Spelling suggestions: "subject:"varactor"" "subject:"charactor""
1 |
Modified small PIFA frequency tunable antennaElfergani, Issa T., Hussaini, Abubakar S., Abd-Alhameed, Raed, Abusitta, M.M., Rodriguez, Jonathan January 2013 (has links)
No / This paper presents a physically compact, frequency tunable antenna design for use in mobile terminals. The full operating bandwidth is between 1750 MHz and 2400 MHz with good impedance match in the entire tuning range to meet the coverage requirements of the DCS, PCS, UMTS and WLAN bands . The antenna bandwidth is is realized by loading the embedded resonant slot of a PIFA, with a varactor diode, with an equivalent capacitance range of 0.5 pF to 2.5 pF.
|
2 |
Frequency Tuned Planar Inverted F Antenna with L Shaped Slit Design for Wide Frequency RangeElfergani, Issa T., Hussaini, Abubakar S., Abd-Alhameed, Raed, See, Chan H., Abusitta, M.M., Hraga, Hmeda I., Alhaddad, A.G., Rodriguez, Jonathan 22 March 2011 (has links)
Yes / A frequency tuned antenna has been designed to meet the coverage requirements of the DCS, PCS, UMTS and WLAN bands. The antenna consists of a main patch, and a planar inverted L (PIL) slot. The radiator patch is fed, and shorted, using simple feed lines with broadband characteristics. The handset represents the finite ground plane, and a varactor diode is mounted across the middle of the slot for tuning purposes. Initial tuning was obtained by placing lumped capacitors, instead of the varactor, over the radiator. Good agreement is obtained between the predicted and measured input return loss, gain and radiation pattern over the tuned frequency range. / MSCRC
|
3 |
A Reflection Type Phase Shifter for iNET Phase Array Antenna ApplicationsShrestha, Bikram 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / In this article we present results from modeling and simulation of a L-band reflection type phase shifter (RTPS) that provides continuous phase shift of 0° to 360°. The RTPS circuit uses a 90º hybrid coupler and two reflective load networks consisting of varactor diodes and inductors. Proper design of 90° hybrid coupler is critical in realizing maximum phase shift. The RTPS circuit implemented on a Rogers Duroid substrate is large in size. We discuss methods to reduce the size of L-band RTPS.
|
4 |
A MEMS approach to submillimetre-wave frequency multiplier designPartridge, James G. January 2000 (has links)
No description available.
|
5 |
Wideband Tunable PIFA Antenna with Loaded Slot Structure for Mobile Handset and LTE ApplicationsElfergani, Issa T., Hussaini, Abubakar S., Rodriguez, Jonathan, See, Chan H., Abd-Alhameed, Raed 04 1900 (has links)
Yes / A compact planar inverted F antenna (PIFA) with a tuneable frequency response is presented. Tuning of the resonant frequency is realized by loading a varactor on an embedded slot of the proposed antenna structure without further optimizing other antenna geometry parameters. The antenna exhibits a wide frequency range from 1570 to 2600 MHz with a good impedance matching (S11 ≤ -10dB) covering the GPS, PCS, DCS, UMTS, WLAN and LTE systems. To validate the theoretical model and design concept, the antenna prototype was fabricated and measured. The compact size of the antenna is 15mm × 8mm × 3mm, which makes this antenna a good candidate for mobile handset and wireless communication applications.
|
6 |
Síntese e projeto de filtros reconfiguráveis de microondas utilizando ressoadores tipo patch. / Synthesis and design of tunable microwave bandpass filters using planar patch resonators.Ariana Maria da Conceição Lacorte Caniato Serrano 02 May 2011 (has links)
O objetivo desta tese é o projeto e a síntese de filtros passa-faixa sintonizáveis em frequências de micro-ondas utilizando ressoadores planares tipo patch. As características dos filtros projetados, tais como frequência central, largura de banda e/ou seletividade, são eletronicamente ajustadas por uma tensão de controle DC. Uma metodologia para a concepção e síntese de filtros sintonizáveis patch é desenvolvida e aplicada a dois filtros com topologias triangular e circular. A metodologia fornece técnicas para extrair o esquema de acoplamento que modela o comportamento do filtro e as equações necessárias para calcular a matriz de acoplamento. Então, a resposta teórica do filtro resultante da análise dos coeficientes da matriz de acoplamento é comparada com os resultados das simulações completas. As simulações completas combinam os resultados da simulação eletromagnética 3D do layout do filtro com os resultados da simulação elétrica dos dispositivos de ajuste, representados por seu modelo elétrico equivalente de elementos discretos. Isso permite o correto modelamento das características do ajuste e a definição de seus limites. A fim de validar a metodologia, os filtros patch sintonizáveis são fabricados usando tecnologia de micro-ondas de circuito Integrado (MIC) sobre substratos flexíveis. As dimensões mínimas são maiores do que 0,5 mm, garantindo um processo de fabricação de baixo custo. O primeiro filtro é um filtro patch dual-mode sintonizável que utiliza um ressonador triangular com duas fendas perpendiculares. A frequência central e a largura de banda do filtro podem ser ajustadas individualmente por um controle independente de cada modo fundamental degenerado. O controle dos modos é feito através de diodos varactor montados nas fendas do ressoador patch. O filtro apresenta variação de 20 % de frequência central de 2,9 GHz a 3,5 GHz. A banda relativa de 3 dB varia de 4 % a 12 %. Duas tensões de polarização DC diferentes variando de 2,5 V a 22 V são usadas para ajustar este filtro. O segundo filtro é um filtro patch triple-mode sintonizável que utiliza um ressoador circular com quatro fendas radiais, nas quais são conectados os diodos varactor. A frequência central e a largura de banda deste filtro variam simultaneamente. O filtro apresenta 27 % de variação da frequência central de 1,8 GHz a 2,35 GHz com variação concomitante da largura de banda relativa de 8,5 % para 26 %. Apenas uma única tensão de polarização DC variando de 0,5 V a 20 V é usada para sintonizar este filtro. Ambos os filtros são capazes de lidar com níveis de potência de no mínimo +14,5 dBm (filtro com ressoador triangular) e +12,9 dBm (filtro com ressoador circular). / The objective of this thesis is the design and synthesis of tunable bandpass filters at microwave frequencies using planar patch resonators. The characteristics of the designed filters, such as center frequency, bandwidth, and/or selectivity, are electronically adjusted by a DC voltage control. A methodology for the design and synthesis of tunable patch filters is developed and applied to two filters with triangular and circular topologies. The methodology provides techniques to extract the coupling scheme that models the filter behavior and the necessary equations for calculating the corresponding coupling matrix. Then, the theoretical filter response resulting from the analysis of the coupling matrix coefficients is compared to the results of complete simulations. The complete simulations combine the results of the 3D electromagnetic (EM) simulation of the filter layout with the results of the electrical simulation of the tuning devices, represented by their lumped elements equivalent model. This allows the correct model of the tuning effect and the definition of the tuning possibilities and limits. In order to validate the methodology, the tunable patch filters are fabricated using Microwave Integrated Circuit (MIC) technology on flexible substrates. The minimum dimensions are greater than 0.5 mm, ensuring a low cost fabrication process. The first filter is a tunable dual-mode patch filter using a triangular resonator with two perpendicular slots. The central frequency and the bandwidth of the filter are individually tuned by independently controlling each degenerate fundamental mode. The topology with uncoupled modes allows the control of each resonant mode frequency by varactor diodes mounted across the slots of the patch resonator. This filter presents a center frequency tuning range of 20 %, varying from 2.9 GHz to 3.5 GHz. The FBW 3dB can be varied from 4 % to 12 %. Two different DC bias voltages ranging from 2.5 V to 22 V are used to tune this filter. The second filter is a tunable triple-mode patch filter using a circular resonator with four slots, across which the varactor diodes are connected. The center frequency and bandwidth of this filter vary simultaneously. This filter presents a center frequency tuning range of 27 %, varying from 1.8 GHz to 2.35 GHz, changing concomitantly with the bandwidth from 8.5 % to 26 %. Only a single DC bias voltage ranging from 0.5 V to 20 V is used to tune the filter. Both filters are able to handle power levels as high as +14.5 dBm (triangular patch filter) and +12.9 dBm (circular patch filter).
|
7 |
Síntese e projeto de filtros reconfiguráveis de microondas utilizando ressoadores tipo patch. / Synthesis and design of tunable microwave bandpass filters using planar patch resonators.Serrano, Ariana Maria da Conceição Lacorte Caniato 02 May 2011 (has links)
O objetivo desta tese é o projeto e a síntese de filtros passa-faixa sintonizáveis em frequências de micro-ondas utilizando ressoadores planares tipo patch. As características dos filtros projetados, tais como frequência central, largura de banda e/ou seletividade, são eletronicamente ajustadas por uma tensão de controle DC. Uma metodologia para a concepção e síntese de filtros sintonizáveis patch é desenvolvida e aplicada a dois filtros com topologias triangular e circular. A metodologia fornece técnicas para extrair o esquema de acoplamento que modela o comportamento do filtro e as equações necessárias para calcular a matriz de acoplamento. Então, a resposta teórica do filtro resultante da análise dos coeficientes da matriz de acoplamento é comparada com os resultados das simulações completas. As simulações completas combinam os resultados da simulação eletromagnética 3D do layout do filtro com os resultados da simulação elétrica dos dispositivos de ajuste, representados por seu modelo elétrico equivalente de elementos discretos. Isso permite o correto modelamento das características do ajuste e a definição de seus limites. A fim de validar a metodologia, os filtros patch sintonizáveis são fabricados usando tecnologia de micro-ondas de circuito Integrado (MIC) sobre substratos flexíveis. As dimensões mínimas são maiores do que 0,5 mm, garantindo um processo de fabricação de baixo custo. O primeiro filtro é um filtro patch dual-mode sintonizável que utiliza um ressonador triangular com duas fendas perpendiculares. A frequência central e a largura de banda do filtro podem ser ajustadas individualmente por um controle independente de cada modo fundamental degenerado. O controle dos modos é feito através de diodos varactor montados nas fendas do ressoador patch. O filtro apresenta variação de 20 % de frequência central de 2,9 GHz a 3,5 GHz. A banda relativa de 3 dB varia de 4 % a 12 %. Duas tensões de polarização DC diferentes variando de 2,5 V a 22 V são usadas para ajustar este filtro. O segundo filtro é um filtro patch triple-mode sintonizável que utiliza um ressoador circular com quatro fendas radiais, nas quais são conectados os diodos varactor. A frequência central e a largura de banda deste filtro variam simultaneamente. O filtro apresenta 27 % de variação da frequência central de 1,8 GHz a 2,35 GHz com variação concomitante da largura de banda relativa de 8,5 % para 26 %. Apenas uma única tensão de polarização DC variando de 0,5 V a 20 V é usada para sintonizar este filtro. Ambos os filtros são capazes de lidar com níveis de potência de no mínimo +14,5 dBm (filtro com ressoador triangular) e +12,9 dBm (filtro com ressoador circular). / The objective of this thesis is the design and synthesis of tunable bandpass filters at microwave frequencies using planar patch resonators. The characteristics of the designed filters, such as center frequency, bandwidth, and/or selectivity, are electronically adjusted by a DC voltage control. A methodology for the design and synthesis of tunable patch filters is developed and applied to two filters with triangular and circular topologies. The methodology provides techniques to extract the coupling scheme that models the filter behavior and the necessary equations for calculating the corresponding coupling matrix. Then, the theoretical filter response resulting from the analysis of the coupling matrix coefficients is compared to the results of complete simulations. The complete simulations combine the results of the 3D electromagnetic (EM) simulation of the filter layout with the results of the electrical simulation of the tuning devices, represented by their lumped elements equivalent model. This allows the correct model of the tuning effect and the definition of the tuning possibilities and limits. In order to validate the methodology, the tunable patch filters are fabricated using Microwave Integrated Circuit (MIC) technology on flexible substrates. The minimum dimensions are greater than 0.5 mm, ensuring a low cost fabrication process. The first filter is a tunable dual-mode patch filter using a triangular resonator with two perpendicular slots. The central frequency and the bandwidth of the filter are individually tuned by independently controlling each degenerate fundamental mode. The topology with uncoupled modes allows the control of each resonant mode frequency by varactor diodes mounted across the slots of the patch resonator. This filter presents a center frequency tuning range of 20 %, varying from 2.9 GHz to 3.5 GHz. The FBW 3dB can be varied from 4 % to 12 %. Two different DC bias voltages ranging from 2.5 V to 22 V are used to tune this filter. The second filter is a tunable triple-mode patch filter using a circular resonator with four slots, across which the varactor diodes are connected. The center frequency and bandwidth of this filter vary simultaneously. This filter presents a center frequency tuning range of 27 %, varying from 1.8 GHz to 2.35 GHz, changing concomitantly with the bandwidth from 8.5 % to 26 %. Only a single DC bias voltage ranging from 0.5 V to 20 V is used to tune the filter. Both filters are able to handle power levels as high as +14.5 dBm (triangular patch filter) and +12.9 dBm (circular patch filter).
|
8 |
L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMSWurth, Timothy J., Rodzinak, Jason 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Meeting the filtering requirements for telemetry transmitters and receivers can be challenging.
Telemetry systems use filters to eliminate unwanted spurious or mixing products. The use of
tunable microwave filters for both L and S Band can improve filter selectivity and provide low
insertion losses in the filter passband. Along with meeting specifications, these microwave
filters with the ability to tune an octave, reduce size and cost by the reduction of multiple, fixed-frequency
filters. As size, weight and power are often a concern with aeronautical telemetry
systems, this paper will demonstrate that microstrip tunable filters can be small in size and use
minimal power.
Telemetry transmitters are subject to difficult spurious emission and interference specifications
and require selective filters to eliminate spurious signals before the final amplification.
Telemetry receivers on the other hand are subject to intense Image and Local Oscillator (LO)
rejection requirements and demand low insertion loss for front-end filtering. Low insertion loss
filtering before the Low Noise Amplifier (LNA) circuit limits degradation to the system noise
figure (NF). By using different filter topologies and state-of-the-art, high-Q varactor diodes,
tunable microwave filters can be optimized for two different functions. The two functions
emphasize either low insertion loss or selectivity. An important design consideration with
tunable filters, when compared to typical fixed frequency filters, is the degraded intermodulation
performance. This is largely due to the non-linear behavior of the varactor diodes.
This paper describes the benefits and limitations of microwave tunable filter architectures
suitable for both aeronautical telemetry transmitters and telemetry receivers. Information on the
computer modeling of varactor diodes will be covered as a critical part of the design. Potential
design considerations for microwave tunable filters will also be covered. Through the use of
simulation software and filter prototypes, this paper presents dramatically improved filter
performance applicable to telemetry transmitters and receivers.
|
9 |
Investigation on LIGA-MEMS and on-chip CMOS capacitors for a VCO applicationFang, Linuo 04 July 2007
Modern communication systems require high performance radio frequency (RF) and microwave circuits and devices. This is becoming increasingly challenging to realize in the content of cost/size constraints. Integrated circuits (ICs) satisfy the cost/size requirement, but performance is often sacri¯ced. For instance, high quality factor (Q factor) passive components are difficult to achieve in standard silicon-based
IC processes.<p>In recent years, microelectromechanical systems (MEMS) devices have been receiving increasing attention as a possible replacement for various on-chip passive elements, offering potential improvement in performance while maintaining high levels of integration. Variable capacitors (varactor) are common elements used in various applications. One of the MEMS variable capacitors that has been recently developed is built using deep X-ray lithography (as part of the LIGA process). This type of capacitor exhibits high quality factor at microwave frequencies.<p>The complementary metal oxide semiconductor (CMOS) technology dominates the silicon IC process. CMOS becomes increasingly popular for RF applications due to its advantages in level of integration, cost and power consumption. This research demonstrates a CMOS voltage-controlled oscillator (VCO) design which is used to investigate methods, advantages and problems in integrating LIGA-MEMS devices to CMOS RF circuits, and to evaluate the performance of the LIGA-MEMS variable capacitor in comparison with the conventional on-chip CMOS varactor. The VCO was designed and fabricated using TSMC 0.18 micron CMOS technology. The core of the VCO, including transistors, resistors, and on-chip inductors was designed to connect to either an on-chip CMOS varactor or an off-chip LIGA-MEMS capacitor to oscillate between 2.6 GHz and 2.7 GHz. Oscillator phase noise analysis is used to
compare the performance between the two capacitors. The fabricated VCO occupied an area of 1 mm^2.<p>This initial attempt at VCO fabrication did not produce a functional VCO, so the performance of the capacitors with the fabricated VCO could not be tested. However, the simulation results show that with this LIGA-MEMS capacitor, a 6.4 dB of phase noise improvement at 300 kHz offset from the carrier is possible in a CMOS-based VCO design.
|
10 |
Investigation on LIGA-MEMS and on-chip CMOS capacitors for a VCO applicationFang, Linuo 04 July 2007 (has links)
Modern communication systems require high performance radio frequency (RF) and microwave circuits and devices. This is becoming increasingly challenging to realize in the content of cost/size constraints. Integrated circuits (ICs) satisfy the cost/size requirement, but performance is often sacri¯ced. For instance, high quality factor (Q factor) passive components are difficult to achieve in standard silicon-based
IC processes.<p>In recent years, microelectromechanical systems (MEMS) devices have been receiving increasing attention as a possible replacement for various on-chip passive elements, offering potential improvement in performance while maintaining high levels of integration. Variable capacitors (varactor) are common elements used in various applications. One of the MEMS variable capacitors that has been recently developed is built using deep X-ray lithography (as part of the LIGA process). This type of capacitor exhibits high quality factor at microwave frequencies.<p>The complementary metal oxide semiconductor (CMOS) technology dominates the silicon IC process. CMOS becomes increasingly popular for RF applications due to its advantages in level of integration, cost and power consumption. This research demonstrates a CMOS voltage-controlled oscillator (VCO) design which is used to investigate methods, advantages and problems in integrating LIGA-MEMS devices to CMOS RF circuits, and to evaluate the performance of the LIGA-MEMS variable capacitor in comparison with the conventional on-chip CMOS varactor. The VCO was designed and fabricated using TSMC 0.18 micron CMOS technology. The core of the VCO, including transistors, resistors, and on-chip inductors was designed to connect to either an on-chip CMOS varactor or an off-chip LIGA-MEMS capacitor to oscillate between 2.6 GHz and 2.7 GHz. Oscillator phase noise analysis is used to
compare the performance between the two capacitors. The fabricated VCO occupied an area of 1 mm^2.<p>This initial attempt at VCO fabrication did not produce a functional VCO, so the performance of the capacitors with the fabricated VCO could not be tested. However, the simulation results show that with this LIGA-MEMS capacitor, a 6.4 dB of phase noise improvement at 300 kHz offset from the carrier is possible in a CMOS-based VCO design.
|
Page generated in 0.1437 seconds