Spelling suggestions: "subject:"ehicle engineering"" "subject:"ehicle ingineering""
331 |
Optimal Control of Heat Transfer Rates in TurbochargersJohansson, Max January 2018 (has links)
The turbocharger is an important component of competitive environmentally friendly vehicles. Mathematical models are needed for controlling turbochargers in modern vehicles. The models are parameterized using data, gathered from turbocharger testing ingas stands (a flow bench for turbocharger, where the engine is replaced with a combustion chamber, so that the exhaust gases going to the turbocharger can be controlled with high accuracy). Collecting the necessary time averaged data is a time-consuming process. It can take more than 24 hours per turbocharger. To achieve a sufficient level of accuracy in the measurements, it is required to let the turbocharger system reach steady state after a change of operating point. The turbocharger material temperatures are especially slow to reach steady state. A hypothesis is that modern methods in control theory, such as numeric optimal control, can drastically reduce the wait time when changing operating point. The purpose of this thesis is to provide a method of time optimal testing of turbo chargers. Models for the turbine, bearing house and compressor are parameterized. Well known models for heat transfer is used to describe the heat flows to and from exhaust gas and charge air, and turbocharger material, as well as internal energy flows between the turbocharger components. The models, mechanical and thermodynamic, are joined to form a complete turbocharger model, which is validated against measured step responses. Numeric optimal control is used to calculate optimal trajectories for the turbo charger input signals, so that steady state is reached as quickly as possible, fora given operating point. Direct collocation is a method where the optimal control problem is discretized, and a non-linear program solver is used. The results show that the wait time between operating points can be reduced by a factor of 23. When optimal trajectories between operating points can be found, the possibility of further gains, if finding an optimal sequence of trajectories, are investigated. The problem is equivalent to the open traveling salesman, a well studied problem, where no optimal solution can be guaranteed. A near optimal solution is found using a genetic algorithm. The developed method requires a turbocharger model to calculate input trajectories. The testing is done to acquire data, so that a model can be created, which is a catch-22 situation. It can be avoided by using system identification techniques. When the gas stand is warming up, the necessary model parameters are estimated, using no prior knowledge of the turbocharger.
|
332 |
Future fuel for worldwide tankershipping in spot marketLock, Lillie Marlén January 2013 (has links)
Ship exhausts contain high levels of sulphur oxides, nitrogen oxides, carbon dioxide and particles dueto the heavy fuel oil, HFO, used for combustion and the combustion characteristics of the engine.As a result of upcoming stricter regulations for shipping pollution, as well as growing attentionto greenhouse gas emissions, air pollution and uncertainty of future petroleum oil supply, a shifttowards a cleaner burning fuel is needed.This work explores potential alternative fuels, both conventional and unconventional, and abatementtechnologies, to be used by tankers in the worldwide spot market to comply with upcomingenvironmental regulations in the near and coming future. As a reference the product tanker M/TGotland Marieann is used and recommendations for which fuel that shall be used by the referenceship in 2015 and 2020 are presented.The environmental assessment and evaluation of the fuels are done from a life cycle perspective usingresults from Life Cycle Assessment, LCA, studies.This study illustrates that, of the various alternatives, methanol appears to be the best candidatefor long-term, widespread replacement of petroleum-based fuels within tanker shipping. It does notemit any sulphur oxides nor particles and the nitrogen oxides are shown to be lower than those ofmarine gas oil, MGO. The global warming potential of the natural gas produced methanol is notlower than that of MGO, but when gradually switching to bio-methanol the greenhouse gas emissionsare decreasing and with methanol the vision of a carbon free society can be reached.For 2015 a switch towards methanol is not seen as realistic. Further research and establishment ofregulations and distribution systems are needed, however there are indications that a shift will bepossible sometime between 2015 and 2020. For 2015 a shift towards MGO is suggested as it involveslow investment costs and there is no need for infrastructure changes. As MGO is more expensivethan methanol, a shift is preferable as soon as the market, technology and infrastructure are ready.
|
333 |
Analysis of Lithium-Ion Battery Data Collected On-Board Electric VehiclesPeng, Lin January 2013 (has links)
In order to replace diesel energy in the transportation sector as well as to reduce the emission of green house gases (GHGs) and avoid air pollution for a sustainable future, electrification of vehicles is one of the most popular topics today. Plug-in hybrid electric vehicle (PHEV) technology is a promising technology for electrification of automobiles. It uses both internal combustion engine and electric motor for propulsion. The battery pack that propels the electric machine can be recharged from grid electricity and from kinetic energy converted from regenerative braking. In this thesis, field test data from a Volvo V70 prototype in a 2010 study by Volvo and Vattenfall (ETC, Volvo, Vattenfall, 2010) was analyzed with Matlab to give a better understanding of the usage of PHEVs and the performance of lithium-ion battery. Several conclusions were obtained in this thesis from the analyzed data. It was found that average and maximum driving speed in Diesel Mode is faster than that in Electric Mode. Different drivers had different preference of driving speed. Driving distance vary in different months; longer distance was running under Diesel Mode; A considerable number of 370 kg carbon dioxide emission was saved by using electric energy instead of diesel energy for the studied car during one year. Battery performance in cold temperature conditions needs to be considered and the vehicle was switched to Diesel Mode from Electric Mode when SOC falls below 30%.
|
334 |
Method Development for Computer Aided Engineering for Aircraft Conceptual DesignBérard, Adrien January 2008 (has links)
This thesis presents the work done to implement new computational tools and methods dedicated to aircraft conceptual design sizing and optimization. These tools have been exercised on different aircraft concepts in order to validate them and assess their relevance and applicability to practical cases. First, a geometry construction protocol has been developed. It is indeed essential to have a geometry description that supports the derivation of all discretizations and idealizations used by the different analysis modules (aerodynamics, weights and balance, stability and control, etc.) for which an aircraft concept is evaluated. The geometry should also be intuitive to the user, general enough to describe a wide array of morphologies and suitable for optimization. All these conditions are fulfilled by an appropriate parameterization of the geometry. In addition, a tool named CADac (Computer Aided Design aircraft) has been created in order to produce automatically a closed and consistent CAD solid model of the designs under study. The produced CAD model is easily meshable and therefore high-fidelity Computational Fluid Dynamics (CFD) computations can be performed effortlessly without need for tedious and time-consuming post-CAD geometry repair.Second, an unsteady vortex-lattice method based on TORNADO has been implemented in order to enlarge to scope of flight conditions that can be analyzed. It has been validated satisfactorily for the sudden acceleration of a flat plate as well as for the static and dynamic derivatives of the Saab 105/SK 60.Finally, a methodology has been developed to compute quickly in a semi-empirical way the buffet envelope of new aircraft geometries at the conceptual stage. The parameters that demonstrate functional sensitivity to buffet onset have been identified and their relative effect quantified. The method uses a combination of simple sweep theory and fractional change theory as well as the buffet onset of a seed aircraft or a provided generic buffet onset to estimate the buffet envelope of any target geometry. The method proves to be flexible and robust enough to predict within mainly 5% (and in any case 9%) the buffet onset for a wide variety of aircrafts, from regional turboprop to long-haul wide body or high-speed business jets.This work was done within the 6th European framework project SimSAC (Simulating Stability And Control) whose task is to create a multidisciplinary simulation environment named CEASIOM (Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods), oriented toward stability and control and specially suited for aircraft conceptual design sizing and optimization. / QC 20101104 / SimSAC
|
335 |
An Investigation of the Iron-Ore Wheel Damages using Vehicle Dynamics SimulationHossein Nia, Saeed January 2014 (has links)
Maintenance cost is one of the important issues in railway heavy haul operations. For the iron-ore company LKAB, these costs are mainly associated with the reprofiling and changing of the wheels of the locomotives and wagons. The main reason for the wheel damages is usually surface initiated rolling contact fatigue (RCF) on the wheels.The present work tries to enhance and improve the knowledge of the vehicle-track interaction of the Swedish iron-ore freight wagons and locomotives used at Malmbanan. The study is divided into two parts. Firstly, it is tried to get into the roots of RCF using the simulation model of the iron ore wagon (Paper A). Secondly, the study is focused on predicting wear and RCF on the locomotive wheels also via a dynamic simulation model (Paper B).In the first paper, some key issues of the dynamic modelling of the wagons with three piece bogies are first discussed and then parameter studies are carried out to find the most important reasons of wheel damages. These parameter studies include track design geometry, track irregularities, wheel-rail friction level, cant deficiency and track stiffness. The results show a significant effect of the friction level on the amount of RCF risk.As the locomotive wheel life is much shorter than that of the wagons, LKAB has decided to change the locomotive wheel profile. Two final wheel profiles are proposed; however, one had to be approved for the field tests. In the second paper, the long term evolution of the two profiles is compared via wear simulation analysis. Also, the RCF evolution on the wheel profiles as a function of running distance is discussed. The process is first carried out for the current locomotive wheel profiles and the results are compared with the measurements. Good agreement is achieved. Finally, one of the proposed profiles is suggested for the field test because of the mild wear and RCF propagation. / <p>QC 20150210</p>
|
336 |
Numerical study on multi-pantograph railway operation at high speedLiu, Zhendong January 2015 (has links)
Multi-pantograph operation allows several short electric multiple unit (EMU) trainsets to be coupled or decoupled to adapt to daily or seasonal passenger-flow variation. Although this is a convenient and efficient way to operate rolling stock and use railway infrastructure, pantographs significantly influence each other and even significantly change the dynamic behaviour of the system compared to single-pantograph operation in the same condition. The multi-pantograph system is more sensitive and vulnerable than the single-pantograph system, especially at high operational speeds or with pantographs spaced at short distances. Heavy oscillation in the system can result in low quality of current collection, electromagnetic interference, severe wear on the contact surfaces or even structural damage. The mechanical interaction between the pantograph and the catenary is one of the key issues which limits the maximum operational speed and decides the maintenance cost. Many researchers have paid a lot of attention to the single-pantograph operation and have made great progress on system modelling, optimizing, parameter studies and active control. However, how the pantographs in a train configuration affect each other in multi-pantograph operation and which factors limit the number of pantographs is not fully investigated. Nowadays, to avoid risking operational safety, there are strict regulations to limit the maximum operational speed, the maximum number of pantographs in use, and the minimum spacing distance between pantographs. With the trend of high-speed railways, there are huge demands on increasing operational speed and shortening spacing distance between pantographs. Furthermore, it is desirable to explore more practical and budget-saving methods to achieve higher speed on existing lines without significant technical modification. In addition to a literature survey of the dynamics of pantograph-catenary systems, this thesis carries out a numerical study on multi-pantograph operation based on a three-dimensional pantograph-catenary finite element (FE) model. In this study, the relationship between dynamic performance and other parameters, i.e. the number of pantographs in use, running speed and the position of the pantographs, are investigated. The results show that the spacing distance between pantographs is the most critical factor and the trailing pantograph does not always suffer from deterioration of the dynamic performance. By discussing the two-pantograph operation at short spacing distances, it is found that a properly excited catenary caused by the leading pantograph and the wave interference between pantographs can contribute to an improvement on the trailing pantograph performance. To avoid the additional wear caused by poor dynamic performance on the leading pantograph and achieve further improvement at high speeds, it is suggested to use the leading pantograph as an auxiliary pantograph, which does not conduct any electric current and optimize the uplift force on the leading pantograph. After a brief discussion on some system parameter deviations, it is shown that a 30% of speed increase should be possible to achieve while still sustaining a good dynamic performance without large modifications on the existing catenary system. / <p>QC 20150928</p>
|
337 |
Controlling the Roll Responses of PCTC'sSöder, Carl-Johan January 2013 (has links)
Modern Panamax Pure Car and Truck Carriers (PCTC) have become more vulnerable to critical roll responses as built in margins have been traded against increased transport efficiency. The research presented in this licentiate thesis aims at enhancing the predictability and control of these critical roll responses. The thesis presents the development of a new method for assessing the roll damping, which is a crucial parameter for predicting roll motions. The method involves a unique set up of full scale in-service trials and is straightforward, cost efficient and shows a good potential. The thesis also includes a demonstration of a new application for rudder control to be used for mitigation of parametric roll. This is performed by simulating real incidents that have occurred with PCTC’s in service. Simulations with rudder roll control show promising results and reveal that the approach could be very efficient for mitigation of parametric roll. Last but not least an approach for monitoring of roll induced stresses, so-called racking stresses in PCTC’s, is presented. The approach involves measurement of the ship motions and scaling of pre-calculated structural responses from global finite element analysis. Based on full scale motion and stress measurements from a PCTC in-service the approach is evaluated and demonstrated to be an efficient alternative to conventional methods. / <p>QC 20130424</p>
|
338 |
Faults and their influence on the dynamic behaviour of electric vehiclesWanner, Daniel January 2013 (has links)
The increase of electronics in road vehicles comes along with a broad variety of possibilitiesin terms of safety, handling and comfort for the users. A rising complexityof the vehicle subsystems and components accompanies this development and has tobe managed by increased electronic control. More potential elements, such as sensors,actuators or software codes, can cause a failure independently or by mutually influencingeach other. There is a need of a structured approach to sort the faults from avehicle dynamics stability perspective.This thesis tries to solve this issue by suggesting a fault classification method and faulttolerantcontrol strategies. Focus is on typical faults of the electric driveline and thecontrol system, however mechanical and hydraulic faults are also considered. Duringthe work, a broad failure mode and effect analysis has been performed and the faultshave been modeled and grouped based on the effect on the vehicle dynamic behaviour.A method is proposed and evaluated, where faults are categorized into different levelsof controllability, i. e. levels on how easy or difficult it is to control a fault for the driver,but also for a control system.Further, fault-tolerant control strategies are suggested that can handle a fault with acritical controllability level. Two strategies are proposed and evaluated based on thecontrol allocation method and an electric vehicle with typical faults. It is shown thatthe control allocation approaches give less critical trajectory deviation compared to noactive control and a regular Electronic Stability Control algorithm.To conclude, this thesis work contributes with a methodology to analyse and developfault-tolerant solutions for electric vehicles with improved traffic safety. / <p>QC 20131010</p>
|
339 |
Mechanical Properties of Resistance Spot Welds in Lightweight ApplicationsAfshari, Davood January 2013 (has links)
This licentiate thesis is concerned with residual stresses in aluminum alloy 6061-T6 resistance spot welded joint. Several topics related to mechanical strength of welded structures are treated such as; nugget size and microhardness and microstructures of weld zone and their influence on mechanical strength of welded structure, failure load measurement using tensile-shear test, resistance spot welding simulation, residual stress measurement by X-ray diffraction method and analysis effect of welding parameters on the mechanical strength and the residual stresses. To investigate the effect of resistance spot weld parameters on mechanical strength of welded structures, various welding parameters e.g. welding current, welding time and electrode force are selected to produce welded joints with different quality. According to the failure mode, the empirical equation was used to prediction of failure load base on nugget size and hardness of failure line. Microstructure study has been carried out to investigate microstructural changes in the welded joints. Microhardness tests are done to find hardness profiles due to microstructural changes and determine the minimum hardness. In addition, an electro-thermal-structural coupled finite element model and X-ray diffraction residual stress measurement have been utilized to analyze residual stresses distribution in weld zone. The electrical and thermal contact conductance, as mandatory factors are applied in contact area between electrode-workpiece and workpiece-workpiece to resolve the complexity of the finite element model. The physical and mechanical properties of the material are defined as thermal-dependent in order to improve the accuracy of the model. Furthermore, the electrodes are removed after holding cycle using the birth and death elements method. Moreover, the effect of welding parameters on maximum residual stress is investigated and a regression model is proposed to predict maximum tensile residual stresses in terms of welding parameters. The results obtained from the finite element analysis have been used to build up two back-propagation artificial neural network models for the residual stresses and the nugget size prediction. The results revealed that the neural network models created in this study can accurately predict the nugget size and the residual stresses produced in resistance spot weld. Using a combination of these two developed models, the nugget size and the residual stresses can be predicted in terms of spot weld parameters with high speed and accuracy. / <p>QC 20131014</p> / No
|
340 |
Study of driver models forside wind disturbancesQiu, Jie January 2013 (has links)
As the development of highways, it is quite normal for buses running in a speed around 100km/h. When buses are running in a high speed, they may suffer from the influence of side wind disturbances at anytime. Sometimes, it may result in traffic accidents. Therefore, the study of bus stability under side wind disturbances becomes more and more important. Due to restrictions of real tests, computer simulation can be used to study this subject. The bus side wind response character is reflected through the driver’s manoeuvre , so open-loop analysis is hard to give a comprehensive evaluation of the side wind stability of the bus. Therefore, closed-loop analysis is studied in this thesis. An ADAMS bus model and a side wind force model are developed in this thesis, along with two driver models, the PID control model and the preview curvature model. The driver models are built in Simulink and co-simulation between ADAMS/View and Simulink is conducted. The results of co-simulation show that the two driver models can both control the bus from deviating from the desired course under side wind disturbances. The PID control model is simple and shows a very good control effect. The maximum lateral displacement of the bus by PID control model is just 0.0205m under maximum side wind load 1000N and 2500Nm when preview time is 1.2s, while it is 0.0702m by preview curvature model, however, it is difficult to determine the coefficients Kd, Kp, and Ki in the PID controller. The preview curvature model also shows a good control effect in terms of the maximum lateral displacement and yaw angle of the bus. Comparing these two models, the PID control model is more sensitive to deviations, with quicker response and larger steering input. The bus model system is stable under side wind disturbances. Through driver ’s proper steering manoeuvre, the bus is well controlled. The closed-loop analysis is a good method to study the bus stability under side wind disturbances.
|
Page generated in 0.0993 seconds