• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Saltwater Intrusion in Coastal Aquifers

Park, Chan-Hee 21 November 2004 (has links)
Utilizing the analytical solution of the steady state sharp interface saltwater intrusion model in coastal aquifers, a multi-objective optimization formulation of pumping rates and well locations in a coastal aquifer is formulated to solve problems in water management practice. The proposed optimization problem uses progressive genetic algorithm technique and the method developed is applied to the previous work of Cheng et al. [2000]. Through this analysis, several other applications are provided to demonstrate the use of the model in practical applications. This work is the first to optimize pumping rates as well as well locations simultaneously in coastal aquifer management. Known the limitation of the analytical solution, the work is expanded to cover the physics of saltwater intrusion in a more realistic way. This is variable density flow in a variably saturated porous medium. In this method, mixing between two fluids such as saltwater and freshwater can be described and the porous medium is also expanded to cover saturated and unsaturated zones together. One of the objectives is to develop a three dimensional physical model, verify the model, and apply to various applications in coastal aquifers. The developed model, TechFlow, is used to investigate instability issues associated with the numerical solution of the Elder problem in the perspective that includes physical instability issues associated with density differences used in numerical solutions, sensitivity of the solution to idealization irregularity, and the importance of accurate estimation of the velocity field and its association to the grid density levels that is necessary to solve the problem accurately. Saltwater intrusion hydrodynamics in a beach under the influence of tidal effects is also investigated using TechFlow. Based on the results of TechFlow with the use of various boundary conditions for the transport equation, the saltwater intrusion hydrodynamics in a beach under the influence of tidal effects shows unique dynamics. These solutions are primarily affected by density differences, tidal effects on a mild slope, variably saturated porous medium and finite domain solution condition. TechFlow is also used to investigate saltwater upconing beneath pumping wells both two- and three-dimensional applications.
22

Modélisation d'écoulements gravitaires fluidisés et applciation à la volcanologie / Modelling of fluidised gravity flows and application to volcanology

Mathé, Jordane 11 December 2015 (has links)
Durant les trois années de la thèse, j’ai eu le plaisir de travailler en collaboration avec à la fois des volcanologues, des physiciens de laboratoire et des mathématiciens. Ce mémoire est l’occasion de présenter la démarche et les résultats de mes recherches dans le domaine de la modélisation d’écoulements granulaires denses fluidisés. Ces derniers consistent à développer un nouveau modèle mathématique et son étude théorique et numérique. Sur la base d’observations faites lors d’expériences de laboratoire, nous proposons une façon de modéliser le changement comportemental d’un écoulement granulaire initialement fluidisé au travers de la définition de sa rhéologie viscoplastique à seuil variable. Plus précisément, le seuil de plasticité est défini par la différence entre la pression lithostatique et la pression du fluide interstitiel. La nouveauté apportée par ce modèle ouvre de nouvelles perspectives à la fois pour le champ de recherche en mathématiques et pour la compréhension des lits granulaires fluidisés et leur application à la volcanologie. Du point de vue mathématique, une étude théorique du modèle a été menée. En proposant une preuve de l’existence de solutions faibles à un problème lié à la version homogène du modèle, nous apportons une extension au champ de connaissances autour des écoulements des fluides non-newtoniens. D’autre part, dans le but de reproduire numériquement des expériences de laboratoire de chute de colonne granulaire fluidisée, nous avons développé un code de simulation numérique incluant une nouvelle méthode de résolution des équations d’écoulement de fluides à seuil. Dans ce manuscrit, je décris et justifie les différents choix stratégiques pour le développement de ce code. Par ailleurs, je présente quelques tests académiques permettant de valider le code. Enfin, je donne les résultats de simulation de chute de colonne granulaire, qu’elle soit fluidisée ou non. Une comparaison avec les données de laboratoire est effectuée afin d’évaluer les points forts et les défauts du modèle par rapport à la réalité des expériences. En conclusion, dans la continuité du travail mené dans ce projet, des perspectives d’amélioration sont proposées. / During these three years, I enjoyed to work with collaborators from volcanology, laboratory physics and mathematics. This document presents the steps and results of my research in the field of modelling of fluidised granular flows. The last consists in the development of a new mathematical model and its theoretical and numerical study. Based on observations made on experimental studies, the model focuses on the change in the behaviour of an initially fluidised granular flow through the definition of its viscoplastic rheology with variable threshold. More precisely, the threshold (aslo called yield stress) is defined via the difference between the lithostatic pressure and the pressure of the interstitial fluid. The innovation of this model opens perspectives for the mathematical research as well as for the study of fluidised granular flows and their application to volcanology. From a mathematical point of view, a theoretical study has been conducted. Proving the existence of weak solution for the homogeneous version of the model, we offer an extension in the field of knowledges of non-newtonian fluid flows. Also, we have developped a numerical code to simulate dambreak experiments with fluidised granular media. This one includes a new method to solve the flow equations of viscoplastic fluids. In this thesis, I describe and justify the numerical strategy chosen. Moreover, I present some academic tests to validate the code. At the end, I give the numerical results in the case of the dambreak simulation for dry and fluidised fluids. By comparing with experimental data, we evaluate the validity of the model and its resolution, and highlight the advantages and inconvenients. To conclude the project, I propose some perspectives of improvement for later work.
23

Nové metody záznamu a reprodukce optické zvukové stopy 16mm filmu / New Method of the Optical Record and Reproduction of the 16mm Film Sound-Track

Vacula, Richard January 2016 (has links)
The work deals with the recording and reproduction of sound tracks on 16mm film and with old forgotten film optic sound technologies, as well as plans experiments and research, which examines possible methods for reading and writing tracks using modern optoelectronic devices. The final output is intended to drive the writing negative audio (analog and digital) on the photosensitive material and design of the device for synchronous playback of digital audio tracks from an external memory card. The work is done in collaboration with film laboratories Barrandov Studio a.s. and Meopta-Optika, spol. s r.o.
24

[en] AN EFFECTIVE COMPATIBILITY SCHEME IN MULTISCALE TOPOLOGY OPTIMIZATION OF STRUCTURES / [pt] UM ESQUEMA EFICAZ DE COMPATIBILIDADE NA OTIMIZAÇÃO TOPOLÓGICA MULTIESCALA DE ESTRUTURAS

GIOVANNY ALBERTO MENESES ARBOLEDA 17 August 2021 (has links)
[pt] Os recentes avanços das técnicas de manufatura aditiva vêm ampliando a sua flexibilidade em fabricar peças complexas em escala cada vez menores. Neste contexto, o projeto de microestruturas porosas vem se destacando na comunidade científica devido a capacidade de se otimizar a topologia da célula para atender aos requisitos de projeto. No entanto, existem vários desafios que dificultam a fabricação de peças obtidas pelo método de otimização topológica multiescala, dentre eles, a conectividade das microestruturas. A otimização topológica multiescala consiste na otimização tanto da macroescala, estrutura global, quanto da microescala, microestrutura do material. O objetivo principal deste trabalho é desenvolver um esquema eficaz para garantir a transição entre as diferentes microestruturas de material obtidas na otimização multiescala. As metodologias multiescala de otimização topológica simultânea de ambas as escalas e os procedimentos de homogeneização são descritos. Apresentam-se os principais aspectos numéricos e computacionais destes métodos, assim como exemplos ilustrativos. / [en] Recent advances in additive manufacturing techniques have increased their flexibility in making complex parts on a smaller scale. In this context, the design of porous microstructures has been standing out in the scientific community due to the ability to optimize the cell topology to meet the design requirements. However, there are several challenges that inhibit the fabrication of optimized parts obtained by the multi-scale topology optimization method, such as the connectivity of microstructures. The multiscale topological optimization consists of the optimization of both the macro-scale, global structure, and the micro-scale, microstructure of the material. The main objective of this work is to develop an effective scheme to guarantee compatibility in the transition between the different material microstructures obtained in multiscale optimization. The multiscale methodologies for simultaneous topological optimization of both scales and the homogenization procedures are described. The main numerical and computational aspects of these methods are presented, as well as representative examples to illustrate the capabilities of the proposed scheme.
25

Variable-Density Flow Processes in Porous Media On Small, Medium and Regional Scales

Walther, Marc 03 November 2014 (has links) (PDF)
Nowadays society strongly depends on its available resources and the long term stability of the surrounding ecosystem. Numerical modelling has become a general standard for evaluating past, current or future system states for a large number of applications supporting decision makers in proper management. In order to ensure the correct representation of the investigated processes and results of a simulation, verification examples (benchmarks), that are based on observation data or analytical solutions, are utilized to evaluate the numerical modelling tool. In many parts of the world, groundwater is an important resource for freshwater. While it is not only limited in quantity, subsurface water bodies are often in danger of contamination from various natural or anthropogenic sources. Especially in arid regions, marine saltwater intrusion poses a major threat to groundwater aquifers which mostly are the exclusive source of freshwater in these dry climates. In contrast to common numerical groundwater modelling, density-driven flow and mass transport have to be considered as vital processes in the system and in scenario simulations for fresh-saltwater interactions. In the beginning of this thesis, the capabilities of the modelling tool OpenGeoSys are verified with selected benchmarks to represent the relevant non-linear process coupling. Afterwards, variable-density application and process studies on different scales are presented. Application studies comprehend regional groundwater modelling of a coastal aquifer system extensively used for agricultural irrigation, as well as hydro-geological model development and parametrization. In two process studies, firstly, a novel method to model gelation of a solute in porous media is developed and verified on small scale laboratory observation data, and secondly, investigations of thermohaline double-diffusive Rayleigh regimes on medium scale are carried out. With the growing world population and, thus, increasing pressure on non-renewable resources, intelligent management strategies intensify demand for potent simulation tools and development of novel methods. In that way, this thesis highlights not only OpenGeoSys’ potential of density-dependent process modelling, but the comprehensive importance of variable-density flow and transport processes connecting, both, avant-garde scientific research, and real-world application challenges.
26

Variable-Density Flow Processes in Porous Media On Small, Medium and Regional Scales

Walther, Marc 07 May 2014 (has links)
Nowadays society strongly depends on its available resources and the long term stability of the surrounding ecosystem. Numerical modelling has become a general standard for evaluating past, current or future system states for a large number of applications supporting decision makers in proper management. In order to ensure the correct representation of the investigated processes and results of a simulation, verification examples (benchmarks), that are based on observation data or analytical solutions, are utilized to evaluate the numerical modelling tool. In many parts of the world, groundwater is an important resource for freshwater. While it is not only limited in quantity, subsurface water bodies are often in danger of contamination from various natural or anthropogenic sources. Especially in arid regions, marine saltwater intrusion poses a major threat to groundwater aquifers which mostly are the exclusive source of freshwater in these dry climates. In contrast to common numerical groundwater modelling, density-driven flow and mass transport have to be considered as vital processes in the system and in scenario simulations for fresh-saltwater interactions. In the beginning of this thesis, the capabilities of the modelling tool OpenGeoSys are verified with selected benchmarks to represent the relevant non-linear process coupling. Afterwards, variable-density application and process studies on different scales are presented. Application studies comprehend regional groundwater modelling of a coastal aquifer system extensively used for agricultural irrigation, as well as hydro-geological model development and parametrization. In two process studies, firstly, a novel method to model gelation of a solute in porous media is developed and verified on small scale laboratory observation data, and secondly, investigations of thermohaline double-diffusive Rayleigh regimes on medium scale are carried out. With the growing world population and, thus, increasing pressure on non-renewable resources, intelligent management strategies intensify demand for potent simulation tools and development of novel methods. In that way, this thesis highlights not only OpenGeoSys’ potential of density-dependent process modelling, but the comprehensive importance of variable-density flow and transport processes connecting, both, avant-garde scientific research, and real-world application challenges.:Abstract Zusammenfassung Nomenclature List of Figures List of Tables I Background and Fundamentals 1 Introduction 1.1 Motivation 1.2 Structure of the Thesis 1.3 Variable-Density Flow in Literature 2 Theory and Methods 2.1 Governing Equations 2.2 Fluid Properties 2.3 Modelling and Visualization Tools 3 Benchmarks 3.1 Steady-state Unconfined Groundwater Table 3.2 Theis Transient Pumping Test 3.3 Transient Saltwater Intrusion 3.4 Development of a Freshwater Lens II Applications 4 Extended Inverse Distance Weighting Interpolation 4.1 Motivation 4.2 Extension of IDW Method 4.3 Artificial Test and Regional Scale Application 4.4 Summary and Conclusions 5 Modelling Transient Saltwater Intrusion 5.1 Background and Motivation 5.2 Methods and Model Setup 5.3 Simulation Results and Discussion 5.4 Summary, Conclusion and Outlook 6 Gelation of a Dense Fluid 6.1 Motivation 6.2 Methods and Model Setup 6.3 Results and Conclusions 7 Delineating Double-Diffusive Rayleigh Regimes 7.1 Background and Motivation 7.2 Methods and Model Setup 7.3 Results 7.4 Conclusions and Outlook III Summary and Conclusions 8 Important Achievements 9 Conclusions and Outlook Bibliography Publications Acknowledgements Appendix

Page generated in 0.0635 seconds