• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theorie und Numerik einer oberflächenorientierten Schalenformulierung

Schlebusch, Rainer 25 May 2005 (has links)
This doctorial thesis deals with the derivation of a mechanical model for the simulation of the load-bearing behavior of a strengthening layer made of textile reinforced concrete to strengthen a shell structure. The main focus lies on both the geometrical and physical non-linear three-dimensional shell formulation and on its transfer into an efficient finite element. The distinctive feature of the presented shell formulation is its surface-orientation. This enables the analysis of a strengthening layer applied on one of the outer surfaces of a structure in a very natural way, since a problem-oriented mechanical modeling is achieved. Hereby, in contrast to classical shell theories the three-dimensionality of the material behavior's description can completely maintained. This is necessary, since a more accurate modeling of the material behavior of textile reinforced concrete can only be done three-dimensional. Within the scope of this thesis an anisotropic hyper elastic constitutive relation is given in order to obtain a first approximation of textile reinforced concrete's material behavior against the background of material theory. Furthermore a specification of the hyper elastic constitutive relation is obtained upon the basis of the principle of material symmetry and is prepared for the application in the shell formulation. The numerical solution of the field problem necessitates the transfer of the surface-related shell formulation into a two-dimensional variational formulation in order to obtain a sound mathematical starting point for the conversion into an efficient volume shell element. For the realization of a numerical efficient finite element an element formulation using a low-order ansatz should be favored. Because of reducing the number of degrees of freedom and therewith of possible deformation modes, artificial stiffening effects will appear. A way out is given by a special extention of the assumed natural strain and the assumed strain method for the utilization in the presented surface-related shell formulation. This leads to a slightly higher numerical effort, but allows a reliable and efficient finite element formulation finally verified in distinct meaningful non-linear simulations. / Die Herleitung eines mechanischen Modells zur numerischen Simulation des Tragverhaltens einer Verstärkungsschicht für Flächentragwerke aus textilbewehrtem Feinbeton ist Gegenstand dieser Arbeit. Hierbei liegt das Hauptaugenmerk auf einer sowohl geometrisch als auch physikalisch nichtlinearen dreidimensionalen Schalenformulierung und deren Umsetzung in ein effizientes finites Element. Die Besonderheit der hier vorgestellten Schalenformulierung ist deren Oberflächenbezug, der es auf natürliche Weise ermöglicht, eine auf die Struktur aufgebrachte Verstärkungsschicht zu berechnen. Diese Verfahrensweise ist als eine der Problemstellung angepaßte mechanische Modellbildung anzusehen. Hierbei kann im Gegensatz zu klassischen Schalentheorien die Dreidimensionalität der Materialbeschreibung vollständig aufrecht erhalten und damit die verfeinerte Erfassung des Materialverhaltens von Textilbeton ermöglicht werden, die nur dreidimensional erfolgen kann. Eine materialtheoretische Herleitung von anisotropen hyper-elastischen konstitutiven Beziehungen als erste Approximation zur Erfassung des Materialverhaltens von textilbewehrtem Feinbeton wird vorgestellt und deren Spezifizierung auf der Basis des Prinzips der materiellen Symmetrie durchgeführt sowie zur Anwendung in der Schalenformulierung aufbereitet. Die numerische Lösung des Feldproblems erfordert die Umsetzung der oberflächenorientierten Schalenformulierung in eine zweidimensionale Variationsformulierung mit dem Ziel, einen mathematisch fundierten Ausgangspunkt für die Entwicklung eines leistungsfähigen Volumen"=Schalen"=Elementes zu erhalten. Zur Realisierung eines numerisch effizienten finiten Elementes ist eine Elementformulierung mit möglichst geringer Ansatzordnung verwendet worden. Da hierdurch die Freiheitsgrade des Elementes und damit die möglichen Verformungsmodi in ihrer Anzahl eingeschränkt werden, sind künstliche Versteifungseffekte zu erwarten. Einen Ausweg bieten hier spezielle Erweiterungen der Assumed Natural Strain und der Enhanced Assumed Strain Methode für die hier vorliegende oberflächenorientierte Schalenformulierung. Dies erhöht den numerischen Aufwand unwesentlich, ermöglicht jedoch insgesamt eine zuverlässige und effiziente Elementformulierung, deren Brauchbarkeit abschließend in verschiedenen aussagekräftigen nichtlinearen Simulationen nachgewiesen wird.
12

Analyse numérique de modèles de diffusion-sauts à volatilité stochastique : cas de l'évaluation des options / Numerical analysis of the stochastic volatility jump diffusion models : case of options pricing

Jraifi, Abdelilah 03 February 2014 (has links)
Dans le monde économique, les contrats d'options sont très utilisés car ils permettent de se couvrir contre les aléas et les risques dus aux fluctuations des prix des actifs sous-jacents. La détermination du prix de ces contrats est d'une grande importance pour les investisseurs.Dans cette thèse, on s'intéresse aux problèmes d'évaluation des options, en particulier les options Européennes et Quanto sur un actif financier dont le prix est modélisé en multi dimensions par un modèle de diffusion-saut à volatilité stochastique avec sauts (1er cas considère la volatilité sans sauts, dans le 2ème cas les sauts sont pris en compte, finalement dans le 3ème cas, l'actif sous-jacent est sans saut et la volatilité suit un CEV modèle sans saut). Ce modèle permet de mieux prendre en compte certains phénomènes observés dans les marchés. Nous développons des méthodes numériques qui déterminent les valeurs des prix de ces options. On présentera d'abord le modèle qui s'écrit sous la forme d'un système d'équations intégro-différentielles stochastiques "EIDS", et on étudiera l'existence et l'unicité de la solution de ce modèle en fonction de ses coefficients, puis on établira le lien entre le calcul du prix de l'option et la résolution de l'équation Intégro-différentielle partielle (EIDP). Ce lien, qui est basé sur la notion des générateurs infinitésimaux, nous permet d'utiliser différentes méthodes numériques pour l'évaluation des options considérées. Nous introduisons alors l'équation variationnelle associée aux EIDP et démontrons qu'elle admet une unique solution dans un espace de Sobolev avec poids en s'inspirant des travaux de Zhang [106].Nous nous concentrons ensuite sur l'approximation numérique du prix de l'option en considérant le problème dans un domaine borné, et nous utilisons pour la résolution numérique la méthode des éléments finis de type (P1), et un schéma d'Euler-Maruyama, pour se servir, d'une part de la méthode de différences finies en temps, et d'autre part de la méthode de Monté Carlo et la méthode Quasi Monte Carlo. Pour cette dernière méthode nous avons utilisé les suites de Halton afin d'améliorer la vitesse de convergence.Nous présenterons une étude comparative des différents résultats numériques obtenus dans plusieurs cas différents afin d'étudier la performance et l'efficacité des méthodes utilisées. / In the modern economic world, the options contracts are used because they allow to hedge against the vagaries and risks refers to fluctuations in the prices of the underlying assets. The determination of the price of these contracts is of great importance for investors.We are interested in problems of options pricing, actually the European and Quanto options on a financial asset. The price of that asset is modeled by a multi-dimentional jump diffusion with stochastic volatility. Otherwise, the first model considers the volatility as a continuous process and the second model considers it as a jump process. Finally in the 3rd model, the underlying asset is without jump and volatility follows a model CEV without jump. This model allow better to take into account some phenomena observed in the markets. We develop numerical methods that determine the values of prices for these options. We first write the model as an integro-differential stochastic equations system "EIDS", of which we study existence and unicity of solutions. Then we relate the resolution of PIDE to the computation of the option value. This link, which is based on the notion of infinitesimal generators, allows us to use different numerical methods. We therefore introduce the variational equation associated with the PIDE, and drawing on the work of Zhang [106], we show that it admits a unique solution in a weights Sobolev space We focus on the numerical approximation of the price of the option, by treating the problem in a bounded domain. We use the finite elements method of type (P1), and the scheme of Euler-Maruyama, for this serve, on the one hand the finite differences method in time, and on the other hand the method of Monte Carlo and the Quasi Monte Carlo method. For this last method we use of Halton sequences to improve the speed of convergence.We present a comparative study of the different numerical results in many different cases in order to investigate the performance and effectiveness of the used methods.
13

Méthodes d'éléments finis pour le problème de changement de phase en milieux composites / Finite element methods for the phase change problem in composite media

Mint brahim, Maimouna 30 November 2016 (has links)
Dans ces travaux de thèse on s’intéresse au développement d’un outil numérique pour résoudre le problème de conduction instationnaire avec changement de phase dans un milieu composite constitué d’une mousse de graphite infiltrée par un matériau à changement de phase tel que le sel, dans le contexte du stockage de l’énergie thermique solaire.Au chapitre 1, on commence par présenter le modèle sur lequel on va travailler. Il estséparé en trois sous-parties : un problème de conduction de chaleur dans la mousse, un problème de changement de phase dans les pores remplis de sel et une condition de résistance thermique de contact entre les deux matériaux qui est traduite par une discontinuité du champ de température.Au chapitre 2, on étudie le problème stationnaire de conduction thermique dans un milieu composite avec résistance de contact. Ceci permet de se focaliser sur la plus grande difficulté présente dans le problème qui est le traitement de la condition de saut à l’interface.Deux méthodes d’éléments finis sont proposées pour résoudre ce problème : une méthode basée sur les éléments finis Lagrange P1 et une méthode hybride-duale utilisant les éléments finis Raviart-Thomas d’ordre 0 et P0. L’analyse numérique des deux méthodes est effectuée et les résultats de tests numériques attestent des efficacités des deux méthodes [10]. Les matériaux à changement de phase qu’on étudie dans le cadre de cette thèse sont des matériaux pures, par conséquent le changement de phase s’effectue en une valeur de température fixe qui est la température de fusion. Ceci est modélisé par un saut dans la fonction fraction liquide et par conséquent dans la fonction enthalpie du matériau. Cette discontinuité représente une difficulté numérique supplémentaire qu’on propose de surmonter en introduisant un intervalle de régularisation autour de la température de fusion.Cette procédure est présentée dans le chapitre 3 où une étude analytique et numérique montre que l’erreur sur la température se comporte comme " en dehors de la zone de mélange, où " est la largeur de l’intervalle de régularisation. Cependant, à l’intérieur l’erreur se comporte comme p " et on montre que cette estimation est optimale. Cette diminution de vitesse de convergence est due à l’énergie qui reste bloquée dans la zone de mélange [58].Dans le chapitre 4 on présente quatre des schémas les plus utilisés pour le traitement de la non-linearité due au changement de phase: mise à jour du terme source, linéarisation de l’enthalpie, la capacité thermique apparente et le schéma de Chernoff. Différents tests numériques sont réalisés afin de tester et comparer ces quatre méthodes pour différents types de problèmes. Les résultats montrent que le schéma de linéarisation de l’enthalpie est le plus précis à chaque pas de temps tans dis que le schéma de la capacité thermique apparente donne de meilleurs résultats au bout d’un certain temps de calcul. Cela indique que si l’on s’intéresse aux états transitoires du matériaux le premier schéma est lemeilleur choix. Cependant, si l’on s’intéresse au comportement thermique asymptotique du matériau le second schéma est plus adapté. Les résultats montrent également que le schéma de Chernoff est le plus rapide parmi les quatre schémas en terme de temps de calcul et donne des résultats comparables à ceux des deux plus précis.Enfin, dans le chapitre 5 on utilise le schéma de Chernoff avec la méthode d’éléments finis hybride-duale Raviart-Thomas d’ordre 0 et P0 pour résoudre le problème non-linéaire de conduction thermique dans un milieu composite réel avec matériau à changement de phase. Le but étant de déterminer si un matériau composite avec une distribution uniforme de pores est assimilable à un matériau à changement de phase homogènes avec des propriétés thermo-physiques équivalentes. Pour toutes les expériences numériques exposées dans ce manuscrit on a utilisé le logiciel libre d’éléments finis FreeFem++ [41]. / In this thesis we aim to develop a numerical tool that allow to solve the unsteady heatconduction problem in a composite media with a graphite foam matrix infiltrated witha phase change material such as salt, in the framework of latent heat thermal energystorage.In chapter 1, we start by explaining the model that we are studying which is separated in three sub-parts : a heat conduction problem in the foam, a phase change problem in the pores of the foam which are filled with salt and a contact resistance condition at the interface between both materials which results in a jump in the temperature field.In chapter 2, we study the steady heat conduction problem in a composite media withcontact resistance. This allow to focus on the main difficulty here which is the treatment of the thermal contact resistance at the interface between the carbon foam and the salt. Two Finite element methods are proposed in order to solve this problem : a finite element method based on Lagrange P1 and a hybrid dual finite element method using the lowest order Raviart-Thomas elements for the heat flux and P0 for the temperature. The numerical analysis of both methods is conducted and numerical examples are given to assert the analytic results. The work presented in this chapter has been published in the Journal of Scientific Computing [10].The phase change materials that we study here are mainly pure materials and as a consequence the change in phase occurs at a single point, the melting temperature. This introduces a jump in the liquid fraction and consequently in the enthalpy. This discontinuity represents an additional numerical difficulty that we propose to overcome by introducing a smoothing interval around the melting temperature. This is explained in chapter 3 where an analytical and numerical study shows that the error on the temperature behaves like " outside of the mushy zone, where _ is the width of the smoothing interval. However, inside the error behaves like p " and we prove that this estimation is optimal due to the energy trapped in the mushy zone. This chapter has been published in Communications in Mathematical Sciences [58].The next step is to determine a suitable time discretization scheme that allow to handle the non-linearity introduced by the phase change. For this purpose we present in chapter 4 four of the most used numerical schemes to solve the non-linear phase change problem : the update source method, the enthalpy linearization method, the apparent heat capacity method and the Chernoff method. Various numerical tests are conducted in order to test and compare these methods for various types of problems. Results show that the enthalpy linearization is the most accurate at each time step while the apparent heat capacity gives better results after a given time. This indicates that if we are interestedin the transitory states the first scheme is the best choice. However, if we are interested in the asymptotic thermal behavior of the material the second scheme is better. Results also show that the Chernoff scheme is the fastest in term of calculation time and gives comparable results to the one given by the first two methods.Finally, in chapter 5 we use the Chernoff method combined with the hybrid-dual finiteelement method with P0 and the lowest order Raviart-Thomas elements to solve thenon-linear heat conduction problem in a realistic composite media with a phase change material. Numerical simulations are realised using 2D-cuts of X-ray images of two real graphite matrix foams infiltrated with a salt. The aim of these simulations is to determine if the studied composite materials could be assimilated to an equivalent homogeneous phase change material with equivalent thermo-physical properties. For all simulationsconducted in this work we used the free finite element software FreeFem++ [41].
14

Effets de la viscosité et de la capillarité sur les vibrations linéaires d'une structure élastique contenant un liquide incompressible. / Effects of viscosity and capillarity on the linear vibrations of an elastic structure containing an incompressible liquid

Miras, Thomas 03 July 2013 (has links)
Ce travail de recherche traite du couplage entre un liquide incompressible, irrotationnel et son contenant : une structure élastique. Cette interaction fluide-structure est traitée dans le cadre des petites déformations autour d'un état d'équilibre.Dans un premier temps, on présente une méthode d'introduction des sources dissipatives visqueuses dans le liquide à partir des équations du système couplé conservatif en s'appuyant sur une approche de type fluide potentiel généralement utilisée pour traiter les problèmes de couplage fluide-structure linéarisés non amortis. Un modèle d'amortissement diagonal est alors choisi pour le liquide et les effets dissipatifs de celui-ci sont pris en compte en calculant les coefficients d'amortissement modaux. Seuls les effets dissipatifs liées à la viscosité du liquide sont alors pris en compte. Le système couplé dissipatif obtenu possède une matrice d'amortissement non symétrique. Une résolution de ce système à amortissement non classique est alors présentée et les expressions des réponses fréquentielle et temporelle linéarisées sont données pour différents types d'excitations.Dans un deuxième temps, le liquide est supposé non visqueux et les forces de tension surfacique sont prises en compte. Cette configuration concerne principalement les satellites où le système couplé est en situation de microgravité. Une formulation du problème conservatif permettant de prendre en compte l'incompressibilité du fluide, la condition de continuité à l'interface fluide structure, les effets de capillarité du fluide ainsi que les effets éventuels de précontraintes statiques est alors établie. On se propose pour cela d'utiliser une méthode énergétique via le Principe de Moindre Action. La démarche est alors décomposée en deux étapes : une étude statique afin de déterminer la position de référence, puis une étude dynamique linéarisée autour de cette position d'équilibre. Cette formulation forme notamment une base pour l'introduction des sources dissipatives liées aux effets de capillarité via la méthode précédemment introduite. / This study deals with the coupling between an incompressible, irrotational fluid and an elastic container in the context of small amplitude vibrations.Firstly, we present a method to introduce the viscous dissipative sources in the liquid directly from the equations of the conservative coupled problem using a fluid potential approach generally used to treat linear undamped problems. A diagonal damping model is chosen for the liquid and its dissipative effects are taken into account through modal damping coefficients. Only the viscous effects are considered here. The coupled system obtained has a non symmetric damping matrix. This system with non classical damping is solved and expressions of the frequency and linearized time responses are given for different load examples.Secondly, the liquid is supposed to be inviscid and surface tension forces are considered. This configuration is related to satellite applications where the coupled system is in microgravity conditions. A unified formulation of the conservative problem taking into account the fluid incompressibility, the contact condition at the fluid structure interface, capillarity and prestress effects is given. Thus, we propose to use an energy method via the Least Action Principle. The reasoning is then divided into two parts: a static study to determine the reference state and a linearized dynamic study around this equilibrium state. This formulation is a good framework to introduce the dissipative sources associated with the capillary effects by using the method previously introduced.
15

Ανάλυση οριακής κατάστασης και σεισμικής επάρκειας λίθινων αψίδων / Limit state analysis and earthquake resistance of masonry arches

Αλεξάκης, Χαράλαμπος 09 July 2013 (has links)
Η παρούσα διατριβή επανεξετάζει την οριακή ανάλυση ευστάθειας των λίθινων αψίδων. Η οριακή ανάλυση ευστάθειας χρησιμοποιείται σήμερα ως το βασικό εργαλείο αποτίμησης της ευστάθειας τόξων και θολωτών κατασκευών από τοιχοποιία, όπως ακριβώς συνέβαινε και τους τελευταίους τέσσερις αιώνες. Παρά την τόσο μακρόχρονη ιστορία της μεθόδου, δεν έχουν πλήρως διασαφηνιστεί στην επιστημονική κοινότητα θεμελιώδης έννοιες και δεν έχουν σαφώς απαντηθεί ερωτήματα όπως: Ποιες είναι οι φυσικά πραγματοποιήσιμες γραμμές ώθησης και ποιες όχι; Ποια είναι η επίδραση της στερεοτομίας ενός τόξου στην οριακή του ευστάθεια; Ποιος είναι ο ρόλος της αλυσοειδούς καμπύλης και κατά πόσο αυτή είναι μία φυσικά αποδεκτή γραμμή ώθησης; Τι σχέση υπάρχει ανάμεσα στην κλίση της συνισταμένης θλιπτικής δύναμης και στην κλίση της γραμμής ώθησης στο σημείο εφαρμογής της; Η παρούσα διατριβή αναζητά απαντήσεις στα ερωτήματα αυτά, και έχει ως στόχο τη βαθύτερη κατανόηση της οριακής ανάλυσης ευστάθειας των τόξων, με παράλληλη ανάδειξη νέων υπολογιστικών διαδικασιών. Η δομή της παρουσιάζεται συνοπτικά παρακάτω. Στο πρώτο κεφάλαιο γίνεται ιστορική ανάλυση της μεθόδου μέσα από παρουσίαση και σχολιασμό των εργασιών με τη σημαντικότερη συμβολή, από τα μέσα του 17ου αιώνα μέχρι σήμερα. Στο δεύτερο κεφάλαιο επανεξετάζεται ένα από τα πιο κλασικά προβλήματα της μηχανικής: ποιο είναι το ελάχιστο επιτρεπτό πάχος ενός ημικυκλικού τόξου υπό τη δράση του ιδίου βάρους του για να είναι ευσταθές. Παράλληλα απαντώνται τα ερωτήματα που τέθηκαν παραπάνω αναπτύσσοντας νέες κλειστές μαθηματικές εκφράσεις των γραμμών ώθησης μέσω γεωμετρικής προσέγγισης, αλλά και μέσω του λογισμού των μεταβολών. Στο τρίτο κεφάλαιο χρησιμοποιείται παρόμοια διαδικασία για την ανάλυση της γενικής περίπτωσης των ελλειπτικών τόξων, οποιουδήποτε γεωμετρικού λόγου ύψος προς βάση, καθώς δεν είναι διαθέσιμα αναλυτικά αποτελέσματα στη διεθνή βιβλιογραφία, όπως συμβαίνει για τα κυκλικά τόξα. Στο τέταρτο κεφάλαιο εξετάζεται η οριακή ευστάθεια κυκλικών τόξων οποιασδήποτε γωνίας εναγκαλισμού, υπό την ταυτόχρονη δράση του ιδίου βάρους τους και σταθερής οριζόντιας εδαφικής επιτάχυνσης, ενώ υπολογίζεται με ακρίβεια η μορφή που θα έχει ο επικείμενος μηχανισμός κατάρρευσης μαζί με το οριακό πάχος, συναρτήσει της σεισμικής φόρτισης. Τα αποτελέσματα της μαθηματικής ανάλυσης (Κεφ. 2-4) επιβεβαιώνουν την ακρίβεια του λογισμικού που αναπτύχθηκε για τις ανάγκες της διατριβής, καθώς και τα αποτελέσματα που προκύπτουν από εμπορικό λογισμικό της μεθόδου των διακριτών στοιχείων. Στο πέμπτο κεφάλαιο γίνεται εφαρμογή και σύγκριση των πιο αντιπροσωπευτικών υπολογιστικών μεθόδων που απαντώνται σήμερα στη βιβλιογραφία για την αποτίμηση της ευστάθειας και φέρουσας ικανότητας της υπόγειας Θολωτής Διόδου του Σταδίου της Αρχαίας Νεμέας, ενώ η οριακή ανάλυση ευστάθειας αναδεικνύεται ως ένα μοναδικό εργαλείο για την κατανόηση της αλληλεπίδρασης της κατασκευής με το περιβάλλον έδαφος. Επιπλέων των συμπερασμάτων στο τέλος κάθε κεφαλαίου (Κεφ. 2 έως 5), στο έκτο κεφάλαιο παρουσιάζονται τα πιο σημαντικά συμπεράσματα και η συνεισφορά της παρούσας διατριβής. / This doctoral thesis revisits the limit equilibrium analysis of masonry arches. Limit equilibrium analysis is used today as the main analysis method for the assessment of the stability of masonry arches and vaulted structures, and is the outcome of important contributions that happened during the last four centuries. Although this method has a long history and a rich literature, there are still fundamental concepts that have not been thoroughly clarified, such as: What are the physically admissible thrust lines of an arch? How the stereotomy of an arch affects its limit stability? What is the role of the catenary curve (the alysoid)? Is the catenary curve a physically admissible thrust line? What is the relation between the direction of the thrust force and the slope of the thrust line at the point of application of the force? This thesis investigates these questions and aims to a better understanding of the limit equilibrium analysis of masonry arches, and at the same time, to present innovative methodologies and new analysis tools. Chapter 1 presents the work of other authors that have contributed the most to the stability analysis of masonry arches and vaulted structures over the last centuries. Chapter 2 revisits one of the most classical problems of Mechanics—what is the minimum thickness of a semicircular masonry arch subjected to its own weight. At the same time, the analysis presented in this chapter answers to the aforementioned questions through the development of closed-form expressions of the thrust line and the application of calculus of variation. Chapter 3 is focused on the limit equilibrium state of elliptical masonry arches, using the same approaches that were used in Chapter 2. This analysis was motivated from the fact that numerical results have been available in literature only for circular and not for elliptical masonry arches. Chapter 4 computes the location of the imminent hinges and the minimum thickness of circular masonry arches, for every given embrace angle, which can just sustain their own weight, together with a given level of horizontal ground acceleration. The numerical results presented in Chapters 2 to 4 confirm the accuracy of the in-house software that was developed for the needs of this thesis and the results obtained with a representative, commercially available software of the distinct element method. Chapter 5 present a comprehensive structural analysis of the Tunnel-Entrance to the Stadium of Ancient Nemea which ranges from the thrust line limit analysis and the discrete element method, to a 3-dimensional finite-element analysis. Limit equilibrium analysis emerges as a unique analysis method for the assessment of the stability of the structure and its interaction with the surrounding soil. While at the end of every chapter (Chapters 2 to 5) are presented detailed comments and conclusions, Chapter 6 is focused on outlining the most important conclusions and the main contribution of this thesis.

Page generated in 0.0144 seconds