Spelling suggestions: "subject:"bibration,"" "subject:"clibration,""
711 |
Bostäder vid stränder och järnvägar - risker, attraktivitet och konflikter. Fallstudie: Öbacka strand i Umeå kommun.Marklund, Emil January 2014 (has links)
This study aims to analyze the risks with building new households between railroads and shore, the focus of the study lays on Öbacka strand in Umeå municipality. The study also investigate if a land use conflict has taken place and how it was handled. The paper is based on different documents that was central for the work of planning the households and some interviews with operators that was highly involved with the planning of the area. The results shows that there is several risks with establishing new household between railroads and shores. Mainly because of the exposure of noise from the railways, though the risk for impact on the living environment for animals were low in this case there is a generally risk that it could get negative effects. It also a very important that the availability to the shore is secured. Planning in this type of area involves a great number of operators can easily cause a conflict due to the different perspectives on how the land should be used in the future, and also because of protecting different interests / Denna studies syfte är att redogöra och analysera riskerna med att etablera nya bostäder mellan järnvägar och stränder, studien fokuserar på området Öbacka strand i Umeå kommun. Studien undersöker även om en konflikt har funnits och hur detta har hanterats. Studien är av kvalitativ art och baseras på plandokument som var centrala för planeringsarbetet av de nya bostäderna och intervjuer aktörer som var väldigt involverade i planeringen för området. Resultatet visar att det finns ett antal risker med att etablera nya bostäder som ligger mellan järnvägar och risker. De huvudsakliga riskerna beror på exponeringar av buller från järnvägar, trots att det inte fanns större risker att djur- och växtlivets livsförhållanden skulle drabbas negativt i detta fall finns det en generell risk som kan ge negativa effekter. Det är också väldigt viktigt att säkra tillgängligheten för människor till stränderna. Denna typ av planering involverar många olika aktörer vilket kan lätt ge upphov till en konflikt som grundar sig ska nyttjas i framtiden, även på grund av att många intressen ska skyddas.
|
712 |
Noise in induction motors.Attas, Isaac. January 1949 (has links)
Psychologists have found that noise reduces human efficiency. This effect may be considerable even for the most phlegmatic individuals. Moreover, almost everyone objects to unnecessary noises. In recent years there has arisen a very insistent demand for quieter electrical apparatus. This applies particularly to household apparatus such as refrigerator motors, vacuum sweepers and the like. Practically noiseless motors are also required for various drives ( refrigerating plants, circulation pumps of hot water systems, big ventilating systems for rooms, organ bellows etc. ) in non industrial plants such as storerooms, business houses, hotels, hospitals, churches, theatres etc> where all noise should be suppressed. It must also be noted that the stage has been reached where it is taken for granted that the products of the better known manufacturers will give entirely satisfactory performance, and often, the deciding factor between various makes is only the quietness with which the equipment operates. However,noise and vibration are not merely annoyances which may affect the sale of a product or lower the efficiency of a worker. They are often evidences of defects in design and manufacture which seriously affect the life of the equipment and, in many cases, the safety of the user.[...]
|
713 |
Distributed Optical Fiber Vibration Sensor Based on Rayleigh BackscatteringQin, Zengguang 01 May 2013 (has links)
This thesis includes studies of developing distributed optical fiber vibration sensor based on Rayleigh backscattering with broad frequency response range and high spatial resolution.
Distributed vibration sensor based on all-polarization-maintaining configurations of the phase-sensitive optical time domain reflectometry (OTDR) is developed to achieve high frequency response and spatial resolution. Signal fading and noise induced by polarization change can be mitigated via polarization-maintaining components. Pencil-break event is tested as a vibration source and the layout of the sensing fiber part is designed for real applications. The spatial resolution is 1m and the maximum distance between sensing fiber and vibration event is 18cm.
Wavelet denoising method is introduced to improve the performance of the distributed vibration sensor based on phase-sensitive OTDR in standard single-mode fiber. Noise can be reduced more effectively by thresholding the wavelet coefficient. Sub-meter spatial resolution is obtained with a detectable frequency up to 8 kHz.
A new distributed vibration sensor based on time-division multiplexing (TDM) scheme is also studied. A special probe waveform including a narrow pules and a quasi-continuous wave can combine the conventional phase-sensitive OTDR system and polarization diversity scheme together in one single-mode fiber without crosstalk. Position and frequency of the vibration can be determined by these two detection systems consecutively in different time slots. Vibration event up to 0.6 MHz is detected with 1m spatial resolution along a 680m single-mode sensing fiber.
Continuous wavelet transform (CWT) is investigated to study the non-stationary vibration events measured by our phase OTDR system. The CWT approach can access both frequency and time information of the vibration event simultaneously. Distributed vibration measurements of 500Hz and 500Hz to 1 kHz sweep events over 20 cm fiber length are demonstrated using a single-mode fiber.
Optical frequency-domain reflectometry (OFDR) for vibration sensing is proposed for the first time. The local Rayleigh backscatter spectrum shift in time sequence could be used to determine dynamic strain information at a specific position of the vibrated state with respect to that of the non-vibrated state. Measurable frequency range of 0-32 Hz with the spatial resolution of 10 cm is demonstrated along a 17 m fiber.
|
714 |
Non-parametric and Non-filtering Methods for Rolling Element Bearing Condition MonitoringFaghidi, Hamid 12 March 2014 (has links)
Rolling element bearings are one of the most significant elements and frequently-used components in mechanical systems. Bearing fault detection and diagnosis is important for preventing productivity loss and averting catastrophic failures of mechanical systems. In industrial applications, bearing life is often difficult to predict due to different application conditions, load and speed variations, as well as maintenance practices. Therefore, reliable fault detection is necessary to ensure productive and safe operations.
Vibration analysis is the most widely used method for detection and diagnosis of bearing malfunctions. A measured vibration signal from a sensor is often contaminated by noise and vibration interference components. Over the years, many methods have been developed to reveal fault signatures, and remove noise and vibration interference components.
Though many vibration based methods have been proposed in the literature, the high frequency resonance (HFR) technique is one of a very few methods have received certain industrial acceptance. However, the effectiveness of the HFR methods depends, to a great extent, on some parameters such as bandwidth and centre frequency of the fault excited resonance, and window length. Proper selection these parameters is often a knowledge-demanding and time-consuming process. In particular, the filter designed based on the improperly selected bandwidth and center frequency of the fault excited resonance can filter out the true fault information and mislead the detection/diagnosis decisions. In addition, even if these parameters can be selected properly at beginning of each process, they may become invalid in a time-varying environment after a certain period of time. Hence, they may have to be re-calculated and updated, which is again a time-consuming and error-prone process. This undermines the practical significance of the above methods for online monitoring of bearing conditions.
To overcome the shortcomings of existing methods, the following four non-parametric and non-filtering methods are proposed:
1. An amplitude demodulation differentiation (ADD) method,
2. A calculus enhanced energy operator (CEEO) method,
3. A higher order analytic energy operator (HO_AEO) approach, and
4. A higher order energy operator fusion (HOEO_F) technique.
The proposed methods have been evaluated using both simulated and experimental data.
|
715 |
An investigation of case-based reasoning for decision support of diagnosis in a large-scale ill-structured domainOatley, Giles C. January 2000 (has links)
No description available.
|
716 |
An investigation into heavy vehicle drum brake squealLang, Allan M. January 1994 (has links)
Many mechanisms have been suggested for brake squeal over many years. In order to identify the most appropriate of these mechanisms, an experimental investigation has been carried out to define in detail the vibration characteristics of a squealing heavy vehicle air operated drum brake on both a vehicle and a laboratory brake test rig. This required the development of a novel 'scanning' technique for the modal analysis of the rotating drum, which showed the presence of well-defined complex wavelike modes. From these results, the dynamic behaviour of the drum, in particular, is found to be in good qualitative agreement with the predictions of a simple 'binary flutter' mechanism of squeal. Based on the role of rotor symmetry in this mechanism, a means of decoupling, flutter modes is developed involving a reduction in the rotational symmetry of the drum by means of attaching masses in a defined pattern at its periphery. It is shown theoretically that such decoupling would be expected to increase the dynamic stability of the brake, and experimental application of the technique confirms its effectiveness in reducing or eliminating squeal. Practical design aspects of reducing the rotational symmetry of the drum are considered, using finite element modelling, and it is also shown that the technique can be effective in other types of vehicle brake, such as disc brakes and hydraulic drum brakes. The simple lumped parameter models used in the above work are inadequate as brake design tools, however, and so a novel application of finite element modelling is used to extend the principle of the binary flutter mechanism to a more detailed model of a complete brake. This is shown to be capable of predicting known features of squeal and may be used as a brake design tool for both the brake structure and the friction material.
|
717 |
鉛直支持された磁気軸受・剛性ロータ系の非線形振動解析と実験 (制御力の遅れを考慮した場合)井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 村上, 新, MURAKAMI, Shin 07 1900 (has links)
No description available.
|
718 |
磁気浮上制御系の非線形強制振動 (調和共振の分岐現象と超調波共振の発生)井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 池田, 陽介, IKEDA, Yosuke 06 1900 (has links)
No description available.
|
719 |
Identification of structural parameters and hydrodynamic effects for forced and free vibrationKruchoski, Brian L. (Brian Louis) 10 August 1992 (has links)
Statistically-based estimation techniques are presented
in this study. These techniques incorporate structural test
data to improve finite element models used for dynamic
analysis.
Methods are developed to identify optimum values of the
parameters of finite element models describing structures.
The parameters which may be identified are : element area,
mass density, and moment of inertia; lumped mass and stiffness;
and the Rayleigh damping coefficients. A technique is
described for incorporating hydrodynamic effects on small
bodies by identifying equivalent structure mass, stiffness,
and damping properties. Procedures are presented for both
the free vibration problem and for forced response in the
time domain.
The equations for parameter identification are formulated
in terms of measured response, calculated response,
the prior estimate of the parameters, and a weighting
matrix. The form of the weighting matrix is presented for
three identification schemes : Least Squares, Weighted Least
Squares, and Bayesian. The weighting matrix is shown to be
a function of a sensitivity matrix relating structural
response to the parameters of the finite element model.
Sensitivities for the forced vibration problem are derived
from the Wilson Theta equations, and are presented for the
free vibration problem.
The algorithm used for parameter identification is
presented, and its implementation in a computer program is
described.
Numerical examples are included to demonstrate the
solution technique and the validity and capability of the
identification method. All three estimation schemes are
found to provide efficient and reliable parameter identification
for many modeling situations. / Graduation date: 1993
|
720 |
Vibrational characteristics of structures with uncertaintyLucas, Geoffrey Iain, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This thesis is concerned with the prediction of the vibro-acoustic response of structures with uncertain properties in the mid frequency region. The motivation for this research is the growing need of engineers to understand the responses of a group of similar structures ranging from vehicles, aircraft and aerospace structures, to household whitegood appliances. These structures are complex in geometry and may possess variability in their material or geometric properties, as well as variation arising from the assembly and manufacturing processes. Small variations can have a significant effect on a dynamic response of a structure, and the effect of structural uncertainties increases as the frequency increases. Deterministic modelling techniques such as finite element analysis are only suitable to model complex structures at low frequencies. Furthermore, FEA cannot easily account for uncertainty or randomness in structural parameters. High frequency dynamic predictive techniques such as Statistical Energy Analysis can account for structural uncertainty but is limited to structures with high modal density. There exists a frequency range between the two methods in which neither technique can be applied with great confidence. The objective of this thesis is to investigate predictive techniques for mid frequency vibration analysis of dynamic systems with structural uncertainties. The first part of this work is to numerically characterise the effect of a range of uncertainties on the modal statistics of structures. The degree of uncertainty required to achieve universality of the statistical properties is investigated. This is achieved by examining the modal statistics of dynamic systems with a range of uncertainty, corresponding to uncertainty due to mass and stiffness perturbations, uncertainty at the boundaries of a structure, uncertainty in the coupling between structures, uncertainty in the material properties of a structure and uncertainty in the geometry of a structure. Several structures are examined corresponding to a plate with masses and/or linear springs added at random locations, a plate with torsional springs attached at random locations along its boundary edges, two plates coupled by linear springs at random locations, a mass-loaded coupled L-shaped plate, a mass-loaded frame-plate structure, and a plate with varying Young's modulus, density and thickness. The natural frequencies of the aforementioned structures have been derived using either the Lagrange-Rayleigh-Ritz technique, finite element analysis, or the use of interval analysis in conjunction with FEA. The natural frequency statistics of structures with uncertain properties are observed using two statistical measures; the statistical overlap factor and the probability density function of the spacing between successive natural frequencies. The statistical overlap factor is defined by the variation in a natural frequency from its mean value measured across an ensemble of nominally identical structures with uncertainty. For a single ensemble member, the probability density function of the spacing between successive natural frequencies is compared to a Rayleigh distribution of the mean frequency spacing. A Rayleigh distribution of modal spacings is a feature of the universality exhibited by structures with uncertainty. To further investigate the effect of structural uncertainty on the vibrational characteristics of structures, the interval analysis is applied to finite element models of a plate with uncertainty in its material properties and dimensions. Using this method, the Young's modulus, density and thickness of a rectangular plate were set to vary by a small amount within predefined bounds. Using finite element equations, the natural frequencies and modeshapes of the structure were then determined in terms of the Young's modulus, density and plate thickness. For the mass and spring loaded plates, the springs were shown to affect the lower order modes while the masses had a significant effect on the higher order modes. As the frequency increased, only a small amount of perturbation was sufficient to affect the natural frequencies of a structure. Using the interval analysis method, the variation of the natural frequencies from their deterministic value increased as the frequency increased. An ergodic hypothesis was used to examine the responses statistics of structures with uncertainty. Three structures have been computationally studied corresponding to two plates coupled by springs, an L-shaped plate and a frame plate structure. Uncertainty has been generated for the two coupled plates by locating the springs randomly across the surface of the two plates. For the L-shaped plate and a frame plate structure, uncertainty was generated by randomly positioning small masses across the plates. Using the ergodic hypothesis, the frequency averaged response on one member of an ensemble is compare with the ensemble averaged response. It was found that the ensemble averaged response was well predicted by a frequency averaged response of a single ensemble member. The width of the frequency averaging band was shown to have a large influence on the quality of the match between the frequency and ensemble averaged responses. Results were significantly improved using a frequency averaging bandwidth which varies proportionally to frequency. Finally, experiments have been conducted on an L-shaped plate, a frame plate structure and a vehicle to validate the computational results for the natural frequency and response statistics.
|
Page generated in 0.0782 seconds