Spelling suggestions: "subject:"verossimilhança perfiladas"" "subject:"verossimilhança perfilado""
1 |
Verossimilhança perfilada nos modelos não lineares simétricos heteroscedásticosCorreia de Araújo, Mariana 31 January 2012 (has links)
Made available in DSpace on 2014-06-12T18:06:36Z (GMT). No. of bitstreams: 2
arquivo9498_1.pdf: 801043 bytes, checksum: ccc5adc29d401845fe6ebd6adf82f473 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2012 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação abordamos o desempenho do teste da razão de verossimilhanças
usual e suas versões modificadas em pequenas amostras na classe
dos modelos não lineares simétricos heteroscedásticos (MNLSH), mais especificamente,
nos modelos t􀀀Student com 4 graus de liberdade e Exponencial
potência com parâmetro de forma k = 0; 3. Além do teste usual, são considerados
os testes baseados na estatística da razão de verossimilhanças corrigida
via Bartlett (1937), LR, na estatística da razão de verossimilhanças perfiladas
modificadas via Cox e Reid (1987), LRm; e sua respectiva versão corrigida
via DiCiccio e Stern (1994), LRm. Desse modo, os objetivos principais
deste trabalho são obter um fator de correção de Bartlett para a estatística
LRm na classe dos MNLSH e realizar um estudo de simulação para avaliar o
desempenhos dos testes de hipóteses baseados na estatística da razão de verossimilhanças
usual, LR, e nas estatísticas LR, LRm e LRm . Neste estudo
de simulação avaliamos o comportamento dos quatro testes em questão com
relação ao tamanho, poder e discrepância relativa de quantis em amostras de
tamanhos finitos e pode-se observar que, de modo geral, o teste baseado na
estatística LRm apresentou o melhor desempenho
|
2 |
Verossimilhança perfilada nos modelos lineares generalizados com superdispersãoANDRADE, Thiago Alexandro Nascimento de 31 January 2013 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-12T13:25:58Z
No. of bitstreams: 2
CD- Dissertação Thiago A. N. de Andrade.pdf: 787795 bytes, checksum: eccb193488aebfede11aa4dd03b03587 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T13:25:58Z (GMT). No. of bitstreams: 2
CD- Dissertação Thiago A. N. de Andrade.pdf: 787795 bytes, checksum: eccb193488aebfede11aa4dd03b03587 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013 / CNPq / A classe de Modelos Lineares Generalizados com Superdispersão (MLGSs)
proposta por Dey et al. (1997), tem sido amplamente utilizada na modelagem
de dados cuja variância da variável resposta excede o valor nominal predito
no modelo. O principal objetivo da presente dissertação é a obtenção de um
fator de correção de Bartlett, segundo a metodologia proposta por DiCiccio
e Stern (1994), à estatística da razão de verossimilhanças perfiladas ajustadas
proposta por Cox e Reid (1987) para o teste conjunto dos efeitos da
dispersão nesta classe de modelos. Estudos de simulação de Monte Carlo foram
realizados com o objetivo de avaliar os desempenhos dos testes baseados
nas estatísticas da razão de verossimilhanças usual (LR), razão de verossimilhanças
perfiladas ajustadas (LRpa) e razão de verossimilhanças perfiladas
ajustadas corrigida (LRc
pa), no que se refere a tamanho e poder em amostras
finitas. Os resultados numéricos obtidos favorecem o teste proposto nesta
dissertação.
|
3 |
Refinamento de inferências na distribuição Birnbaum-Saunders generalizada com núcleos normal e t de Student sob censura tipo IIBARRETO, Larissa Santana 31 January 2013 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-13T12:46:16Z
No. of bitstreams: 2
tese_larissa_final.pdf: 2339402 bytes, checksum: e15b164d91df893043954285fcb9f7e0 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T12:46:16Z (GMT). No. of bitstreams: 2
tese_larissa_final.pdf: 2339402 bytes, checksum: e15b164d91df893043954285fcb9f7e0 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013 / CAPES / Frequentemente temos interesse em realizar inferências, em um determinado modelo, envolvendo
apenas alguns dos seus parâmetros. Tais inferências podem ser feitas através da função de
verossimilhança perfilada. Contudo, alguns problemas podem surgir quando tratamos a função
de verossimilhança perfilada como uma verossimilhança genuína. Com o objetivo de solucionar
estes problemas, vários pesquisadores, dentre eles Barndorff-Nielsen (1983, 1994) e Cox & Reid
(1987, 1992), propuseram modificações à função de verossimilhança perfilada.
O principal objetivo deste trabalho é utilizar a verossimilhança perfilada e seus ajustes propostos
por Barndorff-Nielsen (1983,1994) e Cox & Reid (1987,1992) no aperfeiçoamento de inferências
para a distribuição Birnbaum-Saunders generalizada com núcleos normal e t de Student,
na presença, ou não, de censura tipo II. Mais precisamente obtemos os estimadores de máxima
verossimilhança relacionados às funções de verossimilhança perfilada e perfiladas ajustadas; calculamos
os intervalos de confiança do tipo assintótico, bootstrap percentil, bootstrap BCa e
bootstrap-t e também apresentamos os testes da razão de verossimilhanças ajustados, o teste
bootstrap paramétrico e o teste gradiente. Através de simulações de Monte Carlo avaliamos
os desempenhos dos testes e dos estimadores pontuais e intervalares propostos. Os resultados
evidenciam que tanto os testes quanto os estimadores baseados nas versões modificadas da verossimilhança
perfilada possuem desempenho superior em pequenas amostras quando comparados
com suas contrapartidas não modificadas. Adicionalmente, apresentamos alguns exemplos práticos
para ilustrar tudo o que foi desenvolvido.
|
4 |
Testes de hipóteses em regressão beta baseados em verossimilhança perfilada ajustada e em bootstrapPinto Ferreira de Queiroz, Marcela 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:03:15Z (GMT). No. of bitstreams: 2
arquivo621_1.pdf: 1193733 bytes, checksum: f9db08512a74fca408769399a3a8e887 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2011 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / A presente dissertação trata da realização de inferências por teste de hipóteses no modelo de
regressão beta, que é empregado na modelagem de dados que assumem continuamente valores
no intervalo (0; 1) (Ferrari & Cribari-Neto, 2004; Simas, Barreto-Souza & Rocha, 2010). O
foco do estudo reside na realização de inferências em pequenas amostras. São considerados
os testes da razão de verossimilhanças, escore e Wald usuais, além de dois testes da razão de
verossimilhanças corrigidos propostos por Ferrari & Pinheiro (2011) e versões bootstrap dos
testes da razão de verossimilhanças, escore e Wald. Os desempenhos dos testes em amostras
finitas são avaliados numericamente através de simulações de Monte Carlo. Tais simulações
contemplam modelos de regressão beta com dispersão variável e consideram testes sobre os
parâmetros que indexam o submodelo da média e também testes sobre os parâmetros que se
encontram no submodelo da dispersão
|
5 |
Refinamento de Inferências nas Distribuições Gaussiana Inversa Triparamétrica, Pareto Generalizada e LomaxPIRES, Juliana Freitas 02 1900 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-12T18:30:37Z
No. of bitstreams: 2
TESE Juliana Freitas Pires.pdf: 2036830 bytes, checksum: 9cf767526859054ed6878742b0a6047f (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T18:30:37Z (GMT). No. of bitstreams: 2
TESE Juliana Freitas Pires.pdf: 2036830 bytes, checksum: 9cf767526859054ed6878742b0a6047f (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2014-02 / Nesta tese, tratamos de refinamentos de inferências para as distribuições gaussiana
inversa triparamétrica, Pareto generalizada e Lomax. Duas linhas de pesquisa são abordadas.
A primeira, referente ao Capítulo 2, trata da derivação de expressões analíticas
para os vieses dos estimadores de máxima verossimilhança dos parâmetros da distribuição
gaussiana inversa triparamétrica, possibilitando a obtenção de estimadores corrigidos,
que, em princípio, são mais precisos que os não corrigidos. Estimadores com vieses corrigidos
por bootstrap são também considerados. Adicionalmente, apresentamos diferentes
tipos de intervalos de confiança. A segunda linha de pesquisa, referente aos Capítulos 3
e 4, aborda a derivação de ajustes para a função de verossimilhança perfilada das distribuições
Pareto generalizada e Lomax, respectivamente, com o objetivo de melhorar a
qualidade das inferências (estimadores de máxima verossimilhança e testes de hipóteses)
acerca do parâmetro de forma dessas distribuições, considerando os demais parâmetros
como parâmetros de perturbação. Adicionalmente, consideramos o teste da razão de verossimilhanças
bootstrap. Os desempenhos dos estimadores e testes de hipóteses baseados
nos refinamentos propostos foram avaliados numericamente e comparados às suas contrapartidas
usuais através de estudos de simulação de Monte Carlo. Por fim, a utilidade dos
refinamentos foi ilustrada através de aplicações a conjuntos de dados reais.
|
6 |
Estimação e teste de hipótese baseados em verossimilhanças perfiladas / "Point estimation and hypothesis test based on profile likelihoods"Silva, Michel Ferreira da 20 May 2005 (has links)
Tratar a função de verossimilhança perfilada como uma verossimilhança genuína pode levar a alguns problemas, como, por exemplo, inconsistência e ineficiência dos estimadores de máxima verossimilhança. Outro problema comum refere-se à aproximação usual da distribuição da estatística da razão de verossimilhanças pela distribuição qui-quadrado, que, dependendo da quantidade de parâmetros de perturbação, pode ser muito pobre. Desta forma, torna-se importante obter ajustes para tal função. Vários pesquisadores, incluindo Barndorff-Nielsen (1983,1994), Cox e Reid (1987,1992), McCullagh e Tibshirani (1990) e Stern (1997), propuseram modificações à função de verossimilhança perfilada. Tais ajustes consistem na incorporação de um termo à verossimilhança perfilada anteriormente à estimação e têm o efeito de diminuir os vieses da função escore e da informação. Este trabalho faz uma revisão desses ajustes e das aproximações para o ajuste de Barndorff-Nielsen (1983,1994) descritas em Severini (2000a). São apresentadas suas derivações, bem como suas propriedades. Para ilustrar suas aplicações, são derivados tais ajustes no contexto da família exponencial biparamétrica. Resultados de simulações de Monte Carlo são apresentados a fim de avaliar os desempenhos dos estimadores de máxima verossimilhança e dos testes da razão de verossimilhanças baseados em tais funções. Também são apresentadas aplicações dessas funções de verossimilhança em modelos não pertencentes à família exponencial biparamétrica, mais precisamente, na família de distribuições GA0(alfa,gama,L), usada para modelar dados de imagens de radar, e no modelo de Weibull, muito usado em aplicações da área da engenharia denominada confiabilidade, considerando dados completos e censurados. Aqui também foram obtidos resultados numéricos a fim de avaliar a qualidade dos ajustes sobre a verossimilhança perfilada, analogamente às simulações realizadas para a família exponencial biparamétrica. Vale mencionar que, no caso da família de distribuições GA0(alfa,gama,L), foi avaliada a aproximação da distribuição da estatística da razão de verossimilhanças sinalizada pela distribuição normal padrão. Além disso, no caso do modelo de Weibull, vale destacar que foram derivados resultados distribucionais relativos aos estimadores de máxima verossimilhança e às estatísticas da razão de verossimilhanças para dados completos e censurados, apresentados em apêndice. / The profile likelihood function is not genuine likelihood function, and profile maximum likelihood estimators are typically inefficient and inconsistent. Additionally, the null distribution of the likelihood ratio test statistic can be poorly approximated by the asymptotic chi-squared distribution in finite samples when there are nuisance parameters. It is thus important to obtain adjustments to the likelihood function. Several authors, including Barndorff-Nielsen (1983,1994), Cox and Reid (1987,1992), McCullagh and Tibshirani (1990) and Stern (1997), have proposed modifications to the profile likelihood function. They are defined in a such a way to reduce the score and information biases. In this dissertation, we review several profile likelihood adjustments and also approximations to the adjustments proposed by Barndorff-Nielsen (1983,1994), also described in Severini (2000a). We present derivations and the main properties of the different adjustments. We also obtain adjustments for likelihood-based inference in the two-parameter exponential family. Numerical results on estimation and testing are provided. We also consider models that do not belong to the two-parameter exponential family: the GA0(alfa,gama,L) family, which is commonly used to model image radar data, and the Weibull model, which is useful for reliability studies, the latter under both noncensored and censored data. Again, extensive numerical results are provided. It is noteworthy that, in the context of the GA0(alfa,gama,L) model, we have evaluated the approximation of the null distribution of the signalized likelihood ratio statistic by the standard normal distribution. Additionally, we have obtained distributional results for the Weibull case concerning the maximum likelihood estimators and the likelihood ratio statistic both for noncensored and censored data.
|
7 |
Métodos de estimação baseados na função de verossimilhança para modelos lineares elípticos / Estimation methods based on the likelihood function in Elliptical Linear ModelsPérez, Natalia Andrea Milla 14 September 2018 (has links)
O objetivo desta tese é estudar métodos de estimação baseados na função de verossimilhança em modelos mistos lineares elípticos. Derivamos inicialmente os métodos de máxima verossimilhança, máxima verossimilhança restrita e de máxima verossimilhança perfilada modificada para o modelo linear normal. Estendemos os métodos para os modelos lineares elípticos e encontramos diferenças entre as equações resultantes de cada método. A principal motivação deste trabalho é que o método de máxima verossimilhança restrita tem sido aplicado para obter estimadores menos viesados para os componentes de variância-covariância, em contraste com os estimadores de máxima verossimilhança. O método tem sido muito utilizado em modelos com estruturas de variância-covariância como é o caso dos modelos mistos lineares. Assim, procuramos estender o método para os modelos mistos lineares elípticos bem como comparar com outros procedimentos de estimação, máxima verossimilhança e máxima verossimilhança perfilada modificada. Estudamos em particular os modelos mistos lineares com erros t-Student e exponencial potência. / The aim of this thesis is to study estimation methods based on the likelihood functions in elliptical linear mixed models. First, we review the modified profile maximum likelihood and the restricted maximum likelihood methods as well as the traditional maximum likelihood method in normal linear models. Then, we extend the methodologies for elliptical linear models and we compare the estimating equations derived for each method. The main motivation of the work is that the restricted maximum likelihood method has been largely applied in normal linear mixed models in order to reduce the bias of the maximum likelihood variance-component estimators. So, we intend to investigate the possible extension for elliptical linear mixed models as well as to compare with the modified profile maximum likelihood and the maximum likelihood methods. Particular studies for Student-t and power exponential linear mixed models are presented.
|
8 |
Estimação e teste de hipótese baseados em verossimilhanças perfiladas / "Point estimation and hypothesis test based on profile likelihoods"Michel Ferreira da Silva 20 May 2005 (has links)
Tratar a função de verossimilhança perfilada como uma verossimilhança genuína pode levar a alguns problemas, como, por exemplo, inconsistência e ineficiência dos estimadores de máxima verossimilhança. Outro problema comum refere-se à aproximação usual da distribuição da estatística da razão de verossimilhanças pela distribuição qui-quadrado, que, dependendo da quantidade de parâmetros de perturbação, pode ser muito pobre. Desta forma, torna-se importante obter ajustes para tal função. Vários pesquisadores, incluindo Barndorff-Nielsen (1983,1994), Cox e Reid (1987,1992), McCullagh e Tibshirani (1990) e Stern (1997), propuseram modificações à função de verossimilhança perfilada. Tais ajustes consistem na incorporação de um termo à verossimilhança perfilada anteriormente à estimação e têm o efeito de diminuir os vieses da função escore e da informação. Este trabalho faz uma revisão desses ajustes e das aproximações para o ajuste de Barndorff-Nielsen (1983,1994) descritas em Severini (2000a). São apresentadas suas derivações, bem como suas propriedades. Para ilustrar suas aplicações, são derivados tais ajustes no contexto da família exponencial biparamétrica. Resultados de simulações de Monte Carlo são apresentados a fim de avaliar os desempenhos dos estimadores de máxima verossimilhança e dos testes da razão de verossimilhanças baseados em tais funções. Também são apresentadas aplicações dessas funções de verossimilhança em modelos não pertencentes à família exponencial biparamétrica, mais precisamente, na família de distribuições GA0(alfa,gama,L), usada para modelar dados de imagens de radar, e no modelo de Weibull, muito usado em aplicações da área da engenharia denominada confiabilidade, considerando dados completos e censurados. Aqui também foram obtidos resultados numéricos a fim de avaliar a qualidade dos ajustes sobre a verossimilhança perfilada, analogamente às simulações realizadas para a família exponencial biparamétrica. Vale mencionar que, no caso da família de distribuições GA0(alfa,gama,L), foi avaliada a aproximação da distribuição da estatística da razão de verossimilhanças sinalizada pela distribuição normal padrão. Além disso, no caso do modelo de Weibull, vale destacar que foram derivados resultados distribucionais relativos aos estimadores de máxima verossimilhança e às estatísticas da razão de verossimilhanças para dados completos e censurados, apresentados em apêndice. / The profile likelihood function is not genuine likelihood function, and profile maximum likelihood estimators are typically inefficient and inconsistent. Additionally, the null distribution of the likelihood ratio test statistic can be poorly approximated by the asymptotic chi-squared distribution in finite samples when there are nuisance parameters. It is thus important to obtain adjustments to the likelihood function. Several authors, including Barndorff-Nielsen (1983,1994), Cox and Reid (1987,1992), McCullagh and Tibshirani (1990) and Stern (1997), have proposed modifications to the profile likelihood function. They are defined in a such a way to reduce the score and information biases. In this dissertation, we review several profile likelihood adjustments and also approximations to the adjustments proposed by Barndorff-Nielsen (1983,1994), also described in Severini (2000a). We present derivations and the main properties of the different adjustments. We also obtain adjustments for likelihood-based inference in the two-parameter exponential family. Numerical results on estimation and testing are provided. We also consider models that do not belong to the two-parameter exponential family: the GA0(alfa,gama,L) family, which is commonly used to model image radar data, and the Weibull model, which is useful for reliability studies, the latter under both noncensored and censored data. Again, extensive numerical results are provided. It is noteworthy that, in the context of the GA0(alfa,gama,L) model, we have evaluated the approximation of the null distribution of the signalized likelihood ratio statistic by the standard normal distribution. Additionally, we have obtained distributional results for the Weibull case concerning the maximum likelihood estimators and the likelihood ratio statistic both for noncensored and censored data.
|
9 |
Eliminação de parâmetros perturbadores em um modelo de captura-recapturaSalasar, Luis Ernesto Bueno 18 November 2011 (has links)
Made available in DSpace on 2016-06-02T20:04:51Z (GMT). No. of bitstreams: 1
4032.pdf: 1016886 bytes, checksum: 6e1eb83f197a88332f8951b054c1f01a (MD5)
Previous issue date: 2011-11-18 / Financiadora de Estudos e Projetos / The capture-recapture process, largely used in the estimation of the number of elements of animal population, is also applied to other branches of knowledge like Epidemiology, Linguistics, Software reliability, Ecology, among others. One of the _rst applications of this method was done by Laplace in 1783, with aim at estimate the number of inhabitants of France. Later, Carl G. J. Petersen in 1889 and Lincoln in 1930 applied the same estimator in the context of animal populations. This estimator has being known in literature as _Lincoln-Petersen_ estimator. In the mid-twentieth century several researchers dedicated themselves to the formulation of statistical models appropriated for the estimation of population size, which caused a substantial increase in the amount of theoretical and applied works on the subject. The capture-recapture models are constructed under certain assumptions relating to the population, the sampling procedure and the experimental conditions. The main assumption that distinguishes models concerns the change in the number of individuals in the population during the period of the experiment. Models that allow for births, deaths or migration are called open population models, while models that does not allow for these events to occur are called closed population models. In this work, the goal is to characterize likelihood functions obtained by applying methods of elimination of nuissance parameters in the case of closed population models. Based on these likelihood functions, we discuss methods for point and interval estimation of the population size. The estimation methods are illustrated on a real data-set and their frequentist properties are analised via Monte Carlo simulation. / O processo de captura-recaptura, amplamente utilizado na estimação do número de elementos de uma população de animais, é também aplicado a outras áreas do conhecimento como Epidemiologia, Linguística, Con_abilidade de Software, Ecologia, entre outras. Uma das primeiras aplicações deste método foi feita por Laplace em 1783, com o objetivo de estimar o número de habitantes da França. Posteriormente, Carl G. J. Petersen em 1889 e Lincoln em 1930 utilizaram o mesmo estimador no contexto de popula ções de animais. Este estimador _cou conhecido na literatura como o estimador de _Lincoln-Petersen_. Em meados do século XX muitos pesquisadores se dedicaram à formula ção de modelos estatísticos adequados à estimação do tamanho populacional, o que causou um aumento substancial da quantidade de trabalhos teóricos e aplicados sobre o tema. Os modelos de captura-recaptura são construídos sob certas hipóteses relativas à população, ao processo de amostragem e às condições experimentais. A principal hipótese que diferencia os modelos diz respeito à mudança do número de indivíduos da popula- ção durante o período do experimento. Os modelos que permitem que haja nascimentos, mortes ou migração são chamados de modelos para população aberta, enquanto que os modelos em que tais eventos não são permitidos são chamados de modelos para popula- ção fechada. Neste trabalho, o objetivo é caracterizar o comportamento de funções de verossimilhança obtidas por meio da utilização de métodos de eliminação de parâmetros perturbadores, no caso de modelos para população fechada. Baseado nestas funções de verossimilhança, discutimos métodos de estimação pontual e intervalar para o tamanho populacional. Os métodos de estimação são ilustrados através de um conjunto de dados reais e suas propriedades frequentistas são analisadas via simulação de Monte Carlo.
|
Page generated in 0.0511 seconds