• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gestion robuste de la production électrique à horizon court terme / Robust modelization of short term power generation problem

Ben Salem, Sinda 11 March 2011 (has links)
Dans un marché électrique concurrentiel, EDF a adapté ses outils de gestion de production pour permettre une gestion optimale de son portefeuille, particulièrement sur les horizons journaliers et infra-journaliers, derniers leviers pour une gestion optimisée de la production. Et plus l'horizon d'optimisation s'approche du temps réel, plus les décisions prises aux instants précédents deviennent structurantes voire limitantes en terme d'actions. Ces décisions sont aujourd'hui prises sans tenir compte du caractère aléatoire de certaines entrées du modèle. En effet, pour les décisions à court-terme, la finesse et la complexité des modèles déjà dans le cas déterministe ont souvent été un frein à des travaux sur des modèles tenant compte de l'incertitude. Pour se prémunir face à ces aléas, des techniques d'optimisation en contexte incertain ont fait l'objet des travaux de cette thèse. Nous avons ainsi proposé un modèle robuste de placement de la production tenant compte des incertitudes sur la demande en puissance. Nous avons construit pour cette fin un ensemble d'incertitude permettant une description fine de l'aléa sur les prévisions de demande en puissance. Le choix d'indicateurs fonctionnels et statistiques a permis d'écrire cet ensemble comme un polyèdre d'incertitude. L'approche robuste prend en compte la notion de coût d'ajustement face à l'aléa. Le modèle a pour objectif de minimiser les coûts de production et les pires coûts induits par l'incertitude. Ces coûts d'ajustement peuvent décrire différents contextes opérationnels. Une application du modèle robuste à deux contextes métier est menée avec un calcul du coût d'ajustement approprié à chaque contexte. Enfin, le présent travail de recherche se situe, à notre connaissance, comme l'un des premiers dans le domaine de la gestion optimisée de la production électrique à court terme avec prise en compte de l'incertitude. Les résultats sont par ailleurs susceptibles d'ouvrir la voie vers de nouvelles approches du problème. / Robust Optimization is an approach typically offered as a counterpoint to Stochastic Programming to deal with uncertainty, especially because it doesn't require any precise information on stochastic distributions of data. In the present work, we deal with challenging unit-commitment problem for the French daily electricity production under demand uncertainty. Our contributions concern both uncertainty modelling and original robust formulation of unit-commitment problem. We worked on a polyhedral set to describe demand uncertainty, using statistical tools and operational indicators. In terms of modelling, we proposed robust solutions that minimize production and worst adjustment costs due to uncertainty observation. We study robust solutions under two different operational contexts. Encouraging results to the convex unit-commitment problems under uncertainty are thus obtained, with intersting research topics for future work.
2

An Evaluation of GeneticAlgorithm Approaches for theUnit Commitment Problem inPower Generation Scheduling

Mattathil Suresh, Nandini January 2023 (has links)
The Unit Commitment Problem (UCP) poses a significant challenge in optimizing powergeneration schedules within complex and dynamic energy systems. This study explores theapplication of Genetic Algorithms (GAs) as a promising approach to address UCP, their ability tonavigate complex solution spaces and adapt to changing operational conditions. The work provides a broad exploration of their effectiveness, challenges, and future prospects. The objective of UCP is to efficiently optimize power generation schedules within complex energy systems, seeking cost-effective and reliable solutions while accommodating various operational constraints. Various encoding techniques and GA operations are implemented and evaluated incomparison to the solutions obtained from a commercial Mixed-Integer Linear Programming (MILP) solver. The key findings point to the potential for achieving high quality solutions and robustness in the application of these techniques. However, it is important to acknowledge and address challenges such as encoding complexity, extensive computation times, the risk of premature convergence, and the complications of handling complex constraints that continue to exist in this domain. The future scope lies in hybrid approaches, scalability enhancement and incorporation of multi-objective optimization, offering unrealized potential for the efficient andsustainable operation of modern energy systems.
3

Unit commitment model development for hydropower on the Day-Ahead spot market.

Radulesco, Romain January 2020 (has links)
In the aftermath of the liberalization of European Energy Markets in the 2000s, Power Exchange platforms have constantly evolved towards more integrated and competitive designs, where quality forecasts and effective optimization strategies play decisive roles. This study presents the development of a hydropower scheduling optimization algorithm for the Day-Ahead spot market using Mixed Integer Linear Programming (MILP). This work was supported by the hydro asset management team of ENGIE Global Energy Markets (GEM) located in Brussels.  The model developed is focusing on the optimization of Coindre Hydraulic Power Plant (HPP), located in the highlands of Massif Central in France. With the combined water discharge of its two interconnected reservoirs, Grande-Rhue and Petite-Rhue, the powerhouse can reach up to 36 MW of power output capacity. The two reservoirs are located kilometres apart from each other and have different storage capacities and catchment areas. The reservoirs naturally exchange water due to the level difference along an interconnection pipe. Maximum power output is limited by water level differences in both reservoirs, which makes modelling complicated. These operational constraints are a limiting factor in terms of operability, as a result the scheduling process is a non-trivial task and is time-consuming.  A framing study of the power plant was conducted over a hydraulic year to identify the governing parameters of the model. The multi-reservoir nature of the optimization problem oriented the model development towards a Mixed Integer Linear Formulation. After experimenting with different solvers, Gurobi 28.1.0 was chosen for its performance in the Branch and Cut Algorithm for the power scheduling task.  The performance of the new model has been validated by re-running the model on past production plans, results show that reservoir volume errors are less than 5% of their respective capacities on a 5 days’ time-horizon. After backtesting it was found that the new optimization strategy results in higher revenue for the plant due to the optimized operation at higher average energy prices. The results also bring out the importance of proper valve actuation in the optimization strategy, as well as the need for future studies. / Till följd av liberaliseringen av de europeiska energimarknaderna under 2000-talet har energiföretagen och elbörserna ständigt utvecklats mot mer integrerade och konkurrenskraftiga lösningar, där kvalitetsprognoser och effektiva optimeringsstrategier spelar avgörande roller. Detta examensarbete presenterar utvecklingen av en algoritm för optimering av vattenkraftplaneringen på Day-Ahead elmarknaden med hjälp av en matematisk modell av typen Mixed Integer Linear Programming (MILP). Arbetet initierades av och utfördes hos ENGIE Global Energy Markets (GEM) i Bryssel.  Modellen som utvecklats är tänkt att optimera Coindre vattenkraftverk, som ligger på höglandet inom Massif Central i Frankrike. Med det kombinerade vattenutsläppet från dess två fördämningar, Grande-Rhue och Petite-Rhue, kan kraftverket leverera upp till 36 MW el netto till elnätet. Vattenreservoarerna ligger flertalet kilometer ifrån varandra och har mycket olika kapacitet och upptagningsområden. Båda reservoarerna är kopplade till varandra genom det gemensamma tilloppsröret till kraftverket, där en reglerventil finns endast vid Petite-Rhue. Vatten kan växlas naturligt mellan de två dammarna när ventilen är öppen på grund av skillnaden i varderas vattennivå. Den maximala effekten från kraftverket är begränsad av vattennivåerna i båda reservoarerna vilket gör optimeringsmodelleringen komplicerad. Dessa operationella begränsningar är mycket hindrande vad gäller valet av driftsregim, eftersom kalkylering av driftsplaneringen blir en svår och tidskrävande uppgift.  En ramstudie av vattenkraftverket genomfördes under ett typiskt hydrauliskt år för att identifiera modellens styrparametrar. Den möjliga vattenöverföringen mellan de två dammarna orienterade modellutvecklingen mot en Mixed Integer Linear Programming (MILP) formulering. Efter att ha experimenterat med olika kalkylverktyg valdes Gurobi 28.1.0 för sin bra prestation i lösningen av Branch and Cut-algoritmen.  Systemets hydraulik har validerats genom att injicera realiserade produktionsplaner som input till modellen. Resultaten visar att volymfelet är mindre än 5% av deras respektive kapacitet under en 5-dagars tidshorisont. Efter tvärstester mot historiska data konstaterades det att den nya optimeringsstrategin resulterar i bättre genomsnittliga elpriser på varje kWh inmatad till nätet och högre intäkter för kraftverket. Resultaten visar också på vikten av korrekt ventilmanövrering i optimeringsstrategin.  Modellen körs i rimliga beräkningstider och redan används i den dagliga optimeringen av Coindre kraftverket, vilket sparar mycket tid. Specifika exempel på den optimerade prestandan och framtida förbättringar hittas i slutet av denna rapport.
4

Gestion énergétique sous incertitude : Application à la planification et à l'allocation de réserve dans un micro réseau électrique urbain comportant des générateurs photovoltaïques actifs et du stockage / Energy management under uncertainty : application to the day-ahead planning and power reserve allocation of an urban microgrid with active photovoltaic generators and storage systems

Yan, Xingyu 18 May 2017 (has links)
Le développement massif des énergies renouvelables intermittentes dans les systèmes de puissance affecte le fonctionnement des systèmes électriques. En raison des techniques limitées et des investissements nécessaires pour maintenir le niveau de sécurité électrique actuel, les questions liées à l'envoi, à la stabilité statique et dynamique pourraient arrêter le développement de ces sources. Le sujet de la thèse est de développer un outil pour mesurer l'incertitude sur la disponibilité de la puissance produite par les générateurs photovoltaïques dans un réseau urbain. Premièrement, l'incertitude est modélisée par l'étude de la nature incertaine de la PV énergie production et de la charge. Avec les méthodes stochastiques, on calcule la réserve de puissance (OR) un jour d'avance en tenant compte d'un indice de risque de fiabilité associé. Ensuite, l'OR est distribué en différents générateurs (générateurs photovoltaïques actifs et micro-turbines à gaz). Afin de minimiser le coût opérationnel total et/ou les émissions équivalentes de CO2, une planification optimale et une répartition quotidienne de l'OR dans différents générateurs d'énergie sont mises en œuvre. Enfin, un logiciel libre «Un système de gestion de l'énergie convivial et un superviseur de la planification opérationnelle» est développé à partir de l'interface utilisateur graphique de Matlab pour conceptualiser le fonctionnement global du système. / The massive development of intermittent renewable energy technologies in power systems affects the operation of electrical systems. Due to technical limitations and investments needed to maintain the current electrical security level, issues related to dispatching, static and dynamic stability could stop the development of these distributed renewable energy sources (RES). The subject of the PhD is to develop a tool to study the uncertainties of PV power and load forecasting in an urban network. Firstly, the uncertainties are modeled by studying the uncertainty nature of PV power and load. With stochastic methods, the day-ahead operating reserve (OR) is quantified by taking into account an associated reliability risk index. Then the OR is dispatched into different power generators (active PV generators and micro gas turbines). To minimize the microgrid total operational cost and/or equivalent CO2 emissions, day-ahead optimal operational planning and dispatching of the OR into different power generators is implemented. Finally, a freeware “A User-friendly Energy Management System and Operational Planning Supervisor” is developed based on the Matlab GUI to conceptualize the overall system operation
5

Distributed Optimization Algorithms for Inter-regional Coordination of Electricity Markets

Veronica R Bosquezfoti (10653461) 07 May 2021 (has links)
<p>In the US, seven regional transmission organizations (RTOs) operate wholesale electricity markets within three largely independent transmission systems, the largest of which includes five RTO regions and many vertically integrated utilities.</p> <p>RTOs operate a day-ahead and a real-time market. In the day-ahead market, generation and demand-side resources are optimally scheduled based on bids and offers for the next day. Those schedules are adjusted according to actual operating conditions in the real-time market. Both markets involve a unit commitment calculation, a mixed integer program that determines which generators will be online, and an economic dispatch calculation, an optimization determines the output of each online generator for every interval and calculates locational marginal prices (LMPs).</p> <p>The use of LMPs for the management of congestion in RTO transmission systems has brought efficiency and transparency to the operation of electric power systems and provides price signals that highlight the need for investment in transmission and generation. Through this work, we aim to extend these efficiency and transparency gains to the coordination across RTOs. Existing market-based inter-regional coordination schemes are limited to incremental changes in real-time markets. </p> <p>We propose a multi-regional unit-commitment that enables coordination in the day-ahead timeframe by applying a distributed approach to approximate a system-wide optimal commitment and dispatch while allowing each region to largely maintain their own rules, model only internal transmission up to the boundary, and keep sensitive financial information confidential. A heuristic algorithm based on an extension of the alternating directions method of multipliers (ADMM) for the mixed integer program is applied to the unit commitment. </p> The proposed coordinated solution was simulated and compared to the ideal single-market scenario and to a representation of the current uncoordinated solution, achieving at least 58% of the maximum potential savings, which, in terms of the annual cost of electric generation in the US, could add up to nearly $7 billion per year. In addition to the coordinated day-ahead solution, we develop a distributed solution for financial transmission rights (FTR) auctions with minimal information sharing across RTOs that constitutes the first known work to provide a viable option for market participants to seamlessly hedge price variability exposure on cross-border transactions.

Page generated in 0.0718 seconds