• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 590
  • 64
  • Tagged with
  • 655
  • 655
  • 651
  • 52
  • 49
  • 46
  • 42
  • 42
  • 40
  • 38
  • 36
  • 36
  • 34
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Studies of Two Aerodynamic Effects on High-Speed Trains : Crosswind Stability and Discomforting Car Body Vibrations Inside Tunnels

Diedrichs, Ben January 2006 (has links)
No description available.
312

On Simulation of Uniform Wear and Profile Evolution in the Wheel - Rail Contact

Enblom, Roger January 2006 (has links)
<p>Numerical procedures for reliable wheel and rail wear prediction are rare. Recent development of simulation techniques and computer power together with tribological knowledge do however suggest computer aided wear prediction as possible. The present objective is to devise a numerical procedure able to simulate profile evolution due to uniform wear sufficiently accurate for application to vehicle dynamics simulation. Such a tool should be useful for maintenance planning, optimisation of the railway system and its components as well as trouble-shooting. More specifically, the field of application may include estimation of reprofiling frequency, optimisation of wheel – rail profile match, optimisation of running gear suspension parameters, and recognition of unfavourable profile evolution influencing the dynamic response of the vehicle.</p><p>The research contribution accounted for in this thesis includes, besides a literature review, modelling of the wheel – rail interface, benchmarking against traditional methods, and validation with respect to full-scale measurements.</p><p>The first part addresses wheel – rail contact conditions in the context of wear simulation as well as tribological environment and tractive forces. The current approach includes Archard’s wear model with associated wear maps, vehicle dynamics simulation, and railway network definition. One objective is to be able to include variations in operation conditions in the set of simulations instead of using scaling factors. In particular the influence of disc braking and varying lubrication conditions have been investigated. Both environmental factors like moist and contamination and deliberate lubrication need to be considered. As part of the associated contact analysis the influence of tangential elastic deformation of the contacting surfaces has been investigated and found to be essential in case of partial slip contact conditions. The influence on the calculated wear of replacing the Hertzian contact by a non-elliptic semi-Hertzian method has been investigated, showing relocation of material loss towards increased profile curvature.</p><p>In the second part comparisons have been carried out with traditional methods, where the material loss is assumed to be directly related to the energy dissipated in the contact. Attention has been paid to the understanding of the principle differences between the investigated methods, comparing the distribution of friction energy, sliding velocity, and wear depth. As a prerequisite, contact conditions with dependence on wheelset guidance and curving performance as well as influence of tractive forces have been investigated.</p><p>In the final part validation of the developments related to wheel wear simulation is addressed. Disc braking has been included and a wear map for moist contact conditions based on recent tests has been drafted. Good agreement with measurements from the reference operation, is achieved. Further a procedure for simulation of rail wear and corresponding profile evolution has been formulated. A simulation set is selected defining the vehicles running on the track to be investigated, their operating conditions, and contact parameters. Trial calculations of a few curves show qualitatively good results in terms of profile shape development and difference in wear mechanisms between gauge corner and rail head. The wear rates related to traffic tonnage are however overestimated. The impact of the model improvements accounted for in the first part of the thesis has been investigated, indicating directions for further development.</p>
313

Low-cost control of discontinuous systems including impacts and friction

Svahn, Fredrik January 2007 (has links)
<p>For a successful design of an engineering system it is essential to pay careful attention to its dynamic response. This is particularly true, in the case of nonlinear systems, since they can exhibit very complex dynamic behaviour, including multiple co-existing stable solutions and chaotic motions, characterized by large sensitivity to initial conditions. In some systems nonlinear characteristics are desired and designed for, but in other cases they are unwanted and can cause fatigue and failure. A type of dynamical system which is highly nonlinear is discontinuous or non-smooth systems. In this work, systems with impacts are primarily investigated, and this is a typical example of a discontinuous system. To enhance or optimize the performance of dynamical systems, some kind of control can be implemented. This thesis concerns implementation of low-cost control strategies for discontinuous systems. Low-cost control means that a minimum amount of energy is used when performing the control actions, which is a desirable situation regardless of the application. The disadvantage of such a method is that the performance might be limited as compared with a control strategy with no restrictions on energy consumption. In this work, the control objective is to enforce a continuous or discontinuous grazing bifurcation of the system, whichever is desirable. In Paper A, the dynamic response and bifurcation behaviour of an impactoscillator with dry friction is investigated. For a one-degree-of-freedom model of the system, analytical solutions are found in separate regions of state space. These are then used to perform a perturbation analysis around a grazing trajectory. Through the analysis, a condition on the parameters of the system is derived, which assures a continuous grazing bifurcation. It is also shown that the result has bearing on the dynamic response of a two-degree-of-freedom model of the system. A low-cost active control strategy for a class of impact oscillators is proposed in Paper B. The idea of the control method is to introduce small adjustments in the position of the impact surface, at discrete moments in time, to assure a continuous bifurcation. A proof is given for what control parameters assures the stabilization. In Paper C, the proposed low-cost control method is implemented in a quarter-car model of a vehicle suspension, in order to minimize impact velocities with the bumpstop in case of high amplitude excitation. It is shown that the control method is effective for harmonic road excitation.</p>
314

Development of an On-line Ride Comfort Evaluation Tool

Sala De Rafael, Jose Manuel January 2008 (has links)
<p>To produce competitive vehicles, their comfort is one important issue to take into account during the development process. The aim of this Master Thesis is to develop an on-line comfort evaluation tool in order to improve research and education in the field of vehicle comfort at the division of Vehicle Dynamics at the Royal Institute of Technology.</p><p>Based on ISO standards concerning comfort an on-line evaluation tool has been developed using DASYLab, which is a software that allows creation of acquisition, control, simulation and analysis tasks.</p><p>The developed tool has been evaluated by performing measurements of a VOLVO V40 equipped with sensors. Different sorts of surfaces and driving conditions have been investigated, and from this investigation one can conclude that the comfort tool works properly.</p>
315

Flow- and concentration variation between the cylinders of a diesel engine

Näsström, David January 2007 (has links)
<p>The demands on tomorrows diesel engines regarding fuel consumption and emission levels keep getting more difficult to fulfill. Due to this fact, the control demand is getting bigger and bigger. To be able to comply with the Euro 6 standards, it is believed that engine control need to be conducted individually from cylinder to cylinder if the need for after-treatment systems should be minimized.</p><p>Scania’s approach to handle emission levels so far has been to use exhaust gas recirculation (EGR). To be able to optimize the use of EGR it is necessary to know how the inert gases, water and carbon dioxide, are distributed between the cylinders. The distribution variation become even more difficult to predict since the EGR is cooled, sometimes leading to condensation of some of the water content. The condensation of water and its behavior in the inlet manifold is studied in this thesis.</p><p>Different ways of measuring non-uniformity in the gas composition between cylinders with respect to EGR in general and water content in particular are evaluated. Using these results, measurements have been conducted on an engine and conclusions are drawn from them.</p><p>The conclusions are that uneven distribution of above all liquid water, due to puddle formation, have an impact on emission formation that should be accounted for in some of the examined operating conditions.</p>
316

Modelling and Validation of a Truck Cooling System

Nordlander, Erik January 2008 (has links)
<p>In the future, new challenges will occur during the product development in the vehicular industry when emission legislations getting tighter. This will also affect the truck cooling system and therefore increase needs for analysing the system at different levels of the product development. Volvo 3P wishes for these reasons to examine the possibility to use AMESim as a future 1D analysis tool. This tool can be used as a complement to existing analysis methods at Volvo 3P. It should be possible to simulate pressure, flow and heat transfer both steady state and transient.</p><p>In this thesis work a cooling system of a FH31 MD13 520hp truck with an engine driven coolant pump is studied. Further a model of the cooling system is built in AMESim together with necessary auxiliary system such as oil circuits. The model is validated using experimental data that have been produced by Volvo 3P at the Gothenburg facility.</p><p>The results from validation and other simulations show that the model gives a good picture of the cooling system. It also gives information about pressure, flow and heat transfer in steady state conditions. Further a design modification is done, showing how a change affects the flow in the cooling system.</p><p>The conclusion is that a truck cooling system can be built and simulated in AMESim. Further, it shows that AMESim meets the requirements Volvo 3P in Gothenburg has set up for the future 1D analysis tool and thereby AMESim is a good complement to the already existing analysis method.</p>
317

VTOL UAV - A Concept Study

Moëll, Daniel, Nordin, Joachim January 2008 (has links)
<p>This thesis deals with the development of a Conceptual Design Tool for unmanned helicopters, so called VTOL UAVs. The goal of the Design Tool is:</p><p>• Quick results</p><p>• Good accuracy</p><p>• Easy to use</p><p>The two first points of the goal are actually more or less dependent on each other. In almost all cases a high accuracy gives a slow calculator and vice versa. In order to fulfill the goal a compromise between calculation accuracy and calculation time needs to be done.</p><p>To make the Design Tool an easy to use program a graphical user interface is used. The graphical user interface allows the user to systematically work his way thru the program from a fictive mission to a complete design of a helicopter. The pre-requirements on the user have been eliminated to a minimum, but for the advanced user the possibilities to create more specific and complex helicopters are good.</p><p>In order to develop a Conceptual Design Tool the entire helicopter needs to be seen as a complete system. To see the helicopter as a system all of the sub parts of a helicopter need to be studied. The sub parts will be compared against each other and some will be higher prioritized than other.</p><p>The outline of this thesis is that it is possible to make a user friendly Conceptual Design Tool for VTOL UAVs. The design procedure in the Design Tool is relatively simple and the time from start to a complete concept is relatively short. It will also be shown that the calculation results have a good agreement with real world flight test data.</p>
318

Flow- and concentration variation between the cylinders of a diesel engine

Näsström, David January 2007 (has links)
The demands on tomorrows diesel engines regarding fuel consumption and emission levels keep getting more difficult to fulfill. Due to this fact, the control demand is getting bigger and bigger. To be able to comply with the Euro 6 standards, it is believed that engine control need to be conducted individually from cylinder to cylinder if the need for after-treatment systems should be minimized. Scania’s approach to handle emission levels so far has been to use exhaust gas recirculation (EGR). To be able to optimize the use of EGR it is necessary to know how the inert gases, water and carbon dioxide, are distributed between the cylinders. The distribution variation become even more difficult to predict since the EGR is cooled, sometimes leading to condensation of some of the water content. The condensation of water and its behavior in the inlet manifold is studied in this thesis. Different ways of measuring non-uniformity in the gas composition between cylinders with respect to EGR in general and water content in particular are evaluated. Using these results, measurements have been conducted on an engine and conclusions are drawn from them. The conclusions are that uneven distribution of above all liquid water, due to puddle formation, have an impact on emission formation that should be accounted for in some of the examined operating conditions.
319

Modelling and Validation of a Truck Cooling System

Nordlander, Erik January 2008 (has links)
In the future, new challenges will occur during the product development in the vehicular industry when emission legislations getting tighter. This will also affect the truck cooling system and therefore increase needs for analysing the system at different levels of the product development. Volvo 3P wishes for these reasons to examine the possibility to use AMESim as a future 1D analysis tool. This tool can be used as a complement to existing analysis methods at Volvo 3P. It should be possible to simulate pressure, flow and heat transfer both steady state and transient. In this thesis work a cooling system of a FH31 MD13 520hp truck with an engine driven coolant pump is studied. Further a model of the cooling system is built in AMESim together with necessary auxiliary system such as oil circuits. The model is validated using experimental data that have been produced by Volvo 3P at the Gothenburg facility. The results from validation and other simulations show that the model gives a good picture of the cooling system. It also gives information about pressure, flow and heat transfer in steady state conditions. Further a design modification is done, showing how a change affects the flow in the cooling system. The conclusion is that a truck cooling system can be built and simulated in AMESim. Further, it shows that AMESim meets the requirements Volvo 3P in Gothenburg has set up for the future 1D analysis tool and thereby AMESim is a good complement to the already existing analysis method.
320

On Simulation of Uniform Wear and Profile Evolution in the Wheel - Rail Contact

Enblom, Roger January 2006 (has links)
Numerical procedures for reliable wheel and rail wear prediction are rare. Recent development of simulation techniques and computer power together with tribological knowledge do however suggest computer aided wear prediction as possible. The present objective is to devise a numerical procedure able to simulate profile evolution due to uniform wear sufficiently accurate for application to vehicle dynamics simulation. Such a tool should be useful for maintenance planning, optimisation of the railway system and its components as well as trouble-shooting. More specifically, the field of application may include estimation of reprofiling frequency, optimisation of wheel – rail profile match, optimisation of running gear suspension parameters, and recognition of unfavourable profile evolution influencing the dynamic response of the vehicle. The research contribution accounted for in this thesis includes, besides a literature review, modelling of the wheel – rail interface, benchmarking against traditional methods, and validation with respect to full-scale measurements. The first part addresses wheel – rail contact conditions in the context of wear simulation as well as tribological environment and tractive forces. The current approach includes Archard’s wear model with associated wear maps, vehicle dynamics simulation, and railway network definition. One objective is to be able to include variations in operation conditions in the set of simulations instead of using scaling factors. In particular the influence of disc braking and varying lubrication conditions have been investigated. Both environmental factors like moist and contamination and deliberate lubrication need to be considered. As part of the associated contact analysis the influence of tangential elastic deformation of the contacting surfaces has been investigated and found to be essential in case of partial slip contact conditions. The influence on the calculated wear of replacing the Hertzian contact by a non-elliptic semi-Hertzian method has been investigated, showing relocation of material loss towards increased profile curvature. In the second part comparisons have been carried out with traditional methods, where the material loss is assumed to be directly related to the energy dissipated in the contact. Attention has been paid to the understanding of the principle differences between the investigated methods, comparing the distribution of friction energy, sliding velocity, and wear depth. As a prerequisite, contact conditions with dependence on wheelset guidance and curving performance as well as influence of tractive forces have been investigated. In the final part validation of the developments related to wheel wear simulation is addressed. Disc braking has been included and a wear map for moist contact conditions based on recent tests has been drafted. Good agreement with measurements from the reference operation, is achieved. Further a procedure for simulation of rail wear and corresponding profile evolution has been formulated. A simulation set is selected defining the vehicles running on the track to be investigated, their operating conditions, and contact parameters. Trial calculations of a few curves show qualitatively good results in terms of profile shape development and difference in wear mechanisms between gauge corner and rail head. The wear rates related to traffic tonnage are however overestimated. The impact of the model improvements accounted for in the first part of the thesis has been investigated, indicating directions for further development. / QC 20110124

Page generated in 0.0743 seconds