• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 1
  • Tagged with
  • 20
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analytische Modellierung des Spannungszustandes mehrteiliger Querpressverbände im Zylinder von LDPE-Höchstdruckverdichtern /

Blok, Achim Arno. January 2006 (has links)
Techn. Hochsch., Diss., 2006--Aachen.
12

Thermo- und fluiddynamische Untersuchungen zur Innenkühlung von Kolbenstangen

Klotsche, Konrad 06 April 2022 (has links)
Die Kolbenstangeninnenkühlung (KSIK) ist eine Kühltechnologie für Kreuzkopfverdichter, die in verschiedenen Experimenten gezeigt hat, dass sie ein beträchtliches Potenzial zur Wärmeabfuhr aus den thermisch beanspruchten Komponenten im Zylinder- und Packungsbereich besitzt. Dass sie in der Praxis noch nicht zum Einsatz kommt, liegt unter anderem daran, dass ihre Wirkungsweise und insbesondere die thermo- und fluiddynamischen Vorgänge des zweiphasigen Kühlfluids im Stangeninneren nicht ausreichend erforscht sind, um die Wärmeabfuhr für verschiedene Verdichter und Förderaufgaben zu quantifizieren. Die vorliegende Arbeit hat daher zum Ziel, einen Teil dieser Wissenslücke für Kreuzkopfverdichter mit vertikaler Ausrichtung der Kolbenstange zu schließen. Um die relevante Wissensbasis zu Kreuzkopfverdichtern zu vermitteln, werden einleitend ihr Aufbau, ihre Funktionsweise und die Thematik ihrer Kühlung behandelt. Dabei wird unter anderem gezeigt, wie sich die Wärmeabfuhr auf die Energieeffizienz und die auftretenden Maximaltemperaturen auswirkt und welche Wärmemengen durch Reibung an den Dichtungselementen entstehen. Anhand einer exemplarischen Betrachtung von Verdichtern unterschiedlicher Druckniveaus und Förderströme wird deutlich, dass die KSIK vor allem bei niedrigen Drücken und für die Abfuhr der Reibleistungen effektiv eingesetzt werden kann. Die Größe bzw. Leistungsklasse erweist sich dabei nicht als limitierender Faktor. Anschließend erfolgt die Darstellung konventioneller Kühlverfahren sowie die ausführliche Vorstellung der KSIK mit den Themenschwerpunkten: Funktionsweise, Einflussgrößen, Stand der Technik und Einsatzgrenzen. Um die Wärmeabfuhr zu quantifizieren, die mit einer innengekühlten Kolbenstange eines stehenden Kreuzkopfverdichters erreicht wird, werden Messungen an einem Versuchsstand mit einer vertikal-oszillierenden Hohlstange vorgestellt. Insbesondere die Wahl des Kühlfluids sowie der eingefüllte Flüssigvolumenanteil beeinflussen den Wärmetransport, sind aber für den Fall der KSIK bislang nicht untersucht worden. Daher erfolgt zunächst eine Vorauswahl der vier bestgeeigneten Fluide anhand ihrer thermodynamischen Eignung für das Einsatzgebiet der Kreuzkopfverdichter. Bei den Messungen zeigt sich Wasser, insbesondere als Reinstoff-Füllung, aber auch als Gemisch mit Luft, als deutlich bestes Kühlfluid. Mit einer Dampf-Wasser-Füllung kann erwartungsgemäß eine bessere Wärmeabfuhr erzielt werden als mit einer Luft-Wasser-Füllung. Hinsichtlich des optimalen Flüssigvolumenanteils zeigte sich in den Messergebnissen mit Dampf-Wasser-Füllung eine optimale Wärmeabfuhr im Bereich zwischen 30 Vol.-%fl und 70 Vol.-%fl. In dieser relativ großen Spanne treten lediglich geringe Unterschiede hinsichtlich des Wärmetransports auf. Für die untersuchte Versuchsstandkonfiguration und im untersuchen Drehzahlbereich (300 min−1 bis 600 min−1) liegen die zugehörigen axialen Wärmestromdichten zwischen ca. 40 W cm−2 und 80 W cm−2 und die Wärmewiderstände zwischen ca. 0,27 K W−1 und 0,37 K W−1. Für eine Luft-Wasser-Füllung stellt sich ein etwas ausgeprägteres Optimum der Wärmeabfuhr bei 25 Vol.-%fl ein, für das sich axiale Wärmestromdichten zwischen ca. 33 W cm−2 und 38 W cm−2 und Wärmewiderstände zwischen ca. 0,7 K W−1 und 1,3 K W−1 ergeben. Da der fluidgebundene Wärmetransport im Innenvolumen der KSIK maßgeblich von der Strömung des zweiphasigen Kühlfluids abhängig ist, schließen sich an die Analyse der Wärmeabfuhr optische Messungen des Strömungsverhaltens einer Dampf-Wasser- sowie einer Luft-Wasser-Füllung mittels Hochgeschwindigkeitskamera an. Hierfür wurde eine optisch zugängliche Hohlstange mit nahezu gleichen Abmessungen, gleicher oszillierender Bewegung, aber ohne Wärmezu- und -abfuhr an den Stangenenden verwendet. Den Aufnahmen der Luft-Wasser-Füllungen ist zu entnehmen, dass sich die Strömung für alle untersuchten Drehzahlen und Flüssigvolumenanteile durch eine gemeinsame Struktur auszeichnet. Hierbei tritt die flüssige Phase stets in zwei hauptsächlichen Erscheinungsformen auf: Zum einen ein Teil am unteren Stangenende, der in der vorliegenden Arbeit als Sumpf bezeichnet wird. Und zum anderen ein zweiter Teil, der durch die oszillierende Stangenbewegung den Sumpf verlässt und sich als Wandfilm im Innenvolumen zunächst nach oben bewegt und nach Erreichen einer maximalen Höhe wieder nach unten zurückfließt. Dieser Teil erhält daher die Bezeichnung Film. Die Bewegung der Luft im Stangeninneren ergibt sich im Wesentlichen durch die Verdrängung der Flüssigkeit. Die Strömung von Sumpf und Film kann auf der Basis vereinfachender geometrischer Annahmen mithilfe von drei zeitabhängigen, charakteristischen Strömungsparametern beschrieben werden: Der Sumpfhöhe, der Filmhöhe sowie der Filmdicke. Diese wurden für verschiedene Füllmengen zwischen 10 Vol.-%fl und 40 Vol.-%fl und im Drehzahlbereich zwischen 300 min−1 und 600 min−1 quantifiziert. Es zeigt sich, dass das Wärmetransportverhalten und die Strömung einer Luft-Wasser-Füllung eng gekoppelt sind und sich die Ergebnisse der optischen Untersuchung bei der Interpretation des thermodynamischen Verhaltens als hilfreich erweisen. Beispielsweise offenbaren sie die Gründe für den optimalen Flüssigvolumenanteil von 25 Vol.-%fl. Darüber hinaus wurde auch die Strömung verschiedener Dampf-Wasser-Füllungen untersucht, die in einigen wesentlichen Aspekten von den Ergebnissen mit Luft-Wasser-Füllung abweicht. Der wichtigste Unterschied zeigt sich in der Möglichkeit des Phasenwechsels zwischen flüssiger und gasförmiger Phase und vice versa, was bei einem Luft-Wasser-Gemisch in keiner Messung festgestellt werden konnte. Neben einer mutmaßlichen Verbesserung der Wärmeübergangskoeffizienten resultiert hieraus auch eine bessere Durchströmung des Innenvolumens sowie eine bessere Durchmischung der gasförmigen und flüssigen Phase, sodass nachvollziehbar wird, warum ein Dampf-Wasser-Gemisch eine bessere Wärmeabfuhr ermöglicht als mit Luft als zusätzlicher Komponente. Um die Berechnung der Strömung von Luft-Wasser-Füllungen in einer vertikal-oszillierenden Hohlstange für beliebige Konfigurationen zu ermöglichen, wurde ein Strömungsmodell entwickelt, mit dem die zeitlich abhängige Verteilung der flüssigen und gasförmigen Phase berechnet werden kann. Dabei sind u. a. die Drehzahl, der Flüssigvolumenanteil sowie der Innendurchmesser und die Länge der Hohlstange frei wählbar. Zur Beschreibung der Verteilung der flüssigen Phase wird die in den optischen Untersuchungen festgestellte Aufteilung in Sumpf- und Filmanteile für das Berechnungsmodell übernommen. Die Grundlage für die Berechnung der Strömung mittels Zeitschrittverfahrens stellt die Bewegungsgleichung für die Flüssigkeit in vertikaler Richtung unter Berücksichtigung verschiedener Beschleunigungsanteile dar, die die Filmbewegung hervorrufen. Die restlichen charakteristischen Strömungsparameter ergeben sich durch die Inkompressibilität der flüssigen Phase und durch die empirische Vorgabe der Filmdicke, sodass dadurch auch die zeitlich abhängige Verteilung des Sumpfs und der gasförmigen Phase ermittelt werden kann. Der Vergleich der Berechnungs- und Messergebnisse für die charakteristischen Strömungsparameter zeigt eine in den meisten Fällen zufriedenstellende Übereinstimmung und bestätigt die Herangehensweise und das Berechnungskonzept des Strömungsmodells.:1 Einleitung 2 Grundlagen der Kreuzkopfverdichter 3 Experimentelle Untersuchungen der Wärmeabfuhr 4 Experimentelle Untersuchungen der Strömung 5 Berechnungsmodell für die Strömung mit Luft-Wasser-Füllung 6 Zusammenfassung A Anhang
13

Modellbildung von Abgasturboladern mit variabler Turbinengeometrie an schnellaufenden Dieselmotoren

Kessel, Jens-Achim. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
14

Numerische und experimentelle Untersuchung zur Dynamik von Lamellenventilen in Hubkolbenverdichtern

Möhl, Carsten 30 December 2019 (has links)
Nach offiziellen Schätzungen sind weltweit derzeit rund drei Milliarden Geräte im Bereich der Kälte- und Klimatechnik im Einsatz. In diesen kommen vornehmlich Hubkolbenverdichter zum Einsatz. Entsprechend bergen die Auswirkungen selbst kleinster, energetischer Verbesserungen in der Summe ein enormes Einsparungspotential. Als essentieller und eng mit dem Gütegrad verknüpfter Bestandteil eines Verdichters nehmen die Ventile eine zentrale Rolle ein. Zu diesen kann dem Stand der Technik bereits eine Vielzahl numerischer und experimenteller Untersuchungen entnommen werden. Eine Literaturrecherche zeigte, dass im Laufe der analysierten 68 Jahre, zwar ein breites Spektrum an Messmethoden angewandt wurde, diese aber fast ausschließlich einen punktuellen Charakter besaßen. Hinsichtlich der im Bereich der Kälte- und Klimatechnik hauptsächlich eingesetzten Lamellenventile, deren Öffnungs- bzw. Schließvorgang keiner linearen Bewegungsfunktion entspricht, können daraus nur eingeschränkte Erkenntnisse gewonnen werden. Der Bedarf an einer experimentellen Validierung existierender Berechnungsmethoden bestand. Aus diesem Grund wird im Rahmen dieser Arbeit erstmals, unter Anwendung des Messverfahrens der Laserlinientriangulation, die Erfassung einer Reihe aufeinanderfolgender Abstandsinformationen durchgeführt. Die eingesetzte, optische Methode beeinflusst den Bewegungsvorgang der Lamelle demnach nicht. Hierzu ist an der Technische Universität Dresden ein Versuchsstand eingerichtet worden, der die Analyse der Bewegungsprofile einer Sauglamelle sowohl entlang als auch senkrecht zur neutralen Faser erlaubt. Dabei stellte sich heraus, dass die parallel mit einem marktseitig verfügbaren Simulationsprogramm durchgeführten Berechnungen, das Biegeverhalten bereits sehr gut abbilden. Bedingung hierfür ist jedoch die rechenintensive, zweiseitige Kopplung der Strukturmechanik von z. B. ANSYS Mechanical mit der Fluiddynamik von z. B. ANSYS CFX sowie der zielgerichteten Beeinflussung der Netzverformung. Doch weitere, gewinnbringende Erkenntnisse sind ableitbar. Insbesondere die Torsionsbewegung der Lamelle, deren messtechnische Untersuchung aufgrund ihrer Größenordnung herausfordernd ist, und deren Entstehung konnte somit untersucht werden. Weiterhin sind Versuche an einem Verdichterleistungsprüfstand mit dem Kältemittel R449A durchgeführt worden. Die hierfür notwendige Bewertung der Einflussgrößen zeigte eine Verwendbarkeit der Messmethode für sämtliche, in einer Kälteanlage auftretenden Zustände. Ferner konnte, als Parameter mit dem größten Einfluss auf die Messwerterfassung, das Öl identifiziert und quantifiziert werden. Solange das Laserlicht eine Schichtdicke von weniger als 1 mm durchdringen muss, ist das Verfahren verwendbar. Werte, die darüber liegen, erfordern eine zusätzliche Korrektur. Die abschließenden Vergleiche mit der numerischen Simulation zeigen eine gute Übereinstimmung und ermöglichen Einblicke auf die Belastung der Lamelle vom Hineindrücken in die Bohrung bis zum Anschlag an den Hubfänger.
15

Development of a turbocharger compressor with variable geometry for heavy-duty engines

Wöhr, Michael, Chebli, Elias, Müller, Markus, Zellbeck, Hans, Leweux, Johannes, Gorbach, Andreas 30 September 2019 (has links)
This article describes the first development phase of a centrifugal compressor with variable geometry which is designed to match the needs of future heavy-duty engines. Requirements of truck engines are analyzed, and their impact on the properties of the compressor map is evaluated in order to identify the most suitable kind of variable geometry. Our approach utilizes the transformation of engine data into pressure ratio and mass flow coordinates that can be displayed and interpreted using compressor maps. One-dimensional and three-dimensional computational fluid dynamics fluid flow calculations are used to identify loss mechanisms and constraints of fixed geometry compressors. Linking engine goals and aerodynamic objectives yields specific recommendations on the implementation of the variable geometry compressor.
16

Entwicklung eines variablen Turbolader-Verdichters für schwere Nutzfahrzeugmotoren / Development of a turbocharger compressor with variable geometry for heavy duty truck engines

Wöhr, Michael 19 December 2016 (has links) (PDF)
Die Entwicklung schwerer Nutzfahrzeugmotoren unterliegt dem Zielkonflikt zwischen möglichst geringen Betriebskosten, hoher Leistung und der Einhaltung von Emissionsvorschriften. Bezüglich der Auslegung der Verdichterstufe des Abgasturboladers resultiert dies in einem Kompromiss zwischen Kennfeldbreite und den Wirkungsgraden im Nennpunkt sowie im Hauptfahrbereich. In der vorliegenden wissenschaftlichen Publikation wird untersucht, ob mit Hilfe einer geometrischen Verstellbarkeit des Verdichters eine bessere Lösung für das anspruchsvolle Anforderungsprofil gefunden werden kann. Das Ziel ist eine Reduktion des Kraftstoffverbrauchs eines 12,8l NFZ-Dieselmotors im schweren Fernverkehr, ohne dass hierbei Abstriche bezüglich weiterer Leistungsmerkmale der Verdichterstufe in Kauf genommen werden müssen. In einem ersten Schritt wird hierzu mit Hilfe der Auswertung von Lastkollektivdaten der für den Kraftstoffverbrauch relevante Betriebsbereich der Basis-Verdichterstufe identifiziert. Dieser befindet sich bei vergleichsweise geringen Massenströmen und hohen Totaldruckverhältnissen in der Nähe der Volllast-Schlucklinie im Verdichterkennfeld. Die Auswertung von ein- und dreidimensionalen Strömungssimulationen führt zur Erkenntnis, dass die hohen Tangentialgeschwindigkeiten im unbeschaufelten Diffusor ausschlagge- bend sind für die Strömungsverluste innerhalb der Verdichterstufe im Hauptfahrbereich. Eine Möglichkeit die Geschwindigkeitskomponente in Umfangsrichtung zu reduzieren, ist die Verwendung eines beschaufelten Diffusors. Zur Überprüfung des Potentials werden im Rahmen einer Parameterstudie 47 unterschiedliche Nachleitgitter im Diffusor der Basis-Verdichterstufe am Heißgasprüfstand untersucht. Es stellt sich heraus, dass durch den Einsatz einer Nachleitbeschaufelung der Verdichterwirkungsgrad um bis zu 8 Prozentpunkte verbessert werden kann, die Kennfeldbreite jedoch nicht ausreicht, um die motorischen Anforderungen bezüglich der Pumpstabilität oder der Bremsleistung zu erfüllen. Resultierend aus diesen Erkenntnissen werden drei variable Verdichter entwickelt, mit dem Ziel, den Wirkungsgradvorteil beschaufelter Diffusoren mittels einer geometrischen Verstellbarkeit für den schweren Nutzfahrzeugmotor nutzbar zu machen. Die Bewertung hinsichtlich der Ziele und Anforderungen erfolgt anhand von Versuchen am Heißgas- sowie Vollmotorenprüfstand. Die Variabilität mit der geringsten Komplexität ist die Kombination aus starrem Nachleitgitter und Schubumluftventil. Das System zeichnet sich dadurch aus, dass Strömungsabrisse im Bereich des Nachleitgitters durch Aktivieren des Schubumluftventils und somit Öffnen eines Rezirkulationskanals im Verdichtergehäuse in pumpkritischen Situationen vermieden werden können. Der Verzicht auf bewegliche Teile im Diffusor resultiert in der höchsten Reduktion des Kraftstoffverbrauchs um 0,6 − 1,4% im Hauptfahrbereich. Der Doppeldiffusor besitzt zwei separate Strömungskanäle unterschiedlicher Geometrie, die im Betrieb durch eine axiale Verschiebung mit Druckluft aktiviert werden können. Dieses völlig neuartige Konzept ermöglicht es, die Auslegungsziele auf zwei Diffusoren aufzuteilen und somit für jede Kennfeldhälfte die jeweils optimale Schaufelgeometrie auszuwählen. Mit dieser Variabilität kann die Einspritzmenge im Hauptfahrbereich um 0,5 − 0,8 Prozent gesenkt werden. Das System mit der höchsten Komplexität ist der Verdichter mit rotierbarer Nachleitbeschaufelung. Über einen elektronischen Steller können die Anstellwinkel und Halsquerschnitte in jedem Betriebspunkt den Anströmbedingungen angepasst werden, um den jeweils bestmöglichen Wirkungsgrad zu erhalten. Aufgrund der anspruchsvollen geometrischen Zwangsbedingungen bei der Auswahl der Schaufelgeometrie besitzt der Dreh- schaufler mit 0,3−0,6% das geringste Potential zur Verbesserung der Kraftstoffsparsamkeit, erzielt jedoch das beste Ergebnis bezüglich der Bremsleistung und der Pumpstabilität. / Reducing the total costs of ownership, achieving the rated engine power and compliance with exhaust-emission legislation are competing goals regarding the development of heavy duty engines. This leads to demanding requirements for the aerodynamic design of the turbocharger compressor stage such as high efficiencies at various operating points and a broad map width. The aim of the present doctoral thesis is to investigate the potential of a compressor with variable geometry in order to obtain a better compromise between efficiency and compressor map width for the purpose of increasing fuel economy without sacrifices concerning the rated power, engine brake performance or surge stability. In a first step, the evaluation of load cycles yields operating points on which the fuel consumption is heavily dependent. Results of 1D- and 3D fluid flow simulations show that the high tangential velocity in the vaneless diffusor is the main cause for the reduction of compressor efficiency in the main driving range. A parameter study containing 47 different geometries is conducted at a hot gas test rig in order to examine the potential of vaned diffusers regarding the reduction of the tangential velocity component. It can be seen that by introducing diffuser vanes compressor efficiency can be increased by up to 8 percent. The narrow map width however prevents the use of a fixed geometry for heavy duty engines. Based on those results three variable geometry compressors are developed with the goal of maintaining the efficiency benefit of vaned diffusers while increasing the map width by adjustable geometric features. The evaluation of the variable compressor systems is based on hot gas and engine test bench measurements. The variable compressor system with the lowest complexity utilizes a recirculation valve in the compressor housing in combination with a fixed geometry vaned diffuser in order to improve the surge margin for a short period of time at a sudden load drop. The abandonment of functional gaps in the diffuser leads to the highest improvement of fuel economy of 0,6 − 1,4% in the main driving range. The compressor with stacked diffuser vanes has two separate flow channels in the diffuser. During engine operation only one vaned diffuser geometry is active. The axial movement is performed via pressure chambers in the compressor and bearing housing. The two diffuser geometries are either optimized for high or low mass flows. This way the fuel consumption in the main driving range can be reduced by 0,5 − 0,8%. The compressor with pivoting vanes in the diffuser has the highest complexity of all systems. With the aid of an electronic actuator the vane inlet angle and throat area can be adjusted to the impeller outlet flow conditions at each operating point. As a consequence the pivoting vanes compressor achieves the best results regarding engine brake performance and surge stability. The fuel economy in the main driving range can be improved by 0,3 − 0,6%. Higher benefits are prevented by demanding geometric constraints in order to ensure the rotatability of the vanes and to prevent vibrations of the impeller blades.
17

Entwicklung eines variablen Turbolader-Verdichters für schwere Nutzfahrzeugmotoren

Wöhr, Michael 20 October 2016 (has links)
Die Entwicklung schwerer Nutzfahrzeugmotoren unterliegt dem Zielkonflikt zwischen möglichst geringen Betriebskosten, hoher Leistung und der Einhaltung von Emissionsvorschriften. Bezüglich der Auslegung der Verdichterstufe des Abgasturboladers resultiert dies in einem Kompromiss zwischen Kennfeldbreite und den Wirkungsgraden im Nennpunkt sowie im Hauptfahrbereich. In der vorliegenden wissenschaftlichen Publikation wird untersucht, ob mit Hilfe einer geometrischen Verstellbarkeit des Verdichters eine bessere Lösung für das anspruchsvolle Anforderungsprofil gefunden werden kann. Das Ziel ist eine Reduktion des Kraftstoffverbrauchs eines 12,8l NFZ-Dieselmotors im schweren Fernverkehr, ohne dass hierbei Abstriche bezüglich weiterer Leistungsmerkmale der Verdichterstufe in Kauf genommen werden müssen. In einem ersten Schritt wird hierzu mit Hilfe der Auswertung von Lastkollektivdaten der für den Kraftstoffverbrauch relevante Betriebsbereich der Basis-Verdichterstufe identifiziert. Dieser befindet sich bei vergleichsweise geringen Massenströmen und hohen Totaldruckverhältnissen in der Nähe der Volllast-Schlucklinie im Verdichterkennfeld. Die Auswertung von ein- und dreidimensionalen Strömungssimulationen führt zur Erkenntnis, dass die hohen Tangentialgeschwindigkeiten im unbeschaufelten Diffusor ausschlagge- bend sind für die Strömungsverluste innerhalb der Verdichterstufe im Hauptfahrbereich. Eine Möglichkeit die Geschwindigkeitskomponente in Umfangsrichtung zu reduzieren, ist die Verwendung eines beschaufelten Diffusors. Zur Überprüfung des Potentials werden im Rahmen einer Parameterstudie 47 unterschiedliche Nachleitgitter im Diffusor der Basis-Verdichterstufe am Heißgasprüfstand untersucht. Es stellt sich heraus, dass durch den Einsatz einer Nachleitbeschaufelung der Verdichterwirkungsgrad um bis zu 8 Prozentpunkte verbessert werden kann, die Kennfeldbreite jedoch nicht ausreicht, um die motorischen Anforderungen bezüglich der Pumpstabilität oder der Bremsleistung zu erfüllen. Resultierend aus diesen Erkenntnissen werden drei variable Verdichter entwickelt, mit dem Ziel, den Wirkungsgradvorteil beschaufelter Diffusoren mittels einer geometrischen Verstellbarkeit für den schweren Nutzfahrzeugmotor nutzbar zu machen. Die Bewertung hinsichtlich der Ziele und Anforderungen erfolgt anhand von Versuchen am Heißgas- sowie Vollmotorenprüfstand. Die Variabilität mit der geringsten Komplexität ist die Kombination aus starrem Nachleitgitter und Schubumluftventil. Das System zeichnet sich dadurch aus, dass Strömungsabrisse im Bereich des Nachleitgitters durch Aktivieren des Schubumluftventils und somit Öffnen eines Rezirkulationskanals im Verdichtergehäuse in pumpkritischen Situationen vermieden werden können. Der Verzicht auf bewegliche Teile im Diffusor resultiert in der höchsten Reduktion des Kraftstoffverbrauchs um 0,6 − 1,4% im Hauptfahrbereich. Der Doppeldiffusor besitzt zwei separate Strömungskanäle unterschiedlicher Geometrie, die im Betrieb durch eine axiale Verschiebung mit Druckluft aktiviert werden können. Dieses völlig neuartige Konzept ermöglicht es, die Auslegungsziele auf zwei Diffusoren aufzuteilen und somit für jede Kennfeldhälfte die jeweils optimale Schaufelgeometrie auszuwählen. Mit dieser Variabilität kann die Einspritzmenge im Hauptfahrbereich um 0,5 − 0,8 Prozent gesenkt werden. Das System mit der höchsten Komplexität ist der Verdichter mit rotierbarer Nachleitbeschaufelung. Über einen elektronischen Steller können die Anstellwinkel und Halsquerschnitte in jedem Betriebspunkt den Anströmbedingungen angepasst werden, um den jeweils bestmöglichen Wirkungsgrad zu erhalten. Aufgrund der anspruchsvollen geometrischen Zwangsbedingungen bei der Auswahl der Schaufelgeometrie besitzt der Dreh- schaufler mit 0,3−0,6% das geringste Potential zur Verbesserung der Kraftstoffsparsamkeit, erzielt jedoch das beste Ergebnis bezüglich der Bremsleistung und der Pumpstabilität.:1 Einleitung 1.1 Einführung 1.2 Stand der Technik 1.3 Zielsetzung 2 Grundlagen 2.1 Der schwere Nutzfahrzeugmotor 2.1.1 Aufbau 2.1.2 Kenngrößen 2.1.3 Motorbremse 2.2 Der Turbolader-Radialverdichter 2.2.1 Systembeschreibung 2.2.2 Definition von Kenngrößen 2.2.3 ThermodynamischeBeschreibung 2.3 Thermodynamik des Aufladesystems 2.3.1 Stationäre Lastkurven im Verdichterkennfeld 2.3.2 Grenzwerte im Stationärbetrieb 2.3.3 Transientverhalten 3 Methodik 3.1 Lösungsweg 3.2 Lastkollektivauswertung 3.3 Parametrisiertes Diffusormodell 3.3.1 Geometrischer Aufbau 3.3.2 Auslegungsgrößen 3.3.3 Parameterstudie 3.4 Simulation 3.4.1 1D-Strömungssimulation in Diffusor und Volute 3.4.2 3D-Strömungssimulation der Verdichterstufe 3.4.3 Motorprozesssimulation 3.5 Heißgasprüfstand 3.5.1 Kennfeldvermessung 3.5.2 Aerodynamikmessung 3.5.3 Verkokungsanfälligkeit 3.6 Motorprüfstand 3.6.1 Aufbau 3.6.2 Randbedingungen 3.6.3 Akustikmessung 4 Ergebnisse 4.1 Validierung 4.1.1 Strömungszustand am Verdichterradaustritt 4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor 4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor 4.2 Verlustanalyse Basisverdichter 4.2.1 Auswertung der Lastkollektive 4.2.2 Aerodynamische Verlustanalyse 4.2.3 Strömungsmechanik im Diffusor 4.3 Parameterstudie beschaufelter Diffusoren 4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld 4.3.2 Anforderungen des schweren Nutzfahrzeugmotors 4.4 Aerodynamik beschaufelter Diffusoren 4.4.1 Auslegungskriterien 4.5 Verkokung beschaufelter Diffusoren 5 Variable Verdichter 5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil 5.1.1 Auslegung und Konstruktion 5.1.2 Heißgasprüfstand 5.2 VSVC-Doppeldiffusor 5.2.1 Auslegung und Konstruktion 5.2.2 Heißgasprüfstand 5.3 VPVC-RotierbareSchaufeln 5.3.1 Auslegung und Konstruktion 5.3.2 Heißgasprüfstand 5.4 Verhalten variabler Verdichter am schweren NFZ-Motor 5.4.1 Volllast 5.4.2 Lastvariation 5.4.3 DynamischesAnsprechverhalten 5.4.4 Low-End Torque 5.4.5 Dynamische Pumpstabilität 5.4.6 Bremsbetrieb 5.4.7 Ansteuerung 5.4.8 Akustik 5.5 Übersicht 6 Zusammenfassung und Ausblick 7 Anhang Literaturverzeichnis / Reducing the total costs of ownership, achieving the rated engine power and compliance with exhaust-emission legislation are competing goals regarding the development of heavy duty engines. This leads to demanding requirements for the aerodynamic design of the turbocharger compressor stage such as high efficiencies at various operating points and a broad map width. The aim of the present doctoral thesis is to investigate the potential of a compressor with variable geometry in order to obtain a better compromise between efficiency and compressor map width for the purpose of increasing fuel economy without sacrifices concerning the rated power, engine brake performance or surge stability. In a first step, the evaluation of load cycles yields operating points on which the fuel consumption is heavily dependent. Results of 1D- and 3D fluid flow simulations show that the high tangential velocity in the vaneless diffusor is the main cause for the reduction of compressor efficiency in the main driving range. A parameter study containing 47 different geometries is conducted at a hot gas test rig in order to examine the potential of vaned diffusers regarding the reduction of the tangential velocity component. It can be seen that by introducing diffuser vanes compressor efficiency can be increased by up to 8 percent. The narrow map width however prevents the use of a fixed geometry for heavy duty engines. Based on those results three variable geometry compressors are developed with the goal of maintaining the efficiency benefit of vaned diffusers while increasing the map width by adjustable geometric features. The evaluation of the variable compressor systems is based on hot gas and engine test bench measurements. The variable compressor system with the lowest complexity utilizes a recirculation valve in the compressor housing in combination with a fixed geometry vaned diffuser in order to improve the surge margin for a short period of time at a sudden load drop. The abandonment of functional gaps in the diffuser leads to the highest improvement of fuel economy of 0,6 − 1,4% in the main driving range. The compressor with stacked diffuser vanes has two separate flow channels in the diffuser. During engine operation only one vaned diffuser geometry is active. The axial movement is performed via pressure chambers in the compressor and bearing housing. The two diffuser geometries are either optimized for high or low mass flows. This way the fuel consumption in the main driving range can be reduced by 0,5 − 0,8%. The compressor with pivoting vanes in the diffuser has the highest complexity of all systems. With the aid of an electronic actuator the vane inlet angle and throat area can be adjusted to the impeller outlet flow conditions at each operating point. As a consequence the pivoting vanes compressor achieves the best results regarding engine brake performance and surge stability. The fuel economy in the main driving range can be improved by 0,3 − 0,6%. Higher benefits are prevented by demanding geometric constraints in order to ensure the rotatability of the vanes and to prevent vibrations of the impeller blades.:1 Einleitung 1.1 Einführung 1.2 Stand der Technik 1.3 Zielsetzung 2 Grundlagen 2.1 Der schwere Nutzfahrzeugmotor 2.1.1 Aufbau 2.1.2 Kenngrößen 2.1.3 Motorbremse 2.2 Der Turbolader-Radialverdichter 2.2.1 Systembeschreibung 2.2.2 Definition von Kenngrößen 2.2.3 ThermodynamischeBeschreibung 2.3 Thermodynamik des Aufladesystems 2.3.1 Stationäre Lastkurven im Verdichterkennfeld 2.3.2 Grenzwerte im Stationärbetrieb 2.3.3 Transientverhalten 3 Methodik 3.1 Lösungsweg 3.2 Lastkollektivauswertung 3.3 Parametrisiertes Diffusormodell 3.3.1 Geometrischer Aufbau 3.3.2 Auslegungsgrößen 3.3.3 Parameterstudie 3.4 Simulation 3.4.1 1D-Strömungssimulation in Diffusor und Volute 3.4.2 3D-Strömungssimulation der Verdichterstufe 3.4.3 Motorprozesssimulation 3.5 Heißgasprüfstand 3.5.1 Kennfeldvermessung 3.5.2 Aerodynamikmessung 3.5.3 Verkokungsanfälligkeit 3.6 Motorprüfstand 3.6.1 Aufbau 3.6.2 Randbedingungen 3.6.3 Akustikmessung 4 Ergebnisse 4.1 Validierung 4.1.1 Strömungszustand am Verdichterradaustritt 4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor 4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor 4.2 Verlustanalyse Basisverdichter 4.2.1 Auswertung der Lastkollektive 4.2.2 Aerodynamische Verlustanalyse 4.2.3 Strömungsmechanik im Diffusor 4.3 Parameterstudie beschaufelter Diffusoren 4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld 4.3.2 Anforderungen des schweren Nutzfahrzeugmotors 4.4 Aerodynamik beschaufelter Diffusoren 4.4.1 Auslegungskriterien 4.5 Verkokung beschaufelter Diffusoren 5 Variable Verdichter 5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil 5.1.1 Auslegung und Konstruktion 5.1.2 Heißgasprüfstand 5.2 VSVC-Doppeldiffusor 5.2.1 Auslegung und Konstruktion 5.2.2 Heißgasprüfstand 5.3 VPVC-RotierbareSchaufeln 5.3.1 Auslegung und Konstruktion 5.3.2 Heißgasprüfstand 5.4 Verhalten variabler Verdichter am schweren NFZ-Motor 5.4.1 Volllast 5.4.2 Lastvariation 5.4.3 DynamischesAnsprechverhalten 5.4.4 Low-End Torque 5.4.5 Dynamische Pumpstabilität 5.4.6 Bremsbetrieb 5.4.7 Ansteuerung 5.4.8 Akustik 5.5 Übersicht 6 Zusammenfassung und Ausblick 7 Anhang Literaturverzeichnis
18

Development of an oil free turbo compressor for mobile fuel cell applications – challenges and results

Fröhlich, Patrik 25 November 2019 (has links)
The compressor for air supply to the fuel cell stack is a critical component of the balance of plant, especially for mobile applications. The main requirements of the compressor are the performance regarding pressure ratio, mass flow and efficiency at minimal size and weight. The turbo compressor technology is ideally suited to cope with these requirements. The lifetime requirement and the necessity of oil and particle free air supply advised to employ air bearings. The fuel cell air supply requirements are in conflict with the turbo compressor pressure ratio and mass flow characteristics. Possible solutions and their impact onto compressor design and fuel cell operation are described in this paper. The chosen system design approach considering all design aspects and its interactions during the design phase is beneficial in order to achieve the most lightweight and efficient air supply system for fuel cells. Experimental validation of an air bearing turbo compressor for a 100 kW fuel cell stack on an aerodynamic test rig verifies the predicted performance.
19

Simulation und experimentelle Validierung des Betriebsverhaltens eines Kompressors zur Wasserstoffrezirkulation in Kraftfahrzeugen

Wiebe, Wilhelm 23 January 2023 (has links)
Um eine homogene und ausreichende Versorgung des Brennstoffzellen (BZ)-Stapels zu gewährleisten, wird in einem Brennstoffzellen-Fahrzeug dem Stapel mehr Wasserstoff zugeführt, als für die Reaktion benötigt wird. Daher wird nicht verbrauchter Wasserstoff mit einer Strahlpumpe oder einem Rezirkulationsgebläse zum Anodeneingang des BZ-Stapels rezirkuliert. Aufgrund der Diffusion durch die Membran enthält das Anodenabgas neben dem Wasserstoff auch andere Bestandteile wie z.B. Stickstoff. Die Anreicherung des Stickstoffes im Anodenkreislauf führt zu einer ungleichmäßigen Stromdichteverteilung. Um dem entgegenzuwirken, wird in das System ein Spülventil eingebaut, das periodisch Gas ablässt um Stickstoff aus dem Anodenkreislauf abzuführen. Dabei lässt sich ein Wasser­stoffverbrauch nicht vermeiden. Diese Arbeit zielt darauf ab, die Rentabilität des Brennstoffzellensystems im automobilen Einsatz durch Reduzierung des Wasserstoffverbrauchs zu steigern. Hierfür wird die Verwendung eines elektrochemischen Wasserstoffkompressors (EHC) zur Wasserstoffumwälzung vorgeschlagen. Ein EHC ist eine innovative H2-Fördertechnologie, wobei der Wasserstoff gleichzeitig verdichtet und gereinigt werden kann. Im Vergleich zu mechanischen Kompressoren sind elektrochemische Wasserstoffkompressoren aufgrund der nahezu isothermen Bedingungen sehr effizient. Darüber hinaus können Wasserstoffkompressoren aufgrund ihres modularen Aufbaus sehr flexibel und kompakt gebaut werden.:1. EINLEITUNG 2. STAND DER TECHNIK 3. GRUNDLAGEN DER BRENNSTOFFZELLEN 4. TRANSPORTVORGÄNGE IN DER BRENNSTOFFZELLE 5. ELEKTROCHEMISCHER WASSERSTOFFKOMPRESSOR IM REZIRKULATIONSKREISLAUF 6. SIMULATION 7. EXPERIMENTELLE UNTERSUCHUNGEN 8. EINSATZ DES ELEKTROCHEMISCHEN WASSERSTOFFKOMPRESSORS IM BRENNSTOFFZELLENFAHRZEUG 9. ZUSAMMENFASSUNG 10. AUSBLICK / In order to ensure a homogeneous and sufficient supply of the fuel cell (FC) stack, more hydrogen is supplied to the stack in a fuel cell vehicle than required for the reaction. Therefore, unused hydrogen is recirculated to the anode inlet of the FC stack with an ejector or recirculation fan. Due to the diffusion through the membrane, the anode exhaust gas contains not only hydrogen but also other components such as nitrogen. The accumulation of nitrogen in the anode circuit leads to an uneven current density distribution. To counteract this, a purge valve is built into the system that periodically vents gas to purge nitrogen from the anode circuit. Hydrogen consumption cannot be avoided here. This work aims to increase the profitability of the fuel cell system in automotive application by reducing hydrogen consumption. For this purpose, the use of an electrochemical hydrogen compressor (EHC) for hydrogen circulation is proposed. An EHC is an innovative H2 delivery technology, whereby the hydrogen can be compressed and cleaned at the same time. Compared to mechanical compressors, electrochemical hydrogen compressors are very efficient due to the almost isothermal conditions. In addition, hydrogen compressors can be built very flexibly and compactly due to their modular design.:1. EINLEITUNG 2. STAND DER TECHNIK 3. GRUNDLAGEN DER BRENNSTOFFZELLEN 4. TRANSPORTVORGÄNGE IN DER BRENNSTOFFZELLE 5. ELEKTROCHEMISCHER WASSERSTOFFKOMPRESSOR IM REZIRKULATIONSKREISLAUF 6. SIMULATION 7. EXPERIMENTELLE UNTERSUCHUNGEN 8. EINSATZ DES ELEKTROCHEMISCHEN WASSERSTOFFKOMPRESSORS IM BRENNSTOFFZELLENFAHRZEUG 9. ZUSAMMENFASSUNG 10. AUSBLICK
20

Auslegung eines Anodenrezirkulationsgebläses auf Basis des Medienspaltmotors

Klunker, Christoph, Nachtigal, Philipp, Kentschke, Thorge, Gößling, Sönke, Seume, Jörg 27 May 2022 (has links)
Im Rahmen des ZIM-geförderten Vorhabens „Rezirkulationsgebläse-Entwicklung für die Brennstoffzellen-Technologie“ (REZEBT) wurde die Entwicklung eines neuartigen aktiven Wasserstoff-Rezirkulationsgebläses für die Anodenseite einer Brennstoffzelle bis TRL4 vorangetrieben. Das vorgestellte Gebläse besteht im Wesentlichen aus einem schnelldrehenden Turboverdichter, welcher mit einem sogenannten Medienspaltmotor angetrieben wird. Der Medienspaltmotor zeichnet sich dadurch aus, dass er das Medium durch den Spalt zwischen Rotor und Stator fördert, wodurch gänzlich auf dynamische Dichtungen verzichtet werden kann und das Medium selbst zur Kühlung genutzt werden kann. Bauartbedingt kann bei diesem permanent-erregten Synchronmotor (sensorlos) auf eine aufwändige Konstruktion und teure Produktionsprozesse verzichtet werden. Diese Veröffentlichung beschreibt den Prozess und die Herausforderungen der Auslegung sowie den Aufbau des Anodenrezirkulationsgebläses (ARG). Die Funktionsfähigkeit wurde mittels eines Prototypen demonstriert.

Page generated in 0.4295 seconds