Spelling suggestions: "subject:"validierung"" "subject:"invalidierung""
81 |
Entwicklung eines individuenbasierten Modells zur Abbildung des Bewegungsverhaltens von Passagieren im FlughafenterminalSchultz, Michael 18 April 2012 (has links) (PDF)
Mit der Entwicklung eines stochastischen Modells zur Abbildung des Bewegungsverhaltens von Passagieren wird die Basis für eine virtuelle Anwendungsumgebung geschaffen, mit der die Passagierabfertigungsprozesse im Flughafenterminal und die hierfür notwendigen Infrastrukturen modelliert, implementiert, untersucht und gezielt optimiert werden können. Es werden vorhandene wissenschaftliche Modellansätze zur mikroskopischen Agentensimulation kritisch gewürdigt und Anforderungen an das zu entwickelnde Bewegungsmodell abgeleitet. Das eigens entwickelte stochastische Bewegungsmodell stellt die Erweiterung eines räumlich diskreten mikroskopischen Modells auf Basis eines zellularen Automaten dar, wobei Defizite aufgrund der verwendeten diskreten Gitterstruktur bereits auf Modellebene kompensiert werden. Zu den Erweiterungen zählen die autonome Umgebungsanalyse und die Routenplanung des Agenten, die Abbildung weitreichender Wechselwirkungen zwischen den Agenten und die Berücksichtigung von gruppendynamischen Entscheidungen. Durch die Validierung des stochastischen Bewegungsmodells anhand des Fundamentaldiagramms für Fußgänger kann gezeigt werden, dass das Modell in der Lage ist, den charakteristischen Verlauf der Geschwindigkeit in Relation zur Agentendichte quantitativ abzubilden. Auch typische, in der Realität beobachtbare Selbstorganisationseffekte können durch das Modell reproduziert werden.
Für die Anwendung des stochastischen Modells zur Abbildung des Bewegungsverhaltens von Passagieren im Flughafenterminal wird das Modell durch empirisch erhobene Passagierbewegungsdaten kalibriert. Die Datenerhebung erfolgt am Flughafen Dresden unter Verwendung eines entwickelten videogestützten Bewegungsverfolgungssystems und erlaubt eine gezielte Kalibrierung hinsichtlich der Passagierparameter: Geschlecht, Reisemotivation (privat oder geschäftlich), Gruppengröße sowie Gepäckart und -anzahl. Für die Erstellung der virtuellen Terminalumgebung werden die Passagierabfertigungsprozesse eingehend analysiert und die Prozesszeiten der jeweiligen Abfertigungsstationen durch spezifische Wahrscheinlichkeitsverteilungen modelliert. Hierfür stehen empirische Datenerhebungen am Flughafen Stuttgart zur Verfügung, die eine detaillierte Prozessanalyse hinsichtlich der Passagierparameter und der Prozessparameter (Erfahrung des Personals, Reaktionszeiten bei Störungen) erlauben.
Im Anschluss an die Kalibrierung des stochastischen Bewegungsmodells und die Modellierung der Passagierabfertigungsprozesse erfolgt die Entwicklung einer Anwendungsumgebung für die Implementierung des virtuellen Flughafens. Durch den modularen Aufbau der Anwendungsumgebung ist eine effiziente Implementierung der Flughafenstrukturen (Grundriss, Flugplan, Personaleinsatz), der Abfertigungsprozesse und des stochastischen Bewegungsmodells möglich. Die Anwendungsumgebung stellt dabei einen übergeordneten Rahmen dar, durch den eine allgemeine Nutzerschnittstelle (Konfigurationsumgebung), eine grafische Ergebnisaufbereitung und die dreidimensionale Abbildung des Bewegungsverhaltens der Passagiere zur Verfügung steht.
Die Anwendung des entwickelten stochastischen Bewegungsmodells erfolgt für die Validierung der Passagierabfertigungsprozesse (Check-In und Sicherheitskontrolle), für die Entwicklung einer passagierbezogener Prozessbewertung und für die vollständige Abbildung der Terminalprozesse (Abflug) am Beispiel des Flughafens Dresden. Durch die Analyse des Einstiegsverhaltens der Passagiere in ein Verkehrsflugzeug werden die Notwendigkeit des Einsatzes stochastischer Bewegungsmodelle und das Potential mikroskopischer Modellierungsansätze verdeutlicht.
Das entwickelte stochastische Bewegungsmodell kann das Passagierverhalten auch in komplexen Umgebungen umfänglich widerspiegeln und die entwickelte Anwendungsumgebung stellt einen idealen Rahmen für die Modellanwendung und -weiterentwicklung dar. Durch die anwendungsorientierten Implementierungen steht eine Vielzahl von geeigneten Detaillösungen zur Verfügung, um den zukünftigen wissenschaftlichen und praxisrelevanten Herausforderungen der Personendynamik zu begegnen. / The development of a stochastic motion model allows for using a virtual application environment, to reproduce passenger motion behavior and handling processes at airport terminals. Based on the introduced scientific approaches for microscopic agent simulation, requirements for an application-oriented motion model are derived. The developed model is a substantial extension of a stochastic cellular automata approach, where the deficiencies due to the discrete grid structure are compensated on a fundamental level. The model development is completed by adding agent-oriented environment analysis, route planning, and mid-range agent interaction. The stochastic motion model proves its capabilities for a quantitative reproduction of the characteristic shape of the common fundamental diagram of pedestrian dynamics. Moreover, generic self-organization effects are reproduced by the model.
For the application of the stochastic approach for modeling the motion behavior of passengers inside an airport terminal, a comprehensive acqusition of data at Dresden International Airport provides a solid basis. A video-supported tracking environment allows for an efficient categorization of passengers and analysis of their motion behavior regarding to their gender, travel purpose (private or business), group size, and baggage types and quantities. In addition to the passenger-related data, the process time of passenger handling at each station at Stuttgart Airport is analyzed in detail and transformed to statistic probabilities by functional data fitting. Finally, the calibrated stochastic motion model is prepared for passenger dynamics at airport terminals.
After the successful development and calibration, the implementation of the motion model in a virtual application environment is accomplished. To implement the terminal structure, the passenger handling processes, and the individual passenger motion behavior common programming interfaces are used as well as specific components for linking model and animation requirements. The application of the stochastic motion models aims at the validation of passenger handling process on the basis of empirical data from Stuttgart airport and at the development of a passenger-oriented process evaluation using Dresden Airport environment. The simulation of passenger dynamics at airport terminals points out that the stochastic motion model reproduces the motion behavior of passengers close to reality. Due to the application-oriented implementation a variety of appropriate solutions are available for future scientific and operational challenges related to passenger dynamics.
|
82 |
Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage / Validierung hygrothermischer Materialmodellierung unter Berücksichtigung der Hysterese der FeuchtespeicherungScheffler, Gregor 09 April 2008 (has links) (PDF)
The achievable accuracy of hygrothermal building component simulation is significantly dependent on the applied material functions. These functions are determined by the material modelling marking the connection between the basic storage and transport parameters which are obtained from basic measurements, and the storage and transport coefficients which are defined within the balance and flow equations. It is the aim of the present study to develop a flexible and widely applicable material model which is not restricted to the current level of the transport theory. Furthermore, limits and options of this model are to be validated by means of four building materials on the basis of special transient moisture profile measurements. The study’s starting point is a comprehensive investigation of both, the different existing modelling approaches and the available experimental methods to determine basic hygrothermal material parameters. On this basis, the material modelling is set into the context of the heat and moisture transport theory derived from thermodynamics. The involved limits and restrictions are highlighted and options as well as requirements for further developments are pointed out. The developments this study focuses on comprise three fields: experiments for basic property determination, material modelling, and experiments for material model validation. The set of basic material investigation methods has been extended by the drying experiment under defined conditions. The different influences on the drying as well as its application to hygrothermal material model calibration are pointed out and appraised. On this basis, a drying apparatus is designed, built and applied. Ultimately, standardisation criteria and the derivation of a single-value drying coefficient are evaluated. Appropriate extensions are indicated. Based on the bundle of tubes approach, an own material model is developed. It is coupled with a mechanistical approach accounting for serial and parallel structured moisture transport phenomena. The derived liquid water conductivity is adjusted by the help of measured conductivity data close to saturation as well as within the hygroscopic moisture range. Subsequently, two internal modelling parameters are calibrated which is done by numerical simulation of the water uptake and the drying experiment under consideration of the hysteresis of moisture storage. Facilitating its application to the obtained laboratory data, the material model has been implemented into a computer program. It is applied to the four building materials brick, lime-sand brick, aerated concrete and calcium silicate. The adjusted material functions are shown and discussed. In all four cases, the calibration provides an excellent agreement between measured and calculated material behaviour. As experimental basis of the material model validation, the instantaneous profile measurement technique (IPM) has been extended to be applied in Building Physics. Special equipment is developed and measurement procedures are designed. Different models to derive the water content from dielectric data obtained by Time Domain Reflectometry (TDR) measurements are evaluated and implemented. Ultimately, an extensive program of transient moisture profile measurements within the hygroscopic and the overhygroscopic moisture content range is conducted and evaluated. Within the frame of validation, the developments on the experimental as well as on the modelling fields are combined. The IPM experiments are recalculated on the basis of the measured initial and boundary conditions applying the adjusted and calibrated material functions. The comparison of measured and calculated data reveals the power of the developed material modelling just as the consequences of the simplifications made on the transport theory level. The distinct influences of the hysteresis of moisture storage consisting of effects depending on the process history and effects depending on the process dynamics, are proven. By the presented study, the material modelling has been decisively further developed, the set of basic measurement methods has been extended by a substantial experiment and the instantaneous profile measurement technique has been made applicable to Building Physics. Moreover, the influences of the process history and the process dynamics on the moisture transport and the resulting moisture profiles could be shown and proven. By that, not only a material model is now available which perfectly applies to the requirements of flexibility, applicability and extendability. The obtained data provides also a powerful basis for further research and development. / Die Genauigkeit hygrothermischer Bauteilsimulation hängt maßgeblich von den verwendeten Materialfunktionen ab. Sie werden durch die Materialmodellierung bestimmt, welche die Verbindung zwischen den aus Basisexperimenten gewonnenen Speicher- und Transportparametern sowie den innerhalb der Bilanz- und Flussgleichungen definierten Speicher- und Transportkoeffizienten herstellt. Ziel der vorliegenden Arbeit ist zum einen die Entwicklung eines flexiblen, breit anwendbaren und gleichzeitig nicht auf den gegenwärtigen Stand der Transporttheorie beschränkten Materialmodells. Dessen Grenzen und Möglichkeiten sollen zum anderen auf der Grundlage spezieller instationärer Feuchteprofilmessungen anhand von vier Baustoffen untersucht und aufgezeigt werden. Ausgangspunkt der Arbeit ist eine ausführliche Beleuchtung sowohl der vorhandenen Modellansätze als auch der zur Verfügung stehenden experimentellen Methoden zur Bestimmung hygrothermischer Basisparameter. Auf dieser Grundlage wird die Materialmodellierung in den Kontext der aus der Thermodynamik abgeleiteten Wärmeund Feuchtetransporttheorie eingeordnet. Die damit verbundenen Grenzen und Einschränkungen werden hervorgehoben und Entwicklungsmöglichkeiten sowie weiterer Entwicklungsbedarf aufgezeigt. Dieser umfasst drei Bereiche: die Experimente zur Bestimmung von Basisparametern, die Materialmodellierung, sowie Experimente zur Modellvalidierung. Die Reihe der Basisexperimente wird um den Trocknungsversuch unter definierten Bedingungen erweitert. Die verschiedenen Einflüsse auf die Trocknung und deren Anwendung in der Kalibrierung hygrothermischer Materialmodellierung werden herausgestellt und bewertet. Darauf aufbauend wird eine Apparatur entworfen, gebaut und angewendet. Schließlich werden Kriterien zur Standardisierung und Ableitung eines Einzahlenkennwertes evaluiert. Sinnvolle Erweiterungen werden aufgezeigt. Es wird ein eigenes Materialmodell auf der Grundlage eines Porenbündelansatzes hergeleitet, welches mit einem mechanistischen Ansatz gekoppelt wird, der den Feuchtetransport in seriell und parallel strukturierte Bereiche untergliedert. Die abgeleitete Flüssigwasserleitfähigkeit wird anhand von Leitfähigkeitsmessdaten im nahe gesättigten sowie im hygroskopischen Feuchtebereich justiert. Zwei interne Modellparameter werden anschließend unter Berücksichtigung der Hysterese der Feuchtespeicherung anhand des Aufsaug- und des Trocknungsversuches kalibriert. Das Materialmodell ist zur Erleichterung der Anwendung in ein Computerprogramm zur Anpassung an die Labordaten implementiert worden. Das Programm wird auf die vier Baustoffe Ziegel, Kalksandstein, Porenbeton und Calciumsilikat angewendet. Die entsprechend angepassten Materialfunktionen werden gezeigt und diskutiert. Im Rahmen der Kalibrierung wird eine hervorragende Übereinstimmung zwischen gemessenem und berechnetem Materialverhalten erreicht. Zur Modellvalidierung wird die Augenblicksprofilmethode (IPM) für die bauphysikalische Anwendung erweitert. Spezielle Apparaturen werden entwickelt und Versuchsabläufe entworfen. Modelle zur Ableitung des Wassergehaltes aus mit Hilfe der Time Domain Reflectometry (TDR) gewonnenen Dielektrizitätsmessdaten werden evaluiert und implementiert. Schließlich wird ein umfangreiches Programm an Feuchteprofilmessungen im hygroskopischen und überhygroskopischen Feuchtebereich umgesetzt und ausgewertet. Im Rahmen der Validierung werden die Entwicklungen auf experimenteller sowie auf Modellierungsebene zusammengeführt. Die IPM Experimente werden anhand der gemessenen Anfangs- und Randbedingungen und auf der Grundlage der angepassten und kalibrierten Materialfunktionen nachgerechnet. Der Vergleich zwischen Messung und Rechnung offenbart die Stärke der entwickelten Materialmodellierung ebenso, wie den Einfluss der auf Ebene der Transporttheorie getroffenen Vereinfachungen. Ein deutlicher Einfluss der sich aus der Prozessgeschichte sowie der Prozessdynamik zusammensetzenden Hysterese der Feuchtespeicherung kann nachgewiesen werden. Mit der vorliegenden Arbeit ist somit nicht nur die Materialmodellierung entscheidend weiterentwickelt, die Reihe der einfachen Basisexperimente um einen wesentlichen Versuch erweitert und die Augenblicksprofilmethode für bauphysikalische Belange anwendbar gemacht worden, es wurden auch die Einflüsse der Prozessgeschichte, und erstmals auch der Prozessdynamik, auf den Feuchtetransport sowie die sich einstellenden Feuchteprofile deutlich aufgezeigt und nachgewiesen. Es ist demnach nicht nur ein Materialmodell, welches den gestellten Anforderungen an Flexibilität, breite Anwendbarkeit und Erweiterbarkeit genügt, entwickelt worden, es wird mit den gewonnenen Messdaten auch die Grundlage weiterer Forschung zur Verfügung gestellt.
|
83 |
Entwicklung eines schlagspezifischen und schadensbezogenen Prognosemodells zur Bekämpfung von <i>Sclerotinia sclerotiorum</i> an Winterraps / Development of a field specific and yield loss related forecasting model for the control of <i>Sclerotinia sclerotiorum</i> in winter oilseed rapeKoch, Simone 02 February 2006 (has links)
No description available.
|
84 |
Validierung der Solverimplementierung des hygrothermischen Simulationsprogramms DelphinSontag, Luisa, Nicolai, Andreas, Vogelsang, Stefan 26 November 2013 (has links) (PDF)
Das Simulationsprogramm Delphin ermöglicht die Berechnung des gekoppelten Wärme-, Feuchte-, Luft- und Stofftransports in kapillarporösen Materialien. Die Simulation verwendet ein numerisches Lösungsverfahren für die Differentialgleichungen welche die Transportprozesse beschreiben. Zur Kontrolle der numerischen Fehler sowie der korrekten Implementierung der physikalischen Gleichungen werden Validierungsrechnungen durchgeführt. Dafür werden vordefinierte Testfälle eingegeben, gerechnet und mit Referenzlösungen bzw. den Ergebnissen anderer Simulationsprogramme verglichen.
In diesem Artikel werden die Ergebnisse der Validierung der Delphin Versionen 5.6, 5.8, 6.0 und 6.1 zusammengefasst. Es wurden folgende Testfälle gerechnet: HAMSTAD Benchmarks 1 bis 5, DIN EN ISO 10211 Fall 1 und 2, DIN EN 15026 und der Aufsaug-Trocknungs-Test. Die Validierung von Delphin erfolgte hinsichtlich des Wärme-, Feuchte- und Lufttransports bei ein- und zweidimensionalen Problemstellungen. Alle Programmversionen erfüllen die Anforderungen aller Testfälle.
|
85 |
Entwicklung und Validierung eines Verfahrens zur Zustandsüberwachung des Reaktordruckbehälters während auslegungsüberschreitender Unfälle in DruckwasserreaktorenSchmidt, Sebastian 14 February 2018 (has links)
Für den zielgerichteten Einsatz von präventiven und mitigativen Notfallmaßnahmen sowie zur Beurteilung ihrer Wirksamkeit während auslegungsüberschreitender Unfälle in Druckwasserreaktoren aber auch für Hinweise zum Störfallverlauf und für die Abschätzung der Auswirkungen auf die Anlagenumgebung müssen geeignete Störfallinstrumentierungen vorhanden sein. Insbesondere der Zustand des Reaktordruckbehälterinventars (RDB-Inventar) während der In-Vessel-Phase eines auslegungsüberschreitenden Unfalls lässt sich mit aktuellen Störfallinstrumentierungen nur stark eingeschränkt überwachen, wodurch die o. g. Forderungen nicht erfüllt werden können. Die vorliegende Arbeit beinhaltet detaillierte Untersuchungen für die Entwicklung einer Störfallinstrumentierung, welche eine durchgängige Zustandsüberwachung des RDB-Inventars während der In-Vessel-Phase eines auslegungsüberschreitenden Unfalls ermöglicht. Die Störfallinstrumentierung basiert auf der Messung und Klassifikation von unterschiedlichen Gammaflussverteilungen, welche während der In-Vessel-Phase außerhalb des Reaktordruckbehälters auftreten können.
Ausgehend von der Analyse zum Stand von Wissenschaft und Technik wird der modell-basierte Ansatz für Structural Health Monitoring-Systeme genutzt, um eine grundlegende Vorgehensweise für die Entwicklung der Störfallinstrumentierung zu erarbeiten. Anschließend erfolgt eine detaillierte Analyse zu den Vorgängen während der In-Vessel-Phase und eine daraus abgeleitete Definition von Kernzuständen für einen generischen Kernschmelzunfall. Für die definierten Kernzustände werden mittels Simulationen (Monte-Carlo-Simulationen zum Gammastrahlungstransport in einem zu dieser Arbeit parallel laufenden Vorhaben) Gammaflüsse außerhalb des Reaktordruckbehälters berechnet. Die Simulationsergebnisse dienen dem Aufbau von Datenbasen für die Entwicklung und Analyse eines Modells zur Klassifikation von Gammaflussverteilungen. Für die Entwicklung des Klassifikationsmodells kommen drei diversitäre und unabhängig arbeitende Klassifikationsverfahren (Entscheidungsbaum, k-nächste-Nachbarn-Klassifikation, Multilayer Perzeptron) zur Anwendung, um die Identifikationsgenauigkeit und Robustheit der Störfallinstrumentierung zu erhöhen. Die abschließenden Betrachtungen umfassen die Validierung der Störfallinstrumentierung mittels eines Versuchstandes zur Erzeugung unterschiedlicher Gammaflussverteilungen.
Im Ergebnis der Untersuchungen konnte die prinzipielle Funktionsweise der entwickelten Störfallinstrumentierung nachgewiesen werden. Unter der Voraussetzung, die Gültigkeit der definierten Kernzustände zu untermauern sowie weitere, nicht in dieser Arbeit betrachtete Kernschmelzszenarien mit in die Entwicklung der Störfallinstrumentierung einzubeziehen, steht somit insbesondere für zukünftige Kernkraftwerke mit Druckwasserreaktoren eine Möglichkeit für die messtechnische Überwachung des RDB-Inventars während auslegungsüberschreitender Unfälle bereit. Die Arbeit leistet einen wesentlichen Beitrag auf dem Gebiet der Reaktorsicherheitsforschung sowie für den sicheren Betrieb von kerntechnischen Anlagen.:1 Einleitung
2 Analyse zum Stand von Wissenschaft und Technik
2.1 Sicherheit in deutschen Kernkraftwerken mit Druckwasserreaktor
2.1.1 Mehrstufenkonzept
2.1.2 Störfallinstrumentierungen
2.2 Auslegungsüberschreitende Unfälle mit Kernschmelze in DWR
2.2.1 Auslösende Ereignisse
2.2.2 Grundlegender Ablauf eines auslegungsüberschreitenden Unfall mit Kernschmelze
2.3 Strahlungstechnik, Strahlungsmesstechnik
2.3.1 Grundlagen der Strahlungstechnik
2.3.2 Wechselwirkungen von Gammastrahlung mit Materie
2.3.3 Messung ionisierender Strahlung
2.4 Verfahren und Methoden der Zustandsüberwachung
2.4.1 Zustandsüberwachung
2.4.2 Structural Health Monitoring
2.4.3 Mustererkennung
2.4.4 Entscheidungsbäume
2.4.5 k-nächste-Nachbarn-Klassifikation
2.4.6 Künstliche neuronale Netze
2.5 Schlussfolgerungen aus der Analyse zum Stand von Wissenschaft und Technik
2.5.1 Zusammenfassung zum Kapitel 2
2.5.2 Zielstellung, Aufbau und Abgrenzung der Arbeit
3 Analyse der In-Vessel-Phase und Definition von Kernzuständen
3.1 Detaillierte Analyse der In-Vessel-Phase
3.1.1 Auftretende Temperaturbereiche
3.1.2 Vorgänge während der frühen In-Vessel-Phase
3.1.3 Vorgänge während der späten In-Vessel-Phase
3.1.4 Spaltproduktfreisetzung
3.2 Definition von Kernzuständen für einen generischen Kernschmelzunfall
3.3 Zusammenfassung zum Kapitel 3
4 Datenbasen zur Entwicklung und Analyse des Klassifikationsmodells
4.1 Beschreibung der Monte-Carlo-Simulationsmodell
4.2 Beschreibung der Simulationsergebnisse und Merkmalsextraktion
4.3 Datenbasis zur Entwicklung
4.4 Datenbasen zur Analyse
4.5 Zusammenfassung zum Kapitel 4
5 Entwicklung und Analyse des Klassifikationsmodells
5.1 Beschreibung des Klassifikationsmodells
5.2 Teilmodell 1 - Entscheidungsbaum
5.2.1 Entwicklung
5.2.2 Analyse der Identifikationsgenauigkeit
5.3 Teilmodell 3 - k-nächste-Nachbarn-Klassifikation
5.3.1 Entwicklung
5.3.2 Analyse der Identifikationsgenauigkeit
5.4 Teilmodell 3 - Multilayer Perzeptron
5.4.1 Trainings- und Testdatenbasis
5.4.2 Entwicklung
5.4.3 Analyse der Identifikationsgenauigkeit
5.5 Teilmodell 4 - Vergleichsalgorithmus
5.5.1 Entwicklung
5.5.2 Analyse der Identifikationsgenauigkeit
5.6 Analysen zur Robustheit des Klassifikationsmodells
5.6.1 Ausfall einzelner Gammastrahlungsdetektoren
5.6.2 Gleichzeitiger Ausfall mehrerer Gammastrahlungsdetektoren
5.7 Zusammenfassung und Schlussfolgerungen für das Kapitel 5
6 Validierung der Kernzustandsüberwachungsverfahren
6.1 Zielstellung und Vorgehensweise
6.2 Versuchstand zur Validierung
6.2.1 Aufbau
6.2.2 Funktionsweise
6.3 Anpassung der Kernzustandsüberwachungsverfahren an den Versuchsstand
6.4 Validierungsexperimente
6.4.1 Experiment 1 - Füllstandsänderungen
6.4.2 Experiment 2 - Quellenbewegungen
6.4.3 Experiment 3 - Füllstandsänderungen, Quellenbewegungen und Änderung von Profilkonturen
6.5 Zusammenfassung und Schlussfolgerungen für das Kapitel 6
7 Zusammenfassung und Ausblick
|
86 |
Silikonstab-Passivsammler für hydrophobe Organika: Aufnahmekinetik, Verteilungskoeffizienten, Modellierung und Freiland-KalibrierungGunold, Roman 14 December 2015 (has links)
Diese Dissertation beschäftigt sich mit der passiven Probenahme von hydrophoben organischen Schadstoffen in Oberflächengewässern: Polyaromatische Kohlenwasserstoffe (PAK), polychlorierte Biphenyle (PCB), polybromierte Biphenylether (PBDE), Organochlorpestizide (u. a. HCH, DDX) und weitere hydrophobe Pestizide.
Die Zielstellung dieser Arbeit lag bei der Validierung des Silikonstabs als Alternativmethode im Gewässermonitoring zu konventionellen Probenahmetechniken wie Schöpf- und Wochenmischproben der Wasserphase sowie Schwebstoffanalysen.
Die Probenahme mit dem Silikonstab erfolgte durch dessen Exposition im Gewässer für einen Zeitraum zwischen einer Woche und mehreren Monaten. Nach Einholung wurden die im Silikonstab akkumulierten Schadstoffe (Analyten) mittels instrumenteller Analytik quantifiziert. Die Probenaufgabe erfolgte ohne vorherige Lösungsmittelextraktion durch direktes Erhitzen des Silikonstabs, wodurch die Analyten vom Polymer desorbieren (Thermodesorption). Die durch Hitze freigesetzten Analyten wurden direkt auf eine chromatographische Trennsäule gegeben und massenspektroskopisch quantifiziert.
Nach Erhalt der Ergebnisse der Silikonstab-Analytik gibt es verschiedene Herangehensweisen für die Berechnung der zeitgemittelten Analytkonzentrationen im Gewässer, die in dieser Arbeit vorgestellt und diskutiert werden. Dazu gehören die Verwendung von experimentellen Daten aus Kalibrierversuchen und Berechnungen auf Grundlage von physikochemischen Eigenschaften der Analyten wie dem Sammler-Wasser-Verteilungskoeffizienten.
Im Zuge dieser Arbeit wurde die Aufnahmekinetik des Silikonstabs bei verschiedenen Temperaturen und Fließgeschwindigkeiten mit Hilfe von Kalibrierversuchen untersucht. Die gewonnenen experimentellen Daten wurden für die Entwicklung von Rechenmodellen herangezogen, mit denen das Aufnahmeverhalten vorgesagt werden soll.
Es wurden Sammler-Wasser-Verteilungskoeffizienten für den Silikonstab u. a. mit der Kosolvenzmethode bestimmt und als Parameter für die Berechnung von zeitgemittelten Analytkonzentrationen des Gewässers verwendet.
Für die Validierung wurde der Silikonstab in zwei Gewässergütemessstationen der Fließgewässer Mulde (Dessau) und Elbe (Magdeburg) in Durchflussbehältern exponiert und die zeitgemittelten Analytkonzentrationen mit verschiedenen Rechenmodellen bestimmt. Die erhaltenen Werte werden mit gleichzeitig entnommenen Wochenmischproben der Wasserphase sowie monatlichen Schwebstoffproben verglichen und die Eignung des Silikonstabs als alternative Probenahmemethode für das Umweltmonitoring von Oberflächengewässern diskutiert.:I ZUSAMMENFASSUNG ...................................................................................................... 2
II INHALTSVERZEICHNIS .................................................................................................. 3
III ABBILDUNGSVERZEICHNIS .......................................................................................... 5
IV TABELLENVERZEICHNIS ................................................................................................ 6
V GLEICHUNGSVERZEICHNIS ............................................................................................ 7
VI ABKÜRZUNGSVERZEICHNIS........................................................................................... 9
0 VIELEN DANK AN … ...................................................................................................... 11
1. EINLEITUNG ................................................................................................................ 12
1.1 Wasser, seine Nutzung und Verschmutzung ............................................................ 12
1.2 Das Wasser und seine Schadstoffe .......................................................................... 15
1.3 Monitoring von Oberflächengewässern .................................................................... 17
1.3.1 Entnahme konventioneller Schöpfproben .............................................................. 17
1.3.2 Entnahme von Mischproben (integrative oder Kompositproben) ........................... 18
1.3.3 Probenahme des Schwebstoffanteils in der Wasserphase .................................... 19
2. PASSIVSAMMLER IN DER WASSERANALYTIK ................................................................ 21
2.1 Theoretische Grundlagen ......................................................................................... 21
2.1.1 Allgemeiner Aufbau von Passivsammlern ............................................................... 23
2.1.2 Die einzelnen Schritte von der Wasser- in die Sammelphase ................................ 25
2.1.3 Adsorptive und absorptive Akkumulation des Analyten in der Sammelphase ........ 26
2.2 Passivsammlersysteme in der Wasseranalytik ......................................................... 28
2.2.1 Absorbierende Passivsammler für hydrophobe Analyten ....................................... 28
2.2.1.1 Semipermeable membrane device (SPMD) .......................................................... 28
2.2.1.2 LDPE-Streifen (LDPE strips) ................................................................................ 29
2.2.1.3 Silikonplatten (silicone sheets) ........................................................................... 30
2.2.1.4 Chemcatcher ...................................................................................................... 31
2.2.1.5 Lösungsmittelfreie Passivsammler (MESCO / Silikonstab) .................................. 32
2.2.2 Absorbierende Passivsammler für polare Analyten ............................................... 35
2.2.2.1 Polar organic integrative Sampler (POCIS) ......................................................... 35
2.2.2.2 Chemcatcher ...................................................................................................... 35
2.3 Auswertung von Passivsammlerdaten ..................................................................... 35
2.3.1 Gleichgewichtssammler ......................................................................................... 36
2.3.2 Laborkalibrierung .................................................................................................. 37
2.3.3 In-situ-Kalibrierung mit Performance Reference Compounds (PRC) ...................... 38
2.3.4 Validierung von Passivsammlern............................................................................ 39
3. LÖSLICHKEIT UND THERMODYNAMISCHES GLEICHGEWICHT ...................................... 41
3.1 Freie Enthalpie und chemisches Potential ................................................................ 41
3.2 Lineare freie Energie-Beziehungen (LFER) für die Abschätzung von KSW ................ 41
3.3 Kosolvenzmodelle für die Modellierung von KSW ...................................................... 43
3.3.1 Log-Linear-Modell von Yalkowsky .......................................................................... 43
3.3.2 Freie Enthalpie-Ansatz (Khossravi-Connors-Modell) .............................................. 44
3.3.3 Jouyban-Acree-Modell ............................................................................................ 44
4. MATERIAL UND METHODEN ......................................................................................... 45
4.1 Präparation der verwendeten Passivsammler .......................................................... 45
4.2 Laborkalibrierung zur Bestimmung von Sammelraten ............................................... 45
4.2.1 Beschreibung der Versuche für die Silikonstab-Kalibrierung .................................. 45
4.3 Experimentelle Bestimmung von Sammler-Wasser-Verteilungskoeffizienten KSW ... 48
4.3.1 Zeitabhängige KSW-Bestimmung in der Wasserphase .......................................... 48
4.3.2 KSW-Bestimmung mit der Kosolvenzmethode ....................................................... 50
4.4 Validierung des Silikonstabs an limnischen Gewässergütemessstationen ............... 52
5. ERGEBNISSE UND DISKUSSION ................................................................................... 55
5.1 Sammelraten RS für den Silikonstab aus Kalibrierversuchen .................................... 55
5.1.1 Temperaturabhängigkeit ....................................................................................... 58
5.1.2 Einfluss der Hydrodynamik auf die Aufnahmekinetik von PAK ................................ 59
5.1.3 Modellierung von Sammelraten .............................................................................. 62
5.1.3.1 Polynomisches Modell nach Vrana [137] ............................................................. 62
5.1.3.2 Diffusionsmodell nach Booij [71] ......................................................................... 64
5.1.3.3 Diffusionsmodell nach Rusina [85] ...................................................................... 66
5.1.4 Wahl der geeigneten In-situ-Kalibrierung am Beispiel eines Kalibrierversuchs ..... 67
5.1.4.1 Berechnung von In-situ-Sammelraten mit RS-Modellen ...................................... 68
5.1.4.2 Berechnung von In-situ-Sammelraten über Eliminierung von PRCs .................... 69
5.1.4.3 Vergleich Modelle und PRCs mit experimentellen Sammelraten .......................... 70
5.2 Experimentelle Bestimmung des Sammler-Wasser-Verteilungskoeffizienten KSW ... 73
5.2.1 Zeitabhängige KSW-Bestimmung in der Wasserphase .......................................... 73
5.2.2 Zusammenfassung KSW(t)-Versuche in der Wasserphase .................................... 81
5.2.3 KSW-Bestimmung mit der Kosolvenzmethode ....................................................... 81
5.2.3.1 Kosolvenzmodelle ............................................................................................... 83
5.2.4 Zusammenfassung ................................................................................................ 90
5.3 Empirische Modelle zur Abschätzung von KSW-Werten ............................................ 92
5.3.1 Lineare Korrelation des KSW mit physikochemischen und Molekülparametern ...... 92
5.3.2 Berechnung mit Mehrparameter-Regression (LSER) .............................................. 95
5.3.3 Zusammenfassung Abschätzung von KSW-Werten für den Silikonstab ................. 97
5.4 Freilandvalidierung des Silikonstab-Passivsammlers ................................................ 97
5.4.1 Ausbringung an Gewässergütemessstationen....................................................... 97
5.4.1.1 Validierung des Silikonstabs mit Wasserproben ............................................... 100
5.4.1.2 Validierung des Silikonstabs mit Sedimentproben ............................................ 102
5.4.2 Validierung des Silikonstabs bei Laborvergleichsstudien ..................................... 105
6. ERGEBNISSE UND AUSBLICK ..................................................................................... 105
VII LITERATURVERZEICHNIS ......................................................................................... 107
VIII ANHANG ................................................................................................................. 116
|
87 |
Entwicklung eines individuenbasierten Modells zur Abbildung des Bewegungsverhaltens von Passagieren im FlughafenterminalSchultz, Michael 13 August 2010 (has links)
Mit der Entwicklung eines stochastischen Modells zur Abbildung des Bewegungsverhaltens von Passagieren wird die Basis für eine virtuelle Anwendungsumgebung geschaffen, mit der die Passagierabfertigungsprozesse im Flughafenterminal und die hierfür notwendigen Infrastrukturen modelliert, implementiert, untersucht und gezielt optimiert werden können. Es werden vorhandene wissenschaftliche Modellansätze zur mikroskopischen Agentensimulation kritisch gewürdigt und Anforderungen an das zu entwickelnde Bewegungsmodell abgeleitet. Das eigens entwickelte stochastische Bewegungsmodell stellt die Erweiterung eines räumlich diskreten mikroskopischen Modells auf Basis eines zellularen Automaten dar, wobei Defizite aufgrund der verwendeten diskreten Gitterstruktur bereits auf Modellebene kompensiert werden. Zu den Erweiterungen zählen die autonome Umgebungsanalyse und die Routenplanung des Agenten, die Abbildung weitreichender Wechselwirkungen zwischen den Agenten und die Berücksichtigung von gruppendynamischen Entscheidungen. Durch die Validierung des stochastischen Bewegungsmodells anhand des Fundamentaldiagramms für Fußgänger kann gezeigt werden, dass das Modell in der Lage ist, den charakteristischen Verlauf der Geschwindigkeit in Relation zur Agentendichte quantitativ abzubilden. Auch typische, in der Realität beobachtbare Selbstorganisationseffekte können durch das Modell reproduziert werden.
Für die Anwendung des stochastischen Modells zur Abbildung des Bewegungsverhaltens von Passagieren im Flughafenterminal wird das Modell durch empirisch erhobene Passagierbewegungsdaten kalibriert. Die Datenerhebung erfolgt am Flughafen Dresden unter Verwendung eines entwickelten videogestützten Bewegungsverfolgungssystems und erlaubt eine gezielte Kalibrierung hinsichtlich der Passagierparameter: Geschlecht, Reisemotivation (privat oder geschäftlich), Gruppengröße sowie Gepäckart und -anzahl. Für die Erstellung der virtuellen Terminalumgebung werden die Passagierabfertigungsprozesse eingehend analysiert und die Prozesszeiten der jeweiligen Abfertigungsstationen durch spezifische Wahrscheinlichkeitsverteilungen modelliert. Hierfür stehen empirische Datenerhebungen am Flughafen Stuttgart zur Verfügung, die eine detaillierte Prozessanalyse hinsichtlich der Passagierparameter und der Prozessparameter (Erfahrung des Personals, Reaktionszeiten bei Störungen) erlauben.
Im Anschluss an die Kalibrierung des stochastischen Bewegungsmodells und die Modellierung der Passagierabfertigungsprozesse erfolgt die Entwicklung einer Anwendungsumgebung für die Implementierung des virtuellen Flughafens. Durch den modularen Aufbau der Anwendungsumgebung ist eine effiziente Implementierung der Flughafenstrukturen (Grundriss, Flugplan, Personaleinsatz), der Abfertigungsprozesse und des stochastischen Bewegungsmodells möglich. Die Anwendungsumgebung stellt dabei einen übergeordneten Rahmen dar, durch den eine allgemeine Nutzerschnittstelle (Konfigurationsumgebung), eine grafische Ergebnisaufbereitung und die dreidimensionale Abbildung des Bewegungsverhaltens der Passagiere zur Verfügung steht.
Die Anwendung des entwickelten stochastischen Bewegungsmodells erfolgt für die Validierung der Passagierabfertigungsprozesse (Check-In und Sicherheitskontrolle), für die Entwicklung einer passagierbezogener Prozessbewertung und für die vollständige Abbildung der Terminalprozesse (Abflug) am Beispiel des Flughafens Dresden. Durch die Analyse des Einstiegsverhaltens der Passagiere in ein Verkehrsflugzeug werden die Notwendigkeit des Einsatzes stochastischer Bewegungsmodelle und das Potential mikroskopischer Modellierungsansätze verdeutlicht.
Das entwickelte stochastische Bewegungsmodell kann das Passagierverhalten auch in komplexen Umgebungen umfänglich widerspiegeln und die entwickelte Anwendungsumgebung stellt einen idealen Rahmen für die Modellanwendung und -weiterentwicklung dar. Durch die anwendungsorientierten Implementierungen steht eine Vielzahl von geeigneten Detaillösungen zur Verfügung, um den zukünftigen wissenschaftlichen und praxisrelevanten Herausforderungen der Personendynamik zu begegnen.:1. Methodische Konzeption
1.1. Motivation
1.2. Modell und Simulation
1.2.1. Modellierung
1.2.2. Computerbasierte Simulation
1.3. Modellansätze zur Abbildung individueller Verhaltensweisen
1.3.1. Kollektive Phänomene
1.3.2. Modellierung individueller Verhaltensweisen
1.3.3. Modell der sozialen Kräfte
1.3.4. Modell unter Verwendung von zellularen Automaten
1.3.5. Modell der diskreten Entscheidungen
1.4. Passagierabfertigungsprozesse im Flughafenterminal
1.5. Anforderungen an ein applikationsorientiertes Modell
2. Individuenbasiertes Bewegungsmodell
2.1. Eindimensionale Modellansätze
2.1.1. Random walk
2.1.2. Asymmetric simple exclusion process (ASEP)
2.2. Zweidimensionaler zellularer Automat
2.2.1. Gitterabhängigkeiten - Geschwindigkeit und Varianz
2.2.2. Implementierung - Testumgebung
2.2.3. Kalibrierung - Fundamentaldiagramm
2.3. Umgebungsanalyse zur Richtungsbestimmung
2.3.1. Geometrischer Ansatz
2.3.2. Diskreter Ansatz unter Nutzung eines regulären Gitters
2.4. Interaktionsmodellierung
3. Datenerhebung im Flughafenterminal
3.1. Videogestützte Personenverfolgung
3.1.1. Rechtliche Rahmenbedingungen
3.1.2. Methodische Umsetzung
3.1.3. Datenerhebung im Terminal des Flughafens Dresden
3.2. Erhebung passagierbezogener Daten
3.2.1. Indirekte Geschwindigkeitsindikation - Altersstruktur
3.2.2. Geschwindigkeitsverteilung - Geschlechtsspezifisch
3.2.3. Geschwindigkeitsverteilung - Reisemotivation
3.2.4. Geschwindigkeitsverteilung - Gruppengröße
3.2.5. Geschwindigkeitsverteilung - Gepäckanzahl
3.3. Allgemeines Bewegungsverhalten im Terminal
3.4. Erhebung prozessbezogener Daten
3.4.1. Ankunftsverteilung
3.4.2. Check-In
3.4.3. Sicherheitskontrolle
3.4.4. Pass- und Bordkartenkontrolle
4. Anwendungen
4.1. Entwicklung/Implementierung einer Anwendungsumgebung
4.1.1. Entwicklung eines Software-Prototyps
4.1.2. Modellimplementierung
4.2. Eindimensionaler Simulationsansatz - Boarding eines Verkehrsflugzeuges
4.2.1. Modellbeschreibung
4.2.2. Simulationsergebnisse
4.3. Anwendungsgebiet Flughafenterminal
4.3.1. Validierung der Passagierabfertigungsprozesse
4.3.2. Passagierbezogene Prozessbewertung
4.3.3. Abfertigungsprozesse am Flughafen Dresden (Abflug)
5. Schlussbetrachtungen
A. Anhang
Literaturverzeichnis
Danksagung / The development of a stochastic motion model allows for using a virtual application environment, to reproduce passenger motion behavior and handling processes at airport terminals. Based on the introduced scientific approaches for microscopic agent simulation, requirements for an application-oriented motion model are derived. The developed model is a substantial extension of a stochastic cellular automata approach, where the deficiencies due to the discrete grid structure are compensated on a fundamental level. The model development is completed by adding agent-oriented environment analysis, route planning, and mid-range agent interaction. The stochastic motion model proves its capabilities for a quantitative reproduction of the characteristic shape of the common fundamental diagram of pedestrian dynamics. Moreover, generic self-organization effects are reproduced by the model.
For the application of the stochastic approach for modeling the motion behavior of passengers inside an airport terminal, a comprehensive acqusition of data at Dresden International Airport provides a solid basis. A video-supported tracking environment allows for an efficient categorization of passengers and analysis of their motion behavior regarding to their gender, travel purpose (private or business), group size, and baggage types and quantities. In addition to the passenger-related data, the process time of passenger handling at each station at Stuttgart Airport is analyzed in detail and transformed to statistic probabilities by functional data fitting. Finally, the calibrated stochastic motion model is prepared for passenger dynamics at airport terminals.
After the successful development and calibration, the implementation of the motion model in a virtual application environment is accomplished. To implement the terminal structure, the passenger handling processes, and the individual passenger motion behavior common programming interfaces are used as well as specific components for linking model and animation requirements. The application of the stochastic motion models aims at the validation of passenger handling process on the basis of empirical data from Stuttgart airport and at the development of a passenger-oriented process evaluation using Dresden Airport environment. The simulation of passenger dynamics at airport terminals points out that the stochastic motion model reproduces the motion behavior of passengers close to reality. Due to the application-oriented implementation a variety of appropriate solutions are available for future scientific and operational challenges related to passenger dynamics.:1. Methodische Konzeption
1.1. Motivation
1.2. Modell und Simulation
1.2.1. Modellierung
1.2.2. Computerbasierte Simulation
1.3. Modellansätze zur Abbildung individueller Verhaltensweisen
1.3.1. Kollektive Phänomene
1.3.2. Modellierung individueller Verhaltensweisen
1.3.3. Modell der sozialen Kräfte
1.3.4. Modell unter Verwendung von zellularen Automaten
1.3.5. Modell der diskreten Entscheidungen
1.4. Passagierabfertigungsprozesse im Flughafenterminal
1.5. Anforderungen an ein applikationsorientiertes Modell
2. Individuenbasiertes Bewegungsmodell
2.1. Eindimensionale Modellansätze
2.1.1. Random walk
2.1.2. Asymmetric simple exclusion process (ASEP)
2.2. Zweidimensionaler zellularer Automat
2.2.1. Gitterabhängigkeiten - Geschwindigkeit und Varianz
2.2.2. Implementierung - Testumgebung
2.2.3. Kalibrierung - Fundamentaldiagramm
2.3. Umgebungsanalyse zur Richtungsbestimmung
2.3.1. Geometrischer Ansatz
2.3.2. Diskreter Ansatz unter Nutzung eines regulären Gitters
2.4. Interaktionsmodellierung
3. Datenerhebung im Flughafenterminal
3.1. Videogestützte Personenverfolgung
3.1.1. Rechtliche Rahmenbedingungen
3.1.2. Methodische Umsetzung
3.1.3. Datenerhebung im Terminal des Flughafens Dresden
3.2. Erhebung passagierbezogener Daten
3.2.1. Indirekte Geschwindigkeitsindikation - Altersstruktur
3.2.2. Geschwindigkeitsverteilung - Geschlechtsspezifisch
3.2.3. Geschwindigkeitsverteilung - Reisemotivation
3.2.4. Geschwindigkeitsverteilung - Gruppengröße
3.2.5. Geschwindigkeitsverteilung - Gepäckanzahl
3.3. Allgemeines Bewegungsverhalten im Terminal
3.4. Erhebung prozessbezogener Daten
3.4.1. Ankunftsverteilung
3.4.2. Check-In
3.4.3. Sicherheitskontrolle
3.4.4. Pass- und Bordkartenkontrolle
4. Anwendungen
4.1. Entwicklung/Implementierung einer Anwendungsumgebung
4.1.1. Entwicklung eines Software-Prototyps
4.1.2. Modellimplementierung
4.2. Eindimensionaler Simulationsansatz - Boarding eines Verkehrsflugzeuges
4.2.1. Modellbeschreibung
4.2.2. Simulationsergebnisse
4.3. Anwendungsgebiet Flughafenterminal
4.3.1. Validierung der Passagierabfertigungsprozesse
4.3.2. Passagierbezogene Prozessbewertung
4.3.3. Abfertigungsprozesse am Flughafen Dresden (Abflug)
5. Schlussbetrachtungen
A. Anhang
Literaturverzeichnis
Danksagung
|
88 |
Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storageScheffler, Gregor 12 February 2008 (has links)
The achievable accuracy of hygrothermal building component simulation is significantly dependent on the applied material functions. These functions are determined by the material modelling marking the connection between the basic storage and transport parameters which are obtained from basic measurements, and the storage and transport coefficients which are defined within the balance and flow equations. It is the aim of the present study to develop a flexible and widely applicable material model which is not restricted to the current level of the transport theory. Furthermore, limits and options of this model are to be validated by means of four building materials on the basis of special transient moisture profile measurements. The study’s starting point is a comprehensive investigation of both, the different existing modelling approaches and the available experimental methods to determine basic hygrothermal material parameters. On this basis, the material modelling is set into the context of the heat and moisture transport theory derived from thermodynamics. The involved limits and restrictions are highlighted and options as well as requirements for further developments are pointed out. The developments this study focuses on comprise three fields: experiments for basic property determination, material modelling, and experiments for material model validation. The set of basic material investigation methods has been extended by the drying experiment under defined conditions. The different influences on the drying as well as its application to hygrothermal material model calibration are pointed out and appraised. On this basis, a drying apparatus is designed, built and applied. Ultimately, standardisation criteria and the derivation of a single-value drying coefficient are evaluated. Appropriate extensions are indicated. Based on the bundle of tubes approach, an own material model is developed. It is coupled with a mechanistical approach accounting for serial and parallel structured moisture transport phenomena. The derived liquid water conductivity is adjusted by the help of measured conductivity data close to saturation as well as within the hygroscopic moisture range. Subsequently, two internal modelling parameters are calibrated which is done by numerical simulation of the water uptake and the drying experiment under consideration of the hysteresis of moisture storage. Facilitating its application to the obtained laboratory data, the material model has been implemented into a computer program. It is applied to the four building materials brick, lime-sand brick, aerated concrete and calcium silicate. The adjusted material functions are shown and discussed. In all four cases, the calibration provides an excellent agreement between measured and calculated material behaviour. As experimental basis of the material model validation, the instantaneous profile measurement technique (IPM) has been extended to be applied in Building Physics. Special equipment is developed and measurement procedures are designed. Different models to derive the water content from dielectric data obtained by Time Domain Reflectometry (TDR) measurements are evaluated and implemented. Ultimately, an extensive program of transient moisture profile measurements within the hygroscopic and the overhygroscopic moisture content range is conducted and evaluated. Within the frame of validation, the developments on the experimental as well as on the modelling fields are combined. The IPM experiments are recalculated on the basis of the measured initial and boundary conditions applying the adjusted and calibrated material functions. The comparison of measured and calculated data reveals the power of the developed material modelling just as the consequences of the simplifications made on the transport theory level. The distinct influences of the hysteresis of moisture storage consisting of effects depending on the process history and effects depending on the process dynamics, are proven. By the presented study, the material modelling has been decisively further developed, the set of basic measurement methods has been extended by a substantial experiment and the instantaneous profile measurement technique has been made applicable to Building Physics. Moreover, the influences of the process history and the process dynamics on the moisture transport and the resulting moisture profiles could be shown and proven. By that, not only a material model is now available which perfectly applies to the requirements of flexibility, applicability and extendability. The obtained data provides also a powerful basis for further research and development. / Die Genauigkeit hygrothermischer Bauteilsimulation hängt maßgeblich von den verwendeten Materialfunktionen ab. Sie werden durch die Materialmodellierung bestimmt, welche die Verbindung zwischen den aus Basisexperimenten gewonnenen Speicher- und Transportparametern sowie den innerhalb der Bilanz- und Flussgleichungen definierten Speicher- und Transportkoeffizienten herstellt. Ziel der vorliegenden Arbeit ist zum einen die Entwicklung eines flexiblen, breit anwendbaren und gleichzeitig nicht auf den gegenwärtigen Stand der Transporttheorie beschränkten Materialmodells. Dessen Grenzen und Möglichkeiten sollen zum anderen auf der Grundlage spezieller instationärer Feuchteprofilmessungen anhand von vier Baustoffen untersucht und aufgezeigt werden. Ausgangspunkt der Arbeit ist eine ausführliche Beleuchtung sowohl der vorhandenen Modellansätze als auch der zur Verfügung stehenden experimentellen Methoden zur Bestimmung hygrothermischer Basisparameter. Auf dieser Grundlage wird die Materialmodellierung in den Kontext der aus der Thermodynamik abgeleiteten Wärmeund Feuchtetransporttheorie eingeordnet. Die damit verbundenen Grenzen und Einschränkungen werden hervorgehoben und Entwicklungsmöglichkeiten sowie weiterer Entwicklungsbedarf aufgezeigt. Dieser umfasst drei Bereiche: die Experimente zur Bestimmung von Basisparametern, die Materialmodellierung, sowie Experimente zur Modellvalidierung. Die Reihe der Basisexperimente wird um den Trocknungsversuch unter definierten Bedingungen erweitert. Die verschiedenen Einflüsse auf die Trocknung und deren Anwendung in der Kalibrierung hygrothermischer Materialmodellierung werden herausgestellt und bewertet. Darauf aufbauend wird eine Apparatur entworfen, gebaut und angewendet. Schließlich werden Kriterien zur Standardisierung und Ableitung eines Einzahlenkennwertes evaluiert. Sinnvolle Erweiterungen werden aufgezeigt. Es wird ein eigenes Materialmodell auf der Grundlage eines Porenbündelansatzes hergeleitet, welches mit einem mechanistischen Ansatz gekoppelt wird, der den Feuchtetransport in seriell und parallel strukturierte Bereiche untergliedert. Die abgeleitete Flüssigwasserleitfähigkeit wird anhand von Leitfähigkeitsmessdaten im nahe gesättigten sowie im hygroskopischen Feuchtebereich justiert. Zwei interne Modellparameter werden anschließend unter Berücksichtigung der Hysterese der Feuchtespeicherung anhand des Aufsaug- und des Trocknungsversuches kalibriert. Das Materialmodell ist zur Erleichterung der Anwendung in ein Computerprogramm zur Anpassung an die Labordaten implementiert worden. Das Programm wird auf die vier Baustoffe Ziegel, Kalksandstein, Porenbeton und Calciumsilikat angewendet. Die entsprechend angepassten Materialfunktionen werden gezeigt und diskutiert. Im Rahmen der Kalibrierung wird eine hervorragende Übereinstimmung zwischen gemessenem und berechnetem Materialverhalten erreicht. Zur Modellvalidierung wird die Augenblicksprofilmethode (IPM) für die bauphysikalische Anwendung erweitert. Spezielle Apparaturen werden entwickelt und Versuchsabläufe entworfen. Modelle zur Ableitung des Wassergehaltes aus mit Hilfe der Time Domain Reflectometry (TDR) gewonnenen Dielektrizitätsmessdaten werden evaluiert und implementiert. Schließlich wird ein umfangreiches Programm an Feuchteprofilmessungen im hygroskopischen und überhygroskopischen Feuchtebereich umgesetzt und ausgewertet. Im Rahmen der Validierung werden die Entwicklungen auf experimenteller sowie auf Modellierungsebene zusammengeführt. Die IPM Experimente werden anhand der gemessenen Anfangs- und Randbedingungen und auf der Grundlage der angepassten und kalibrierten Materialfunktionen nachgerechnet. Der Vergleich zwischen Messung und Rechnung offenbart die Stärke der entwickelten Materialmodellierung ebenso, wie den Einfluss der auf Ebene der Transporttheorie getroffenen Vereinfachungen. Ein deutlicher Einfluss der sich aus der Prozessgeschichte sowie der Prozessdynamik zusammensetzenden Hysterese der Feuchtespeicherung kann nachgewiesen werden. Mit der vorliegenden Arbeit ist somit nicht nur die Materialmodellierung entscheidend weiterentwickelt, die Reihe der einfachen Basisexperimente um einen wesentlichen Versuch erweitert und die Augenblicksprofilmethode für bauphysikalische Belange anwendbar gemacht worden, es wurden auch die Einflüsse der Prozessgeschichte, und erstmals auch der Prozessdynamik, auf den Feuchtetransport sowie die sich einstellenden Feuchteprofile deutlich aufgezeigt und nachgewiesen. Es ist demnach nicht nur ein Materialmodell, welches den gestellten Anforderungen an Flexibilität, breite Anwendbarkeit und Erweiterbarkeit genügt, entwickelt worden, es wird mit den gewonnenen Messdaten auch die Grundlage weiterer Forschung zur Verfügung gestellt.
|
89 |
Experimental evaluation of an electro-Hydrostatic actuator for subsea applications in a hyperbaric chamberDuarte da Silva, João Pedro, Neto, Amadeu Plácido, De Negri, Victor Juliano, Orth, Alexandre 23 June 2020 (has links)
A novel Electro-Hydrostatic Actuator (EHA) prototype – designed to operate on subsea gate valves in deep and ultra-deep water – is analysed and qualified in terms of functionality under design and normative constraints. The prototype is assembled in a test bench for load control in a hyperbaric chamber where the high subsea environmental pressure can be emulated. The process variables under evaluation are monitored through a set of pressure and position sensors, which are part of the prototype design. The experimental results demonstrate a robust behaviour of the actuator concerning the imposed external pressure and load forces even with a forced limitation in its power input. Moreover, the prototype performs consistently throughout the entire endurance trial, asserting high reliability. With the results obtained, the subsea EHA concept is effectually eligible to a technology readiness level 4, according to the API 17N.
|
90 |
Semantic Process Engineering – Konzeption und Realisierung eines Werkzeugs zur semantischen ProzessmodellierungFellmann, Michael 23 October 2013 (has links)
In der Geschäftsprozessmodellierung haben sich semiformale, grafische Darstellungen etabliert. Die Bezeichnung der Elemente in diesen Modellen ist dabei an betriebswirtschaftliche Fachtermini angelehnt und erfolgt mit Hilfe der natürlichen Sprache, die jedoch Interpretationsspielräume mit sich bringt. Die Semantik der einzelnen Modellelemente ist somit für Menschen und Maschinen nicht eindeutig interpretierbar. In der vorliegenden Dissertation erfolgt daher die Konzeption und Realisierung einer semantischen Prozessmodellierung, die die Verknüpfung der semiformalen Prozessmodellierung mit formalen Begriffssystemen (Ontologien) gestaltet und werkzeugtechnisch unterstützt. Durch diese Verknüpfung wird die Semantik der einzelnen Modellelemente um eine eindeutige und maschinell verarbeitbare Semantik erweitert. Hierdurch können die mit formalen Ontologien möglichen Schlussfolgerungen angewendet werden, um etwa bei der Suche in Modellbeständen oder der Korrektheitsprüfung genauere oder vollständigere Ergebnisse zu erhalten. Im Ergebnis werden somit die im Bereich der Informatik und Künstlichen Intelligenz etablierten Ansätze der Wissensrepräsentation, insbesondere der Beschreibungslogik, in die fachlichen Prozessmodellierung eingebettet. Die Erprobung des Konzepts erfolgt über eine prototypische Implementierung, die einerseits die technische Umsetzbarkeit zeigt, andererseits auch für ein Laborexperiment zur Evaluation genutzt wurde.
|
Page generated in 0.0684 seconds