• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 4
  • 1
  • Tagged with
  • 28
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical studies of collisional energy transfer in unimolecular reactions

Bhatti, Zaheer Ahmed January 1998 (has links)
No description available.
2

Síntesis, caracterización y estudio en superficie de nanoimanes moleculares

Gómez Segura, Jordi 04 November 2005 (has links)
Los imanes unimoleculares presentan un estado fundamental de espín elevado y una marcada anisotropía magnética, dando lugar a una barrera energética para la interconversión del momento magnético. Por consiguiente, presentan una velocidad lenta de relajación de la magnetización que origina la observación de propiedades magnéticas interesantes características de los dominios magnéticos, tales como las curvas de susceptibilidad magnética ac fuera de fase y las curvas de histéresis magnética. Adicionalmente, y debido a tratarse de materiales mesoscópicos, formados por unos cientos de átomos, las curvas de histéresis muestran un aumento en la velocidad de relajación de la magnetización a campos resonantes atribuidos a fenómenos cuánticos de relajación por efecto túnel. El origen de estas propiedades magnéticas se deben a moléculas individuales y no a efectos de largo alcance, tal y como confirman los estudios de relajación de la magnetización y capacidad calorífica. Los imanes unimoleculares son sistemas moleculares monodispersos que presentan un tamaño perfectamente definido a escala nanométrica. Por consiguiente, son perfectos candidatos como sistemas de almacenamiento de alta densidad de información con aplicaciones en el campo computacional cuántico. Sin embargo, para disponer en un futuro de un ordenador cuántico a nivel molecular, es necesario el desarrollo de nuevas técnicas de detección rápida. En comparación con los métodos de medida magnética convencionales, las técnicas espectroscópicas permiten una mayor sensibilidad y rapidez de lectura, tal y como demuestran las medidas magneto-ópticas realizadas por dicroísmo circular magnético (MCD). Además, para generar memoria magnética a nivel molecular, simultáneamente, es preciso desarrollar métodos sistemáticos que permitan depositar de forma controlada en superficie moléculas individuales o bien agregados moleculares para ser utilizados como bits de información magnética. En base a estos estudios, la aplicación de técnicas litográficas blandas ha permitido controlar el tamaño, posición y geometría de los agregados de Mn12 en superficie, tras ser caracterizados mediante técnicas de microscopia de fuerzas atómicas (AFM) y magnéticas (MFM). Un ejemplo a destacar lo constituye la superficie de películas delgadas poliméricas, debido a la combinación de las propiedades magnéticas de los Mn12, como imanes unimoleculares, y las características físicas en las matrices poliméricas tales como la flexibilidad, transparencia y baja densidad, siendo estos sistemas compuestos magnéticos perfectos materiales con aplicaciones magneto-ópticas. / Single-molecule magnets (SMM) have a large-spin ground state with appreciable magnetic anisotropy, resulting in an energy barrier for the spin reversal. As a consequence, the observation of interesting magnetic properties occurs, such as out-of-phase ac magnetic susceptibility signals and stepwise magnetization hysteresis loops. In addition to resonant magnetization tunnelling, during the last few years several other interesting phenomena have also been reported. The origin of the slow magnetization relaxation rates as well as of other phenomena are due to individual molecules rather than to long-range ordering, as confirmed by magnetization relaxation and heat capacity studies. Therefore, SMM represent nanoscale molecular magnets of a sharply defined size with potential use in quantum computing applications and towards the realization of the ultimate high-density information storage devices. However, if a truly molecular computational device based on SMM is to be achieved, the development of new spectroscopic techniques to detect them rapidly, taking advantage of magneto-optical properties, as well as new systematic studies to address them properly on surfaces, are highly required. On the basis of this, patterning with Mn12 aggregates can be attained on surfaces by applying soft lithography techniques, thereby controlling their size, distance and geometry control. Surface characterization of Mn12 patterns have been studied by Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) imaging. For instance, the surface of polymer thin films results particularly interesting because of the advantageous properties of polymer matrices, such as flexibility, transparency and low density, which make these magnetic materials potentially useful for magneto-optical applications.
3

Application of First Order Unimolecular Rate Kinetics to Interstitial Laser Photocoagulation

Poepping, Tamie January 1996 (has links)
An investigation of the temperature response and corresponding lesion growth resulting from in vivo interstitial laser photocoagulation was performed in order to test the applicability of Arrhenius theory. The irradiations were performed in vivo in rabbit muscle for various exposures at 1.0W using an 805 nm diode laser source coupled to an optical fibre with a pre-charred tip, thereby forcing it to function as a point heat source. Temperature responses were measured using a five-microthermocouple array along a range of radial distances from the point heat source. Each temperature profile was fitted with a curve predicted by the Weinbaum-Jiji bioheat transfer equation. The lesions were resected 48 hours after irradiation and the boundary of thermal damage resulting in necrosis was determined histologically. Numerical integration of the Arrhenius integral using temperature-time data at the lesion boundary produced corresponding activation energy and pre-exponential factor pairs (Ea , a) consistent with reported values for various other endpoints and tissue types. As well, theoretical predictions of the lesion growth from Arrhenius theory agreed well with experimental results. However, the thermal parameters, which are generally assumed to be constant when solving the bioheat transfer equation, were found to vary with radial distance from the source, presumably due to a dependence on temperature. / Thesis / Master of Science (MS)
4

Investigation of Kinetics of Nitroxide Mediated Radical Polymerization of Styrene with a Unimolecular Initiator

Zhou, Mingxiao January 2009 (has links)
This thesis presents the results of a study on the kinetics of nitroxide-mediated radical polymerization of styrene with a unimolecular initiator. The primary objective was to obtain a more comprehensive understanding of how a unimolecular-initiating system controls the polymerization process and to clarify the effects of various reaction parameters. Previous work in this field has met with some difficulties in the initiator synthesis, such as low yield and inconsistency of molecular weight. These problems were overcome by adjusting reaction conditions and procedures. Better yields of initiator with consistent molecular weight were produced by the improved methods. Control of polymerization rate and polymer molecular weight in unimolecular nitroxide-mediated radical polymerization was studied by looking at the effects of the three main factors: initiator concentration, temperature, and the initiator molecular weight on polymerization rate, molecular weight and polydispersity. Results indicated that increasing the initiator concentration had no effect on polymerization rate at low conversion, but led to lower polymerization rate at high conversion; higher initiator concentration led to lower molecular weight of the resulting polymer. It was also found that temperature significantly increased the polymerization rate, yet had no effect on number-average molecular weight, Mn, at low conversion, while it caused a plateau at high conversion levels; there was no effect on weight-average molecular weight, Mw, through the whole conversion range. In addition, increasing initiator molecular weight was found to have no effect on either polymerization rate or molecular weight. The experimental molecular weights of the unimolecular system were compared to theoretical molecular weights based on ideal controlled radical polymerization (CRP). The results were found to be close to the theoretical values. This confirmed the advantages of the unimolecular system, namely, the degree of control over molecular weight was nearly ideal (for certain conditions); and molecular weights could thus be predicted by simply following general rules relating to CRP mechanisms.
5

Investigation of Kinetics of Nitroxide Mediated Radical Polymerization of Styrene with a Unimolecular Initiator

Zhou, Mingxiao January 2009 (has links)
This thesis presents the results of a study on the kinetics of nitroxide-mediated radical polymerization of styrene with a unimolecular initiator. The primary objective was to obtain a more comprehensive understanding of how a unimolecular-initiating system controls the polymerization process and to clarify the effects of various reaction parameters. Previous work in this field has met with some difficulties in the initiator synthesis, such as low yield and inconsistency of molecular weight. These problems were overcome by adjusting reaction conditions and procedures. Better yields of initiator with consistent molecular weight were produced by the improved methods. Control of polymerization rate and polymer molecular weight in unimolecular nitroxide-mediated radical polymerization was studied by looking at the effects of the three main factors: initiator concentration, temperature, and the initiator molecular weight on polymerization rate, molecular weight and polydispersity. Results indicated that increasing the initiator concentration had no effect on polymerization rate at low conversion, but led to lower polymerization rate at high conversion; higher initiator concentration led to lower molecular weight of the resulting polymer. It was also found that temperature significantly increased the polymerization rate, yet had no effect on number-average molecular weight, Mn, at low conversion, while it caused a plateau at high conversion levels; there was no effect on weight-average molecular weight, Mw, through the whole conversion range. In addition, increasing initiator molecular weight was found to have no effect on either polymerization rate or molecular weight. The experimental molecular weights of the unimolecular system were compared to theoretical molecular weights based on ideal controlled radical polymerization (CRP). The results were found to be close to the theoretical values. This confirmed the advantages of the unimolecular system, namely, the degree of control over molecular weight was nearly ideal (for certain conditions); and molecular weights could thus be predicted by simply following general rules relating to CRP mechanisms.
6

Design, Synthesis, Application of Biodegradable Polymers

Gide, Mussie 22 March 2018 (has links)
Bacterial infections have posed a serious threat to the public health due to the significant rise of the infections caused by antibiotic-resistant bacteria. There has been considerable interest in the development of antimicrobial agents which mimic the natural HDPs, and among them biodegradable polymers are newly discovered drug candidates with ease of synthesis and low manufacture cost compared to synthetic host defense peptides. Herein, we present the synthesis of biocompatible and biodegradable polymers including polycarbonate polymers, unimolecular micelle hyperbranched polymers and dendrimers that mimic the antibacterial mechanism of HDPs by compromising bacterial cell membranes. The developed amphiphilic polycarbonates are highly selective to Gram-positive bacteria, including multidrug-resistant pathogens and the unimolecular micelle hyperbranched polymers showed promising broad-spectrum activity. However, lipidated amphiphilic dendrimers with low molecular weight display potent and selective antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. In addition to antibacterial activity against planktonic bacteria, these dendrimers were also shown to inhibit bacterial biofilms effectively. These class of polymers may lead to a useful generation of antibiotic agents with practical applications.
7

Instrumentation and Kinetic Studies of Surface-Induced Dissociation in a Time-of-Flight Mass Spectrometer

Majuwana Gamage, Chaminda January 2006 (has links)
The surface-induced dissociation (SID) method is introduced into a Bruker matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI TOF MS) as an efficient ion fragmentation method. Ion trajectory calculations using the SIMION 7.0 ion optics program are performed and results are combined with simple unimolecular decay calculations in order to study the kinetics of the SID processes. In this instrument, the observation time frame for SID fragments lies in the submicrosecond region, allowing the specific detection of submicrosecond fragmentation channels. MALDI-produced protonated peptides in the mass range of 700 - 1500 Da and radical ions produced by laser irradiation of fullerenes C60 and C70 are fragmented at a gold surface coated with a self-assembled monolayer of alkanethiol to obtain TOF SID TOF mass spectra. For the SID of peptides in the hyperthermal energy regime, a fragmentation time frame of tens to a few hundreds of nanoseconds was calculated for the observed fast fragmentation channels (Chapters 3 and 4). Theoretical and experimental peak shape comparisons assuming unimolecular decay kinetics indicated a log rate constant in the range 6 - 7 (Chapter 4). Energy and mass resolved kinetic studies are also carried out. The contribution of special structural features to peptide fragmentation and the possibility of different fragmentation mechanisms such as sequential and parallel pathways are investigated. The results indicate a unimolecular decay process for observed fast peptide fragments ruling out a surface-shattering mechanism. Fullerene ions, especially C60+., showed a fragmentation behavior producing C2n+. fragments with an even number of C units at collision energies in the range of 100 - 400 eV (Chapter 5). At around 400 eV, additional small fragments appeared that are apart by only a single C unit. According to the calculated fragmentation times and the theoretical and experimental peak shape comparisons assuming unimolecular decay kinetics, both these processes may be approximated by parallel fast unimolecular decay processes with fragmentation time frames of tens to hundreds of nanoseconds although the poor theoretical and experimental peak shape matching for example in the decay of C60+. to C19+. may suggest deviations from a one-step unimolecular decay process.
8

Reactivity and Ignition Delay Measurements of Petroleum-based Fuels, Surrogate Fuels and Biofuels

AlAbbad, Mohammed A. 10 1900 (has links)
Energy demand is rapidly increasing due to the increase in population and rising living standards. Petroleum-based fuels account for the main source of energy consumed in the world. However, they are also considered to be the main source of the unwanted emissions to the atmosphere. In this context, chemical kinetic studies of combustion processes are essential for a better understanding of the underlying reactions and to achieve increased combustion efficiency and reduced pollutant emissions. In this study, ignition delay times, a global indicator of fuel reactivity, were measured for promising fuels for use in advanced combustion engines. Also, rate coefficients were measured for promising oxygenated hydrocarbons that can be used as additives to conventional fuels. Ignition delay time measurements of four primary reference fuel (PRF) blends, mixtures considered to be some of the simplest gasoline surrogates, were measured behind reflected shock waves to provide a large experimental dataset to validate PRF chemical kinetic models. The kinetic modeling predictions from four chemical kinetic models were compared with the experimental data. Ignition delay correlations were also developed to reduce the simulation cost of complicated models. Recently, naphtha, a low-octane distillate fuel, has been proposed as a low-cost refinery fuel. Likewise, a mid-octane blend which consists of low-octane (light and heavy naphtha) and high-octane (reformate) distillate fuels has been proposed to power gasoline compression ignition (GCI) engines. In this work, experimental and modeling studies were conducted on low and mid-octane distillate fuels (naphtha and GCI blend) and surrogate candidates to assess their autoignition characteristics for use in advanced internal combustion engines. Oxygenated molecules are considered to be promising additives to conventional fuels. Thermal decomposition of three esters (ethyl levulinate, ethyl propionate and diethyl carbonate ) and a five-member cyclic ketone (cyclopentanone) was investigated in this work. Laser absorption technique was employed to follow the reaction progress by measuring ethylene (C2H4) near 10.532 µm using a CO2 gas laser for the decomposition process of the three esters. The reaction progress of the decomposition of cyclopentanone was followed by monitoring CO formation using a quantum cascade laser at a wavelength near 4.556 µm.
9

Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol

Grajales Gonzalez, Edwing 05 1900 (has links)
The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with their favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular and H-assisted tautomerism of propen-2-ol to acetone, which are included in butanol combustion kinetic models, are assigned rate parameters based on the analogous unimolecular tautomerism vinyl alcohol ↔ acetaldehyde and H addition to the double bound of iso-butene, respectively. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the unimolecular and H-assisted tautomerism, i-C3H5OH⟺CH3COCH3 and i-C3H5OH+Ḣ⟺CH3COCH3+Ḣ, was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) and CCSD(T)/aug-cc-pVTZ//M062X/cc-pVTZ ab initio calculations, respectively. For H-assisted tautomerism, the reaction takes place in two consecutive steps: i-C3H5OH+Ḣ⟺CH3ĊOHCH3 and CH3ĊOHCH3⟺CH3COCH3+Ḣ. Multistructural torsional anharmonicity and variational transition state theory were considered in a wide temperature and pressure range (200 K – 3000 K, 0.1 kPa – 108 kPa). It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior for both isomerizations. Results for unimolecular tautomerism differ from vinyl alcohol ↔ acetaldehyde analogue reactions, which shows lower rate constant values. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed unimolecular rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption. In the combustion and pyrolysis batch reactor simulations, using all the rate constants computed in this work, H-assisted reactions are limited because H radicals become abundant once the propen-2-ol has been consumed by other reactions, such as the non-catalyzed tautomerism i-C3H5OH⟺CH3COCH3, which becomes one of the main source of acetone. The intermediate radical (CH3ĊOHCH3) is formed exclusively from tert-butanol, with its concentration in 2-butanol oxidation being smaller because the secondary alcohol is unable to produce the radical directly. In all cases, the intermediate is converted effectively to acetone.
10

Gas-Phase Ion and Radical Chemistry of CO2 Adducts with Possible Relevance in the Atmosphere of Mars

Soldi-Lose, Héloïse 23 April 2008 (has links) (PDF)
In the Mars atmosphere, reactivity of trace components is as relevant as that of the major compounds if formation of complex molecules is considered. These are of great importance concerning the existence of a past or future life on Mars. In this context, the gas-phase chemistry of alkylcarbonate and alkyloxalate ions and radicals, ROCOO–/• and ROCOCOO–/•, is investigated for different alkyl substituents R (H, CH3, C2H5, i-C3H7, and t-C4H9). This study describes the structures, stability, and unimolecular dissociation behavior of these species and is achieved by means of mass spectrometric methods and ab initio calculations. Standard heats of formation of the ions and radicals are determined via computational methods, using atomization energies and bond-separation reactions. Vertical charge-transfer experiments are performed to provide evidence for the existence of the radicals under study and the NIDD (ion and neutral decomposition difference) method is employed to determine their reactivity. Typical processes observed involve direct bond cleavages leading to elimination of carbon dioxide. Concerning anionic compounds, classical metastable ion (MI) and collisional activation (CA) experiments enable the determination of their gas-phase behavior. This, in contrast to radicals, is not only constituted by direct bond cleavages, but also by hydride-transfer reaction or carbon monoxide expulsion involving formation of ion-neutral complexes as intermediates. Translational energy loss spectra are also employed to gain more insights concerning the dissociation energetics of CH3OCOO• and CH3OCOO+ formed by vertical charge-transfer of methylcarbonate. This rather unusual method for such study implies a careful evaluation of the error caused by the instrument which may otherwise generate dramatic deviations of the results compared to theory.

Page generated in 0.0856 seconds