions 158 9 Summary and Outlook 160 Publications 162 Acknowledgements 163 References 164 Schriftliche Erklärung 191

Page generated in 0.2091 seconds