• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semi-synchronous video for deaf telephony with an adapted synchronous codec

Ma, Zhenyu January 2009 (has links)
Magister Scientiae - MSc / Communication tools such as text-based instant messaging, voice and video relay services, real-time video chat and mobile SMS and MMS have successfully been used among Deaf people. Several years of field research with a local Deaf community revealed that disadvantaged South African Deaf people preferred to communicate with both Deaf and hearing peers in South African Sign Language as opposed to text. Synchronous video chat and video relay services provided such opportunities. Both types of services are commonly available in developed regions, but not in developing countries like South Africa. This thesis reports on a workaround approach to design and develop an asynchronous video communication tool that adapted synchronous video codecs to store-and-forward video delivery. This novel asynchronous video tool provided high quality South African Sign Language video chat at the expense of some additional latency. Synchronous video codec adaptation consisted of comparing codecs, and choosing one to optimise in order to minimise latency and preserve video quality. Traditional quality of service metrics only addressed real-time video quality and related services. There was no such standard for asynchronous video communication. Therefore, we also enhanced traditional objective video quality metrics with subjective assessment metrics conducted with the local Deaf community. / South Africa
2

Semi-synchronous Video for Deaf Telephony with an Adapted Synchronous Codec

Ma, Zhenyu January 2009 (has links)
<p>Communication tools such as text-based instant messaging, voice and video relay services, real-time video chat and mobile SMS and MMS have successfully been used among Deaf people.&nbsp / Several years of field research with a local Deaf community revealed that disadvantaged South African Deaf people preferred to communicate with both Deaf and hearing peers in South African&nbsp / Sign Language as opposed to text. Synchronous video chat and video relay services provided such opportunities. Both types of services are commonly available in developed regions, but not in&nbsp / developing countries like South Africa. This thesis reports on a workaround approach to design and develop an asynchronous video communication tool that adapted synchronous video codecs&nbsp / to store-and-forward video delivery. This novel asynchronous video tool provided high quality South African Sign Language video chat at the expense of some additional latency. Synchronous video&nbsp / codec adaptation consisted of comparing codecs, and choosing one to optimise in order to minimise latency and preserve video quality. Traditional quality of service metrics only addressed real-time video quality and related services. There was no such standard for asynchronous video communication. Therefore, we also enhanced traditional objective video quality&nbsp / metrics with subjective assessment metrics conducted with the local Deaf community.&nbsp / </p>
3

Semi-synchronous Video for Deaf Telephony with an Adapted Synchronous Codec

Ma, Zhenyu January 2009 (has links)
<p>Communication tools such as text-based instant messaging, voice and video relay services, real-time video chat and mobile SMS and MMS have successfully been used among Deaf people.&nbsp / Several years of field research with a local Deaf community revealed that disadvantaged South African Deaf people preferred to communicate with both Deaf and hearing peers in South African&nbsp / Sign Language as opposed to text. Synchronous video chat and video relay services provided such opportunities. Both types of services are commonly available in developed regions, but not in&nbsp / developing countries like South Africa. This thesis reports on a workaround approach to design and develop an asynchronous video communication tool that adapted synchronous video codecs&nbsp / to store-and-forward video delivery. This novel asynchronous video tool provided high quality South African Sign Language video chat at the expense of some additional latency. Synchronous video&nbsp / codec adaptation consisted of comparing codecs, and choosing one to optimise in order to minimise latency and preserve video quality. Traditional quality of service metrics only addressed real-time video quality and related services. There was no such standard for asynchronous video communication. Therefore, we also enhanced traditional objective video quality&nbsp / metrics with subjective assessment metrics conducted with the local Deaf community.&nbsp / </p>
4

Research and developments of Dirac video codec

Tun, Myo January 2008 (has links)
In digital video compression, apart from storage, successful transmission of the compressed video data over the bandwidth limited erroneous channels is another important issue. To enable a video codec for broadcasting application, it is required to implement the corresponding coding tools (e.g. error-resilient coding, rate control etc.). They are normally non-normative parts of a video codec and hence their specifications are not defined in the standard. In Dirac as well, the original codec is optimized for storage purpose only and so, several non-normative part of the encoding tools are still required in order to be able to use in other types of application. Being the "Research and Developments of the Dirac Video Codec" as the research title, phase I of the project is mainly focused on the error-resilient transmission over a noisy channel. The error-resilient coding method used here is a simple and low complex coding scheme which provides the error-resilient transmission of the compressed video bitstream of Dirac video encoder over the packet erasure wired network. The scheme combines source and channel coding approach where error-resilient source coding is achieved by data partitioning in the wavelet transformed domain and channel coding is achieved through the application of either Rate-Compatible Punctured Convolutional (RCPC) Code or Turbo Code (TC) using un-equal error protection between header plus MV and data. The scheme is designed mainly for the packet-erasure channel, i.e. targeted for the Internet broadcasting application. But, for a bandwidth limited channel, it is still required to limit the amount of bits generated from the encoder depending on the available bandwidth in addition to the error-resilient coding. So, in the 2nd phase of the project, a rate control algorithm is presented. The algorithm is based upon the Quality Factor (QF) optimization method where QF of the encoded video is adaptively changing in order to achieve average bitrate which is constant over each Group of Picture (GOP). A relation between the bitrate, R and the QF, which is called Rate-QF (R-QF) model is derived in order to estimate the optimum QF of the current encoding frame for a given target bitrate, R. In some applications like video conferencing, real-time encoding and decoding with minimum delay is crucial, but, the ability to do real-time encoding/decoding is largely determined by the complexity of the encoder/decoder. As we all know that motion estimation process inside the encoder is the most time consuming stage. So, reducing the complexity of the motion estimation stage will certainly give one step closer to the real-time application. So, as a partial contribution toward realtime application, in the final phase of the research, a fast Motion Estimation (ME) strategy is designed and implemented. It is the combination of modified adaptive search plus semi-hierarchical way of motion estimation. The same strategy was implemented in both Dirac and H.264 in order to investigate its performance on different codecs. Together with this fast ME strategy, a method which is called partial cost function calculation in order to further reduce down the computational load of the cost function calculation was presented. The calculation is based upon the pre-defined set of patterns which were chosen in such a way that they have as much maximum coverage as possible over the whole block. In summary, this research work has contributed to the error-resilient transmission of compressed bitstreams of Dirac video encoder over a bandwidth limited error prone channel. In addition to this, the final phase of the research has partially contributed toward the real-time application of the Dirac video codec by implementing a fast motion estimation strategy together with partial cost function calculation idea.
5

End to end Multi-Objective Optimisation of H.264 and HEVC CODECs

Al Barwani, Maryam Mohsin Salim January 2018 (has links)
All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features.
6

System-on-a-Chip (SoC) based Hardware Acceleration in Register Transfer Level (RTL) Design

Niu, Xinwei 08 November 2012 (has links)
Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.
7

Videoströmningsarkitektur för ett molnbaserat drönarsystem / Video streaming architecture for a cloud based drone system

Cedervall, Hugo, Steen-Holmberg, Martin, Süsskind, Caspian, Norström, Daniel, Ljung, Mattias, Almgren, Robert, Orädd, Helena January 2020 (has links)
Denna rapport behandlar det arbete som under våren 2020 utfördes av en grupp på sju civilingenjörsstudenter i data- och mjukvaruteknik vid Linköpings universitet som en del av kursen TDDD96 – Kandidatprojekt i programvaruutveckling. Projektet utfärdades på efterfrågan av företaget Airpelago, och gick ut på att utveckla en stabil grund för ett molnbaserat videoströmningssystem. Denna rapport beskriver den färdiga produkten, förklarar de beslut som togs, beskriver vilka problem som uppstått och hur dessa lösts, samt diskuterar det slutgiltiga arbetet. Rapporten innehåller även sju individuella bidragskrivna av gruppens enskilda medlemmar / <p>Presentationen genomfördes på distans</p>
8

Výukový video kodek / Educational video codec

Dvořák, Martin January 2012 (has links)
The first goal of diploma thesis is to study the basic principles of video signal compression. Introduction to techniques used to reduce irrelevancy and redundancy in the video signal. The second goal is, on the basis of information about compression tools, implement the individual compression tools in the programming environment of Matlab and assemble simple model of the video codec. Diploma thesis contains a description of the three basic blocks, namely - interframe coding, intraframe coding and coding with variable length word - according the standard MPEG-2.

Page generated in 0.0543 seconds