• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 1
  • Tagged with
  • 13
  • 13
  • 10
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles d'image aléatoires et synthèse de texture

Galerne, Bruno 09 December 2010 (has links) (PDF)
Cette thèse est une étude de modèles d'image aléatoires avec des applications en synthèse de texture. La plupart des modèles de champs aléatoires étudiés sont des modèles germes-grains. Dans la première partie de la thèse, des algorithmes de synthèse de texture basés sur le modèle shot noise sont développés. Dans le cadre discret, deux processus aléatoires, à savoir le shot noise discret asymptotique et le bruit à phase aléatoire, sont étudiés. On élabore ensuite un algorithme rapide de synthèse de texture basé sur ces processus. De nombreuses expériences démontrent que cet algorithme permet de reproduire une certaine classe de textures naturelles que l'on nomme micro-textures. Dans le cadre continu, la convergence gaussienne des modèles shot noise est étudiée d'avantage et de nouvelles bornes pour la vitesse de cette convergence sont établies. Enfin, on présente un nouvel algorithme de synthèse de texture procédurale par l'exemple basé sur le récent modèle Gabor noise. Cet algorithme permet de calculer automatiquement un modèle procédural représentant des micro-textures naturelles. La deuxième partie de la thèse est consacrée à l'étude du processus feuilles mortes transparentes (FMT), un nouveau modèle germes-grains obtenu en superposant des objets semi-transparents. Le résultat principal de cette partie montre que, lorsque la transparence des objets varie, le processus FMT fournit une famille de modèles variant du modèle feuilles mortes à un champ gaussien. Dans la troisième partie de la thèse, les champs aléatoires à variation bornés sont étudiés et on établit des résultats généraux sur le calcul de la variation totale moyenne de ces champs. En particulier, ces résultats généraux permettent de calculer le périmètre moyen des ensembles aléatoires et de calculer explicitement la variation totale moyenne des modèles germes-grains classiques.
2

Le théorème de lebesgue sur la dérivabilité des fonctions à variation bornée

Mombo Mingandza, Patrick Landry 01 1900 (has links)
Dans ce mémoire, nous traiterons du théorème de Lebesgue, un des plus frappants et des plus importants de l'analyse mathématique ; à savoir qu'une fonction à variation bornée est dérivable presque partout. Le but de ce travail est de fournir, à part la démonstration souvent proposée dans les cours de la théorie de la mesure, d'autres démonstrations élaborées avec des outils mathématiques plus simples. Ma contribution a consisté essentiellement à détailler et à compléter ces démonstrations, puis à inclure la plupart des figures pour une meilleure lisibilité. Nous allons maintenant, pour ce théorème qui se présente sous d'autres variantes, en proposer l'historique et trois démonstrations différentes. / In this dissertation, we will be handling a theorem of Lebesgue, one of the most stricking and ultimate of mathematical analysis ; namely a function with bounded variation has a derivative almost everywhere. The aim of our research is to provide, apart from the proof usually offered in measure theory courses, other demontrations achieved with more simple mathematical tools. My contribution was primarily to simplify and to complete these demonstrations, to include the most of the drawings in order to visualize what is being said. For this theorem, which has other presentations, we will give now the history and three different demonstrations.
3

Sur une équation elliptique non linéaire dégénérée

Obeid-El Hamidi, Amira 19 December 2002 (has links) (PDF)
L'objectif de ce travail est d'établir l'existence et l'unicité de la solution pour une équation elliptique non linéaire dégénérée, posée dans un domaine non borné. Dans un premier temps, on mène notre étude dans un domaine borné et ceci en tronquant le domaine infini. Dans la première partie, on introduit le problème variationnel associé qui se traduit en terme d'une fonctionnelle non coercive à minimiser. Ainsi, on associe au problème de minimisation un problème dual puis on montre pour ce dernier l'existence et l'unicité de la solution. Ensuite on prouve par l'extraction d'une sous-suite minimisante l'existence d'une "solution" liée à celle du problème dual. Dans la deuxième partie, on définit un problème relaxé ayant le même infimum que le problème initial. Ensuite on établit que cet infimum est un minimum pour le problème relaxé. Les résultats de la première partie sont ensuite étendus au cas non borné. Enfin, on donne quelques critères pour estimer l'erreur de troncature entre les solutions du problème dual définies dans le cas borné et non borné.
4

Stochastic image models and texture synthesis

Galerne, Bruno 09 December 2010 (has links) (PDF)
Cette thèse est une étude de modèles d'image aléatoires avec des applications en synthèse de texture.Dans la première partie de la thèse, des algorithmes de synthèse de texture basés sur le modèle shot noise sont développés. Dans le cadre discret, deux processus aléatoires, à savoir le shot noise discret asymptotique et le bruit à phase aléatoire, sont étudiés. On élabore ensuite un algorithme rapide de synthèse de texture basé sur ces processus. De nombreuses expériences démontrent que cet algorithme permet de reproduire une certaine classe de textures naturelles que l'on nomme micro-textures. Dans le cadre continu, la convergence gaussienne des modèles shot noise est étudiée d'avantage et de nouvelles bornes pour la vitesse de cette convergence sont établies. Enfin, on présente un nouvel algorithme de synthèse de texture procédurale par l'exemple basé sur le récent modèle Gabor noise. Cet algorithme permet de calculer automatiquement un modèle procédural représentant des micro-textures naturelles.La deuxième partie de la thèse est consacrée à l'étude du processus feuilles mortes transparentes (FMT), un nouveau modèle germes-grains obtenu en superposant des objets semi-transparents. Le résultat principal de cette partie montre que, lorsque la transparence des objets varie, le processus FMT fournit une famille de modèles variant du modèle feuilles mortes à un champ gaussien. Dans la troisième partie de la thèse, les champs aléatoires à variation bornés sont étudiés et on établit des résultats généraux sur le calcul de la variation totale moyenne de ces champs. En particulier, ces résultats généraux permettent de calculer le périmètre moyen des ensembles aléatoires et de calculer explicitement la variation totale moyenne des modèles germes-grains classiques.
5

Le théorème de lebesgue sur la dérivabilité des fonctions à variation bornée

Mombo Mingandza, Patrick Landry 01 1900 (has links)
Dans ce mémoire, nous traiterons du théorème de Lebesgue, un des plus frappants et des plus importants de l'analyse mathématique ; à savoir qu'une fonction à variation bornée est dérivable presque partout. Le but de ce travail est de fournir, à part la démonstration souvent proposée dans les cours de la théorie de la mesure, d'autres démonstrations élaborées avec des outils mathématiques plus simples. Ma contribution a consisté essentiellement à détailler et à compléter ces démonstrations, puis à inclure la plupart des figures pour une meilleure lisibilité. Nous allons maintenant, pour ce théorème qui se présente sous d'autres variantes, en proposer l'historique et trois démonstrations différentes. / In this dissertation, we will be handling a theorem of Lebesgue, one of the most stricking and ultimate of mathematical analysis ; namely a function with bounded variation has a derivative almost everywhere. The aim of our research is to provide, apart from the proof usually offered in measure theory courses, other demontrations achieved with more simple mathematical tools. My contribution was primarily to simplify and to complete these demonstrations, to include the most of the drawings in order to visualize what is being said. For this theorem, which has other presentations, we will give now the history and three different demonstrations.
6

Décomposition d'image par modèles variationnels : débruitage et extraction de texture

Piffet, Loïc 23 November 2010 (has links) (PDF)
Cette thèse est consacrée dans un premier temps à l'élaboration d'un modèle variationnel dedébruitage d'ordre deux, faisant intervenir l'espace BV 2 des fonctions à hessien borné. Nous nous inspirons ici directement du célèbre modèle de Rudin, Osher et Fatemi (ROF), remplaçant la minimisation de la variation totale de la fonction par la minimisation de la variation totale seconde, c'est à dire la variation totale de ses dérivées. Le but est ici d'obtenir un modèle aussi performant que le modèle ROF, permettant de plus de résoudre le problème de l'effet staircasing que celui-ci engendre. Le modèle que nous étudions ici semble efficace, entraînant toutefois l'apparition d'un léger effet de flou. C'est afin de réduire cet effet que nous introduisons finalement un modèle mixte, permettant d'obtenir des solutions à la fois non constantes par morceaux et sans effet de flou au niveau des détails. Dans une seconde partie, nous nous intéressons au problème d'extraction de texture. Un modèle reconnu comme étant l'un des plus performants est le modèle T V -L1, qui consiste simplement à remplacer dans le modèle ROF la norme L2 du terme d'attache aux données par la norme L1. Nous proposons ici une méthode originale permettant de résoudre ce problème utilisant des méthodes de Lagrangien augmenté. Pour les mêmes raisons que dans le cas du débruitage, nous introduisons également le modèle T V 2-L1, consistant encore une fois à remplacer la variation totale par la variation totale seconde. Un modèle d'extraction de texture mixte est enfin très brièvement introduit. Ce manuscrit est ponctué d'un vaste chapitre dédié aux tests numériques.
7

Modélisation de l'imagerie biomédicale hybride par perturbations mécaniques / Mathematical modelling of hybrid biomedical imaging by mechanical perturbations

Seppecher, Laurent 20 June 2014 (has links)
Dans cette thèse, nous introduisons et développons une approche mathématiques originale des techniques d'imagerie biomédicales dites "hybrides". L'idée et d'appliquer une méthode d'imagerie mal posée, tout en perturbant le milieu à imager par des déplacements mécaniques. Ces déplacements provenant d'une équation de type onde élastique perturbent les mesures effectuées. En utilisant ces mesures perturbées, et profitant du caractère local des perturbations mécaniques, il est possible d'augmenter considérablement la résolution de la méthode de base. Le problème direct est donc un couplage d'une EDP décrivant la propagation utilisée pour la méthode de base et d'une seconde décrivant les champs de déplacement mécaniques. Dans toutes cette thèse, on fait l'hypothèse d'un milieu mécaniquement homogène afin d'assurer le contrôle et la géométrie des ondes perturbatrices utilisées. A partir des mesures perturbées, une étape d'interprétation permet de construire une donnée interne au domaine considéré. Cette étape nécessite en général l'inversion d'opérateurs géométriques intégraux de type Radon, afin d'utiliser le caractère localisant des perturbations utilisées. A partir de cette donnée interne, il est possible d'initier une procédure de reconstruction du paramètre physique recherché. Dans le chapitre 1, il est question d'un couplage entre micro-ondes et perturbations sphériques. Dans les chapitres 2, 3 et 4, nous étudions l'imagerie optique diffuse toujours couplée avec des perturbations sphériques. Enfin dans le chapitre cinq, nous donnons une méthode originale de reconstruction de la conductivité électrique par un couplage entre champs magnétique et perturbations acoustiques focalisées. / This thesis aims at developing an original mathematical approach for modeling hybrid biomedical imaging modalities. The core idea is to run an ill-posed imaging method while perturbing the medium using mechanical displacements. These displacements described by an elastic wave equation perturb the collected measurements. Using these perturbed measurements and taking advantage of the perturbation localizing e↵ect, it is possible to significantly overcome the resolution of the basic method. The direct problem here is a coupling between a PDE describing the propagation used for the basic method and a second one describing the mechanical displacements fields. In the whole thesis, we only consider mechanically homogeneous medium in order to assure the control and the geometry of the perturbing wavefronts. From these perturbed measurements, an interpretation step leads to an internal data map inside the considered medium. This step usually requires inversion of geometric integral operators such as Radon transform. This allows to use the geometrical localizing behavior of the perturbations. From this internal data, one can start a recovering procedure for the unknown physical parameter. This recovering step involves a new non physical PDE, non linearly coupled with the main modality equation. In the first chapter, we study a coupling between micro-waves and spherical perturbations. In chapter 2, 3 and 4, we propose a model for di↵use optical imaging coupled with spherical perturbations. In chapter 5, we introduce a new method for imaging the electric conductivity by a coupling between magnetic field and focused acoustic perturbations
8

Réduction dimensionnelle pour des milieux hétérogènes, troués ou fissurés

Babadjian, Jean-François 14 October 2005 (has links) (PDF)
Cette thèse traite de la justification de modèles de membranes comme limites de "comportements élastiques" non linéaires tridimensionnels (les guillemets ont trait à l'absence de l'hypothèse classique d'explosion de l'énergie lorsque le Jacobien de la transformation tend vers zéro). La réduction dimensionnelle est vue comme un problème de $\Gamma$-convergence sur l'énergie élastique, lorsque l'\épaisseur tend vers zéro. Dans un premier temps, nous décrirons des hétérogénéités macroscopiques où les forces de surface peuvent engendrer une densité de moment fléchissant, produisant un vecteur de Cosserat. Puis nous considérerons des hétérogénéités microscopiques réparties périodiquement, donnant lieu à prendre en compte deux types de problèmes simultanés: la réduction de dimension et l'homogénéisation réitérée. Ensuite, des films minces possédant une microstructure dégénérée due à la présence de vide sur la surface moyenne seront étudiés dans le cas où l'épaisseur est beaucoup plus petite que la période de distribution des perforations. Enfin, nous envisagerons la possibilité de rupture et analyserons l'évolution quasistatique des fissures pour une énergie de surface de type Griffith.
9

Modélisation de l'imagerie biomédicale hybride par perturbations mécaniques

Seppecher, Laurent 20 June 2014 (has links) (PDF)
Dans cette thèse, nous introduisons et développons une approche mathématiques originale des techniques d'imagerie biomédicales dites "hybrides". L'idée et d'appliquer une méthode d'imagerie mal posée, tout en perturbant le milieu à imager par des déplacements mécaniques. Ces déplacements provenant d'une équation de type onde élastique perturbent les mesures effectuées. En utilisant ces mesures perturbées, et profitant du caractère local des perturbations mécaniques, il est possible d'augmenter considérablement la résolution de la méthode de base. Le problème direct est donc un couplage d'une EDP décrivant la propagation utilisée pour la méthode de base et d'une seconde décrivant les champs de déplacement mécaniques. Dans toutes cette thèse, on fait l'hypothèse d'un milieu mécaniquement homogène afin d'assurer le contrôle et la géométrie des ondes perturbatrices utilisées. A partir des mesures perturbées, une étape d'interprétation permet de construire une donnée interne au domaine considéré. Cette étape nécessite en général l'inversion d'opérateurs géométriques intégraux de type Radon, afin d'utiliser le caractère localisant des perturbations utilisées. A partir de cette donnée interne, il est possible d'initier une procédure de reconstruction du paramètre physique recherché. Dans le chapitre 1, il est question d'un couplage entre micro-ondes et perturbations sphériques. Dans les chapitres 2, 3 et 4, nous étudions l'imagerie optique diffuse toujours couplée avec des perturbations sphériques. Enfin dans le chapitre cinq, nous donnons une méthode originale de reconstruction de la conductivité électrique par un couplage entre champs magnétique et perturbations acoustiques focalisées.
10

Etude mathématique de la convergence de la PGD variationnelle dans certains espaces fonctionnels / Mathematical study of the variational PGD’s convergence in certain functional spaces

Ossman, Hala 23 May 2017 (has links)
On s’intéresse dans cette thèse à la PGD (Proper Generalized Decomposition), l’une des méthodes de réduction de modèles qui consiste à chercher, a priori, la solution d’une équation aux dérivées partielles sous forme de variables séparées. Ce travail est formé de cinq chapitres dans lesquels on vise à étendre la PGD aux espaces fractionnaires et aux espaces des fonctions à variation bornée, et à donner des interprétations théoriques de cette méthode pour une classe de problèmes elliptiques et paraboliques. Dans le premier chapitre, on fait un bref aperçu sur la littérature puis on présente les notions et outils mathématiques utilisés dans le corps de la thèse. Dans le second chapitre, la convergence des suites des directions alternées (AM) pour une classe de problèmes variationnels elliptiques est étudiée. Sous une condition de non-orthogonalité uniforme entre les itérés et le terme source, on montre que ces suites sont en général bornées et compactes. Alors, si en particulier la suite (AM) converge faiblement alors elle converge fortement et la limite serait la solution du problème de minimisation alternée. Dans le troisième chapitre, on introduit la notion des dérivées fractionnaires au sens de Riemann-Liouville puis on considère un problème variationnel qui est une généralisation d’ordre fractionnaire de l’équation de Poisson. En se basant sur la nature quadratique et la décomposabilité de l’énergie associée, on démontre que la suite PGD progressive converge fortement vers la solution faible de ce problème. Dans le quatrième chapitre, on profite de la structure tensorielle des espaces BV par rapport à la topologie faible étoile pour définir les suites PGD dans ce type d’espaces. La convergence de telle suite reste une question ouverte. Le dernier chapitre est consacré à l’équation de la chaleur d-dimensionnelle, où on discrétise en temps puis à chaque pas de temps on cherche la solution de l’équation elliptique en utilisant la PGD. On montre alors que la fonction affine par morceaux en temps obtenue à partir des solutions construites en utilisant la PGD converge vers la solution faible de l’équation. / In this thesis, we are interested in the PGD (Proper Generalized Decomposition), one of the reduced order models which consists in searching, a priori, the solution of a partial differential equation in a separated form. This work is composed of five chapters in which we aim to extend the PGD to the fractional spaces and the spaces of functions of bounded variation and to give theoretical interpretations of this method for a class of elliptic and parabolic problems. In the first chapter, we give a brief review of the litterature and then we introduce the mathematical notions and tools used in this work. In the second chapter, the convergence of rank-one alternating minimisation AM algorithms for a class of variational linear elliptic equations is studied. We show that rank-one AM sequences are in general bounded in the ambient Hilbert space and are compact if a uniform non-orthogonality condition between iterates and the reaction term is fulfilled. In particular, if a rank-one (AM) sequence is weakly convergent then it converges strongly and the common limit is a solution of the alternating minimization problem. In the third chapter, we introduce the notion of fractional derivatives in the sense of Riemann-Liouville and then we consider a variational problem which is a generalization of fractional order of the Poisson equation. Basing on the quadratic nature and the decomposability of the associated energy, we prove that the progressive PGD sequence converges strongly towards the weak solution of this problem. In the fourth chapter, we benefit from tensorial structure of the spaces BV with respect to the weak-star topology to define the PGD sequences in this type of spaces. The convergence of this sequence remains an open question. The last chapter is devoted to the d-dimensional heat equation, we discretize in time and then at each time step one seeks the solution of the elliptic equation using the PGD. Then, we show that the piecewise linear function in time obtained from the solutions constructed using the PGD converges to the weak solution of the equation.

Page generated in 0.0917 seconds