Spelling suggestions: "subject:"ariable density"" "subject:"aariable density""
11 |
Etude de l'évolution spatio-temporelle d'un jet tournant tridimensionnel à masse volumique variableDi pierro, Bastien 08 November 2012 (has links)
La dynamique instable des jets tournants est étudiée, en tenant compte des variations de masse volumique au sein de l'écoulement. Un code de simulation numérique directe permettant de résoudre les équations de Navier-Stokes à masse volumique variable a été développé, en utilisant une méthode originale et efficace pour résoudre le champs de pression. Analytiquement, deux modes instables bidimensionnels ont été mis en évidence, et sont identifiés comme des modes de Couette-Taylor et de Rayleigh-Taylor, ainsi qu'un troisième mode tridimensionnel, du à un couplage de vitesse. La dynamique instable de cet écoulement résulte d'une compétition entre ces trois modes, et les simulations numériques montrent que ces modes perdurent non linéairement. Ensuite, le comportement spatio-temporel de cette instabilité est étudiée par simulation numérique directe, et il a été montré qu'il existe une transition vers des modes absolument instables, sous l'effet du rapport de densité s ainsi que du taux de rotation q. Cette dynamique est également étudiée expérimentalement au travers de plusieurs méthodes de mesures, et la présence de mode globaux auto-entretenus est mise en évidence qui sont en bon accord avec les résultats numériques. Finalement, le phénomène de l'éclatement tourbillonnaire est étudié, et montre le rôle prépondérant de la viscosité réelle. En effet, l'éclatement tourbillonnaire est un mécanisme permettant de soulager le système de l'intensification de la vorticité, au travers de la viscosité, alors qu'il n'apparaît pas en traitant les équations d'Euler tronquées. / The unstable dynamics of a swirling jet flow is studied, including density variations within the flow. A direct numerical simulation method was developed to solve variable density Navier-Stokes equations, using an accurate and efficient pressure solver. Analitically, two unstable bi-dimensionnal modes are highlighted, and are identified as Couette-Taylor and Rayleigh-Taylor modes. A three-dimensionnal mode is also highlighted, wich is created by the shear. Numerical simulations show that those modes are nonlinearly persistant. Then, the spatio-temporal instability behaviour is studied numerically, and show that the instability undergoes to a convective/absolute transition with density ratio s and rotation rate q. This dynamic is also studied experiementally through different methods, and Global selfsustained modes are highlighted wich are in ggod agreement with numerical results. Finally, the vortex breakdown phenomenon is studied, and show the crucial role of real viscosity. Indeed, the vorticity intensification is relaxed through the viscosity effect, while it is not treating the truncated Euler Equations.
|
12 |
Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficientsFanelli, Francesco 28 May 2012 (has links) (PDF)
The present thesis is devoted both to the study of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives. Nevertheless, this is enough to recover well-posedness for the associated Cauchy problem in the space $H^infty$ (for suitably smooth second order coefficients).In a first time, we consider acomplete operator in space dimension $1$, whose first order coefficients were assumed Hölder continuous and that of order $0$only bounded. Then, we deal with the general case of any space dimension, focusing on a homogeneous second order operator: the step to higher dimension requires a really different approach. On the other hand, we consider the density-dependent incompressible Euler system. We show its well-posedness in endpoint Besov spaces embedded in the class of globally Lipschitz functions, producing also lower bounds for the lifespan of the solution in terms of initial data only. This having been done, we prove persistence of geometric structures, such as striated and conormal regularity, for solutions to this system. In contrast with the classical case of constant density, even in dimension $2$ the vorticity is not transported by the velocity field. Hence, a priori one can expect to get only local in time results. For the same reason, we also have to dismiss the vortex patch structure. Littlewood-Paley theory and paradifferential calculus allow us to handle these two different problems .A new version of paradifferential calculus, depending on a parameter $ggeq1$, is also needed in dealing with hyperbolic operators with nonregular coefficients. The general framework is that of Besov spaces, which includes in particular Sobolev and Hölder sets. Intermediate classes of functions, of logaritmic type, come into play as well
|
13 |
Adaptive Sampling Pattern Design Methods for MR ImagingChennakeshava, K January 2016 (has links) (PDF)
MRI is a very useful imaging modality in medical imaging for both diagnostic as well as functional studies. It provides excellent soft tissue contrast in several diagnostic studies. It is widely used to study the functional aspects of brain and to study the diffusion of water molecules across tissues. Image acquisition in MR is slow due to longer data acquisition time, gradient ramp-up and stabilization delays. Repetitive scans are also needed to overcome any artefacts due to patient motion, field inhomogeneity and to improve signal to noise ratio (SNR). Scanning becomes di cult in case of claustrophobic patients, and in younger/older patients who are unable to cooperate and prone to uncontrollable motions inside the scanner. New MR procedures, advanced research in neuro and functional imaging are demanding better resolutions and scan speeds which implies there is need to acquire more data in a shorter time frame. The hardware approach to faster k-space scanning methods involves efficient pulse sequence and gradient waveform design methods. Such methods have reached a physical and physiological limit. Alternately, methods have been proposed to reduce the scan time by under sampling the k-space data. Since the advent of Compressive Sensing (CS), there has been a tremendous interest in developing under sampling matrices for MRI. Mathematical assumptions on the probability distribution function (pdf) of k-space have led researchers to come up with efficient under sampling matrices for sampling MR k-space data. The recent approaches adaptively sample the k-space, based on the k-space of reference image as the probability distribution instead of a mathematical distribution, to come with an efficient under sampling scheme. In general, the methods use a deterministic central circular/square region and probabilistic sampling of the rest of the k-space. In these methods, the sampling distribution may not follow the selected pdf and
viii Adaptive Sampling Pattern Design Methods for MR Images the selection of deterministic and probabilistic sampling distribution parameters are heuristic in nature.
Two novel adaptive Variable Density Sampling (VDS) methods are proposed to address the heuristic nature of the sampling k-space such that the selected pdf matches the k-space energy distribution of a given fully sampled reference k-space or the MR image. The proposed methods use a novel approach of binning the pdf derived from the fully sampled k-space energy distribution of a reference image. The normalized k-space magnitude spectrum of the reference image is taken as a 2D probability distribution function which is divided in to number of exponentially weighted magnitude bins obtained from the corresponding histogram of the k-space magnitude spectrum.
In the first method, the normalized k-space histogram is binned exponentially, and the resulting exponentially binned 2D pdf is used with a suitable control parameter to obtain a sampling pattern of desired under sampling ratio. The resulting sampling pattern is an adaptive VDS pattern mimicking the energy distribution of the original k-space.
In the second method, the binning of the magnitude spectrum of k-space is followed by ranking of the bins by its spectral energy content. A cost function is de ned to evaluate the k-space energy being captured by the bin. The samples are selected from the energy rank ordered bins using a Knapsack constraint. The energy ranking and the Knapsack criterion result in the selection of sampling points from the highly relevant bins and gives a very robust sampling grid with well defined sparsity level.
Finally, the feasibility of developing a single adaptive VDS sampling pattern for a organ specific or multi-slice MR imaging, using the concept of binning of magnitude spectrum of the k-space, is investigated. Based on the premise that k-space of different organs have a different energy distribution structure to one another, the MR images of organs can be classified based on their spectral content and develop a single adaptive VDS sampling pattern for imaging an organ or multiple slices of the same. The classification is done using the k-space bin histogram as feature vectors and k-means clustering. Based on the nearest distance to the centroid of the organ cluster, a template image is selected to generate the sampling grid for the organ under consideration.
Using the state of the art MR reconstruction algorithms, the performance of the proposed novel adaptive Variable Density Sampling (VDS) methods using image quality measures is evaluated and compared with other VDS methods. The reconstructions show significant improvement in image quality parameters quantitatively and visual reduction in artefacts at 20% 15%, 10% and 5% under sampling
|
14 |
Mélange et dynamique de la turbulence en écoulements libres à viscosité variable / Turbulent mixing and dynamics in variable-viscosity free-fluid flowsTalbot, Benoît 10 November 2009 (has links)
Ces travaux concernent l'étude expérimentale e analytique de la turbulence en phase de développement dans les fluides hétérogènes à densité et à viscosité variable. Ils font appel à des outils de diagnostics expérimentaux (anémométrie à fil chaud, technique de diffusion Rayleigh, Vélocimétrie Doppler Laser), et au formalisme des équations de Navier-Stockes à viscosité variable. L'innovation porte sur l'indépendance de la mesure de la vitesse. Après sa validation, la plate-forme expérimentale est exploitée pour l'étude comparative d'un jet de propane émergeant dans un milieu air-néon, à viscosité et densité variable, avec un jet d'air classique, à même quantité de mouvement injectée initialement. Ce travail se poursuit ensuite par un approfondissement des propriétés dans le champ proche, complétés par une approche analytique à partir des réécritures des équations de Navier-Stokes à viscosité variable. / This work is devoted to the study of the undeveloped turbulence in heterogeneus gaseus mixtures, using experimental tools (Hot-wire Anemometry, Rayleigh Light Scattering, Laser Doppler Velocimetry) and analytical methods (variable-viscosity Navier Stokes equations). A new technique combining HWA and RLS is first adapted to reliabily measure the fluctuating velocity and concentration fields in variable-viscosity flows (herein, a propane-air mixture). A variable-viscosity round jet (propane emerging into an air-neon mixture) is characterized and compared with a turbulent air jet discharging into still air, at the same initial jet momentum. An analytical work is further performed with a particular focus on the jet axis, based on the Navier-Stokes equations including variable viscosity to support the experiments. It is shown that the kinetic energy dissipation rate is enhanced by several additional terms, particularly involving 'viscosity-velocity' correlations.
|
15 |
Modeling and Understanding Complexities Associated With Variable-Density Flow in Experimental Groundwater SystemsGoeller, Devon Raymond 23 August 2022 (has links)
No description available.
|
16 |
Variable density shallow flow model for flood simulationApostolidou, Ilektra-Georgia January 2011 (has links)
Flood inundation is a major natural hazard that can have very severe socio-economic consequences. This thesis presents an enhanced numerical model for flood simulation. After setting the context by examining recent large-scale flood events, a literature review is provided on shallow flow numerical models. A new version of the hyperbolic horizontal variable density shallow water equations with source terms in balanced form is used, designed for flows over complicated terrains, suitable for wetting and drying fronts and erodible bed problems. Bed morphodynamics are included in the model by solving a conservation of bed mass equation in conjunction with the variable density shallow water equations. The resulting numerical scheme is based on a Godunov-type finite volume HLLC approximate Riemann solver combined with MUSCL-Hancock time integration and a non-linear slope limiter and is shock-capturing. The model can simulate trans-critical, steep-fronted flows, connecting bodies of water at different elevations. The model is validated for constant density shallow flows using idealised benchmark tests, such as unidirectional and circular dam breaks, damped sloshing in a parabolic tank, dam break flow over a triangular obstacle, and dam break flow over three islands. The simulation results are in excellent agreement with available analytical solutions, alternative numerical predictions, and experimental data. The model is also validated for variable density shallow flows, and a parameter study is undertaken to examine the effects of different density ratios of two adjacent liquids and different hydraulic thrust ratios of species and liquid in mixed flows. The results confirm the ability of the model to simulate shallow water-sediment flows that are of horizontally variable density, while being intensely mixed in the vertical direction. Further validation is undertaken for certain erodible bed cases, including deposition and entrainment of dilute suspended sediment in a flat-bottomed tank with intense mixing, and the results compared against semi-analytical solutions derived by the author. To demonstrate the effectiveness of the model in simulating a complicated variable density shallow flow, the validated numerical model is used to simulate a partial dam-breach flow in an erodible channel. The calibrated model predictions are very similar to experimental data from tests carried out at Tsinghua University. It is believed that the present numerical solver could be useful at describing local horizontal density gradients in sediment laden and debris flows that characterise certain extreme flood events, where sediment deposition is important.
|
17 |
Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients / Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliersFanelli, Francesco 28 May 2012 (has links)
Cette thèse est consacrée à l'étude des opérateurs strictement hyperboliques à coefficients peu réguliers, aussi bien qu'à l'étude du système d'Euler incompressible à densité variable. Dans la première partie, on montre des estimations a priori pour des opérateurs strictement hyperboliques dont les coefficients d'ordre le plus grand satisfont une condition de continuité log-Zygmund par rapport au temps et une condition de continuité log-Lipschitz par rapport à la variable d'espace. Ces estimations comportent une perte de dérivées qui croît en temps. Toutefois, elles sont suffisantes pour avoir encore le caractère bien posé du problème de Cauchy associé dans l'espace H^inf (pour des coefficients du deuxième ordre ayant assez de régularité).Dans un premier temps, on considère un opérateur complet en dimension d'espace égale à 1, dont les coefficients du premier ordre étaient supposés hölderiens et celui d'ordre 0 seulement borné. Après, on traite le cas général en dimension d'espace quelconque, en se restreignant à un opérateur de deuxième ordre homogène: le passage à la dimension plus grande exige une approche vraiment différente. Dans la deuxième partie de la thèse, on considère le système d'Euler incompressible à densité variable. On montre son caractère bien posé dans des espaces de Besov limites, qui s'injectent dans la classe des fonctions globalement lipschitziennes, et on établit aussi des bornes inférieures pour le temps de vie de la solution ne dépendant que des données initiales. Cela fait, on prouve la persistance des structures géométriques, comme la régularité stratifiée et conormale, pour les solutions de ce système. À la différence du cas classique de densité constante, même en dimension 2 le tourbillon n'est pas transporté par le champ de vitesses. Donc, a priori on peut s'attendre à obtenir seulement des résultats locaux en temps. Pour la même raison, il faut aussi laisser tomber la structure des poches de tourbillon. La théorie de Littlewood-Paley et le calcul paradifférentiel nous permettent d'aborder ces deux différents problèmes. En plus, on a besoin aussi d'une nouvelle version du calcul paradifférentiel, qui dépend d'un paramètre plus grand que ou égal à 1, pour traiter les opérateurs à coefficients peu réguliers. Le cadre fonctionnel adopté est celui des espaces de Besov, qui comprend en particulier les ensembles de Sobolev et de Hölder. Des classes intermédiaires de fonctions, de type logarithmique, entrent, elles aussi, en jeu / The present thesis is devoted both to the study of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives. Nevertheless, this is enough to recover well-posedness for the associated Cauchy problem in the space $H^infty$ (for suitably smooth second order coefficients).In a first time, we consider acomplete operator in space dimension $1$, whose first order coefficients were assumed Hölder continuous and that of order $0$only bounded. Then, we deal with the general case of any space dimension, focusing on a homogeneous second order operator: the step to higher dimension requires a really different approach. On the other hand, we consider the density-dependent incompressible Euler system. We show its well-posedness in endpoint Besov spaces embedded in the class of globally Lipschitz functions, producing also lower bounds for the lifespan of the solution in terms of initial data only. This having been done, we prove persistence of geometric structures, such as striated and conormal regularity, for solutions to this system. In contrast with the classical case of constant density, even in dimension $2$ the vorticity is not transported by the velocity field. Hence, a priori one can expect to get only local in time results. For the same reason, we also have to dismiss the vortex patch structure. Littlewood-Paley theory and paradifferential calculus allow us to handle these two different problems .A new version of paradifferential calculus, depending on a parameter $ggeq1$, is also needed in dealing with hyperbolic operators with nonregular coefficients. The general framework is that of Besov spaces, which includes in particular Sobolev and Hölder sets. Intermediate classes of functions, of logaritmic type, come into play as well
|
18 |
Stabilité secondaire non-modale d’une couche de mélange inhomogène / Nonmodal secondary stability of a variable-density mixing layerLopez-Zazueta, Adriana 13 February 2015 (has links)
L’objectif de cette thèse est d’analyser le développement des instabilités secondaires bidimensionnelles et tridimensionnelles dans les couches de mélange à densité variable, incompressibles et à nombre de Froude infini. Dans ces conditions, la présence d’inhomogénéités de masse volumique modifie sensiblement la dynamique rotationnelle de l’écoulement et celle des instabilités secondaires sous l’action du couple barocline. Une analyse de stabilité linéaire non-modale est mise en oeuvre pour identifier les mécanismes physiques de croissance transitoire. Cette analyse permet également de prendre en compte le caractère instationnaire de la couche de mélange, absent dans l’analyse modale quasi-statique de Fontane (2005). Après établissement des équations de Navier–Stokes linéarisées directes et adjointes à densité variable, celles-ci sont utilisées dans une méthode d’optimisation itérative qui permet de déterminer les perturbations à croissance énergétique maximale. La première partie consiste en la description des perturbations optimales pour une couche de mélange homogène. Aux temps courts, lorsque la couche de mélange est quasi-parallèle, les perturbations optimales présentent de fortes amplifications transitoires, dont l’origine physique est due à la synergie des mécanismes classiques de Orr et de lift-up. Puis lorsque la couche s’enroule pour former un tourbillon de Kelvin–Helmholtz, les perturbations évoluent vers les instabilités tridimensionnelles elliptiques ou hyperboliques, selon le nombre d’onde latéral. Dans la deuxième partie, l’analyse est étendue aux couches de mélange à densité variable. Pendant la phase initiale de développement des perturbations optimales, les inhomogénéïtés de masse volumique ont une influence minime sur la croissance des perturbations. Ce n’est qu’une fois la couche de mélange enroulée que les effets de densité deviennent actifs, entraînant un supplément d’amplification significatif par rapport à la situation homogène. En particulier, le couple barocline favorise le développement des perturbations du côté du fluide léger du rouleau de Kelvin–Helmholtz. Enfin, lorsque le temps d’injection des perturbations est suffisamment retardé, la vorticité produite par le couple barocline favorise le développement d’une instabilité bidimensionnelle du type Kelvin-Helmholtz identifiée par Reinaud et al. (2000). / The purpose of this thesis is to analyse the development of two-dimensional and three-dimensional secondary instabilities in incompressible variable-density mixing layers, in the limit of infinite Froude number. Under these conditions, mass inhomogeneities alter significantly the rotational dynamics of the flow under the action of the baroclinic torque. A nonmodal stability analysis is implemented to identify the physical mechanisms of transient growth. This analysis allows to take into account the unsteady natureof the flow, which was absent in the quasi-static modal analysis (Fontane, 2005). After establishing of the direct and adjoint linearised Navier-Stokes equations for variable-density flows, they are used in an iterative optimization method to determine the perturbations that maximize their energy. The optimal perturbations are first obtained for a homogeneous time-evolving mixing layer. For times short enough, when the time-evolving mixing layer is almost parallel, optimal perturbations exhibit the largest transient growth. These amplifications arise from the synergy between the well-known Orr and liftup mechanisms. Once the mixing layer rolls up into a Kelvin–Helmholtz billow, the disturbances trigger the three-dimensional elliptical and hyperbolic instabilities. The analysis is then extended to variable-density mixing layers. During the initial development of optimal perturbations, mass inhomogeneities have no influence over the perturbations growth. Once the mixing layer has rolled up, the variable-density effects contribute significantly to the increase of the perturbation energy. In particular, the baroclinic torque enhances the development of perturbations in the light side of the Kelvin–Helmholtz billow. Finally, when the injection time of perturbations is delayed long enough, the baroclinic vorticity generation on the light side of the Kelvin–Helmholtz billow triggers a two-dimensional secondary Kelvin–Helmholtz instability, which has been identified by Reinaud et al. (2000).
|
19 |
Convergence du schéma Marker-and-Cell pour les équations de Navier-Stokes incompressible / Convergence of the mac scheme for the incompressible navier-stokes equationsMallem, Khadidja 14 December 2015 (has links)
Le schéma Marker-And-Cell (MAC) est un schéma de discrétisation des équations aux dérivées partielles sur maillages cartésiens, très connu en mécanique des fluides. Nous nous intéressons ici à son analyse mathématique dans le cadre des écoulements incompressibles sur des maillages cartésiens non-uniformes en dimension 2 ou 3. Dans un premier temps nous discrétisons les équations de Navier-Stokes pour un écoulement incompressible stationnaire; nous établissons des estimations a priori sur les suites de vitesses et pressions approchées qui permettent d’une part d'établir l’existence d’une solution au schéma, et d’obtenir la compacité de ces suites lorsque le pas d’espace tend vers 0. Nous montrons alors la convergence de ces suites (à une sous-suite près) vers une solution faible du problème continu, ce qui nécessite une analyse fine du terme de convection non linéaire. Nous nous intéressons ensuite aux équations de Navier-Stokes en régime instationnaire avec une discrétisation en temps implicite. Nous démontrons que le schéma préserve les propriétés de stabilité du problème continu et obtenons ainsi l’existence d’une solution au schéma. Puis, grâce à des techniques de compacité et en passant à la limite dans le schéma, nous démontrons qu’une suite de vitesses approchées converge. Si l’on se restreint au problème de Stokes, et en supposant de plus que la condition initiale de la vitesse est dans H 1 , nous obtenons une estimation sur la pression qui permet de montrer la convergence forte des pressions approchées. Enfin nous étendons l’analyse aux écoulements incompressibles à masse volumique variable. On montre la convergence du schéma. / The Marker-And-Cell (MAC) scheme is a discretization scheme for partial derivative equations on Cartesian meshes, which is very well known in fluid mechanics. Here we are concerned with its mathematical analysis in the case of incompressible flows on two or three dimensional non-uniform Cartesian grids. We first discretize the steady-state incompressible Navier-Stokes equations. We show somea priori estimates that allow to show the existence of a solution to the scheme and some compactness and consistency results. By a passage to the limit on the scheme, we show that the approximate solutions obtained with the MAC scheme converge (up to a subsequence) to a weak solution of the Navier-Stokes equations, thanks to a careful analysis of the nonlinear convection term. Then, we analyze the convergence of the unsteady-case Navier-Stokes equations. The algorithm is implicit in time. We first show that the scheme preserves the stability properties of the continuous problem, which yields, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem. If we restrict ourselves to the Stokes equations and assume that the initial velocity belongs to H 1, then we obtain estimates on the pressure and prove the convergence of the sequences of approximate pressures. Finally, we extend the analysis of the scheme to incompressible variable density flows. we show the convergence of the scheme.
|
20 |
Numerical investigation of field-scale convective mixing processes in heterogeneous, variable-density flow systems using high-resolution adaptive mesh refinement methodsCosler, Douglas Jay 14 July 2006 (has links)
No description available.
|
Page generated in 0.0871 seconds