• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 56
  • 9
  • 9
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 88
  • 78
  • 76
  • 72
  • 47
  • 43
  • 42
  • 41
  • 37
  • 36
  • 36
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Machine learning mode decision for complexity reduction and scaling in video applications

Grellert, Mateus January 2018 (has links)
As recentes inovações em técnicas de Aprendizado de Máquina levaram a uma ampla utilização de modelos inteligentes para resolver problemas complexos que são especialmente difíceis de computar com algoritmos e estruturas de dados convencionais. Em particular, pesquisas recentes em Processamento de Imagens e Vídeo mostram que é possível desenvolver modelos de Aprendizado de Máquina que realizam reconhecimento de objetos e até mesmo de ações com altos graus de confiança. Além disso, os últimos avanços em algoritmos de treinamento para Redes Neurais Profundas (Deep Learning Neural Networks) estabeleceram um importante marco no estudo de Aprendizado de Máquina, levando a descobertas promissoras em Visão Computacional e outras aplicações. Estudos recentes apontam que também é possível desenvolver modelos inteligentes capazes de reduzir drasticamente o espaço de otimização do modo de decisão em codificadores de vídeo com perdas irrelevantes em eficiência de compressão. Todos esses fatos indicam que Aprendizado de Máquina para redução de complexidade em aplicações de vídeo é uma área promissora para pesquisa. O objetivo desta tese é investigar técnicas baseadas em aprendizado para reduzir a complexidade das decisões da codificação HEVC, com foco em aplicações de codificação e transcodificação rápidas. Um perfilamento da complexidade em codificadores é inicialmente apresentado, a fim de identificar as tarefas que requerem prioridade para atingir o objetivo dessa tese. A partir disso, diversas variáveis e métricas são extraídas durante os processos de codificação e decodificação para avaliar a correlação entre essas variáveis e as decisões de codificação associadas a essas tarefas. Em seguida, técnicas de Aprendizado de Máquina são empregadas para construir classificadores que utilizam a informação coletada para prever o resultado dessas decisões, eliminando o custo computacional necessário para computá-las. As soluções de codificação e transcodificação foram desenvolvidas separadamente, pois o tipo de informação é diferente em cada caso, mas a mesma metologia foi aplicada em ambos os casos. Além disso, mecanismos de complexidade escalável foram desenvolvidos para permitir o melhor desempenho taxa-compressão para um dado valor de redução de complexidade. Resultados experimentais apontam que as soluções desenvolvidas para codificação rápida atingiram reduções de complexidade entre 37% e 78% na média, com perdas de qualidade entre 0.04% e 4.8% (medidos em Bjontegaard Delta Bitrate – BD-BR). Já as soluções para trancodificação rápida apresentaram uma redução de 43% até 67% na complexidade, com BD-BR entre 0.34% e 1.7% na média. Comparações com o estado da arte confirmam a eficácia dos métodos desenvolvidos, visto que são capazes de superar os resultados atingidos por soluções similares. / The recent innovations in Machine Learning techniques have led to a large utilization of intelligent models to solve complex problems that are especially hard to compute with traditional data structures and algorithms. In particular, the current research on Image and Video Processing shows that it is possible to design Machine Learning models that perform object recognition and even action recognition with high confidence levels. In addition, the latest progress on training algorithms for Deep Learning Neural Networks was also an important milestone in Machine Learning, leading to prominent discoveries in Computer Vision and other applications. Recent studies have also shown that it is possible to design intelligent models capable of drastically reducing the optimization space of mode decision in video encoders with minor losses in coding efficiency. All these facts indicate that Machine Learning for complexity reduction in visual applications is a very promising field of study. The goal of this thesis is to investigate learning-based techniques to reduce the complexity of the HEVC encoding decisions, focusing on fast video encoding and transcoding applications. A complexity profiling of HEVC is first presented to identify the tasks that must be prioritized to accomplish our objective. Several variables and metrics are then extracted during the encoding and decoding processes to assess their correlation with the encoding decisions associated with these tasks. Next, Machine Learning techniques are employed to construct classifiers that make use of this information to accurately predict the outcome of these decisions, eliminating the timeconsuming operations required to compute them. The fast encoding and transcoding solutions were developed separately, as the source of information is different on each case, but the same methodology was followed in both cases. In addition, mechanisms for complexity scalability were developed to provide the best rate-distortion performance given a target complexity reduction. Experimental results demonstrated that the designed fast encoding solutions achieve time savings of 37% up to 78% on average, with Bjontegaard Delta Bitrate (BD-BR) increments between 0.04% and 4.8%. In the transcoding results, a complexity reduction ranging from 43% to 67% was observed, with average BD-BR increments from 0.34% up to 1.7%. Comparisons with state of the art confirm the efficacy of the designed methods, as they outperform the results achieved by related solutions.
142

Desenvolvimento de Arquiteturas de Alto Desempenho dedicadas à compressão de vídeo segundo o Padrão H.264/AVC / Design of high performance architectures dedicated to video compression according to the H.264/AVC standard

Agostini, Luciano Volcan January 2007 (has links)
A compressão de vídeo é essencial para aplicações que manipulam vídeos digitais, em função da enorme quantidade de informação necessária para representar um vídeo sem nenhum tipo de compressão. Esta tese apresenta o desenvolvimento de soluções arquiteturais dedicadas e de alto desempenho para a compressão de vídeos, com foco no padrão H.264/AVC. O padrão H.264/AVC é o mais novo padrão de compressão de vídeo da ITU-T e da ISO e atinge as mais elevadas taxas de compressão dentre todos os padrões de codificação de vídeo existentes. Este padrão também possui a maior complexidade computacional dentre os padrões atuais. Esta tese apresenta soluções arquiteturais para os módulos da estimação de movimento, da compensação de movimento, das transformadas diretas e inversas e da quantização direta e inversa. Inicialmente, são apresentados alguns conceitos básicos de compressão de vídeo e uma introdução ao padrão H.264/AVC, para embasar as explicações das soluções arquiteturais desenvolvidas. Então, as arquiteturas desenvolvidas para os módulos das transformadas diretas e inversas, da quantização direta e inversa, da estimação de movimento e da compensação de movimento são apresentadas. Todas as arquiteturas desenvolvidas foram descritas em VHDL e foram mapeadas para FPGAs Virtex-II Pro da Xilinx. Alguns dos módulos foram, também, sintetizados para standard-cells. Os resultados obtidos através da síntese destas arquiteturas são apresentados e discutidos. Para todos os casos, os resultados de síntese indicaram que as arquiteturas desenvolvidas estão aptas para atender as demandas de codecs H.264/AVC direcionados para vídeos de alta resolução. / Video coding is essential for applications based in digital videos, given the enormous amount of bits which are required to represent a video sequence without compression. This thesis presents the design of dedicated and high performance architectures for video compression, focusing in the H.264/AVC standard. The H.264/AVC standard is the latest ITU-T and ISO standard for video compression and it reaches the highest compression rates amongst all the current video coding standards. This standard has also the highest computational complexity among all of them. This thesis presents architectural solutions for the modules of motion estimation, motion compensation, forward and inverse transforms and forward and inverse quantization. Some concepts of video compression and an introduction to the H.264/AVC standard are presented and they serve as basis for the architectural developments. Then, the designed architectures for forward and inverse transforms, forward and inverse quantization, motion estimation and motion compensation are presented. All designed architectures were described in VHDL and they were mapped to Xilinx Virtex-II Pro FPGAs. Some modules were also synthesized into standard-cells. The synthesis results are presented and discussed. For all cases, the synthesis results indicated that the architectures developed in this work are able to meet the demands of H.264/AVC codecs targeting high resolution videos.
143

Arquiteturas de hardware dedicadas para codificadores de vídeo H.264 : filtragem de efeitos de bloco e codificação aritmética binária adaptativa a contexto / Dedicated hardware architectures for h.64 video encoders – deblocking filter and context adaptive binary arithmetic coding

Rosa, Vagner Santos da January 2010 (has links)
Novas arquiteturas de hardware desenvolvidas para blocos chave do padrão de codificação de vídeo ISO/IEC 14496-10 são discutidas, propostas, implementadas e validades nesta tese. Também chamado de H.264, AVC (Advanced Video Coder) ou MPEG-4 parte 10, o padrão é o estado da arte em codificação de vídeo, apresentando as mais altas taxas de compressão possíveis por um compressor de vídeo padronizado por organismos internacionais (ISO/IEC e ITU-T). O H.264 já passou por três revisões importantes: na primeira foram incluídos novos perfis, voltados para a extensão da fidelidade e aplicações profissionais, na segunda veio o suporte a escalabilidade (SVC – Scalable Video Coder). Uma terceira revisão suporta fontes de vídeo com múltiplas vistas (MVC – Multi-view Video Coder). Nesta tese são apresentadas arquiteturas para dois módulos do codificador H.264: o CABAC e o Filtro de Deblocagem (Deblocking Filter). O CABAC (Context-Adaptive Binary Arithmetic Coder) possui desafios importantes devido às dependências de dados de natureza bit-a-bit. Uma revisão das alternativas arquiteturais e uma solução específica para a codificação CABAC é apresentada nesta tese. O filtro de deblocagem também apresenta diversos desafios importantes para seu desenvolvimento e foi alvo de uma proposta arquitetural apresentada neste trabalho. Finalmente a arquitetura de uma plataforma de validação genérica para validar módulos desenvolvidos para o codificador e decodificador H.264 também é apresentada. Os módulos escolhidos estão de acordo com os demais trabalhos realizados pelo grupo de pesquisa da UFRGS, que têm por objetivo desenvolver um decodificador e um codificador completos capazes de processar vídeo digital de alta definição no formato 1080p em tempo real. / New hardware architectures developed for key blocks of the ISO/IEC 14496-10 video coding standard are discussed, proposed, implemented, and validated in this thesis. The standard is also called H.264, AVC (Advanced Video Coder) or MPEG-4 part 10, and is the state-of-the-art in video coding, presenting the highest compression ratios achievable by an internationally standardized video coder (ISO/IEC and ITU-T). The H.264 has already been revised three times: the first included new profiles for fidelity extension and professional applications. The second brought the scalability support (SVC – Scalable Video Coder). The third revision supports video sources with multiple views (MVC – Multi-view Video Coder). The present work developed high performance architectures for CABAC (Context-Adaptive Binary Arithmetic Coder), which were challenging because of the bitwise data dependencies. A through revision of the alternative architectures and a specific architectural solution for CABAC encoding are presented in this thesis. A dedicated hardware architecture for a HIGH profile Deblocking Filter is also presented, developed, validated and synthesized for two different targets: FPGA and ASIC. The validation methodology is presented and applied to three different modules of the H.264 encoder. The H.264 blocks dealt with in this thesis work complement those developed by other works in the UFRGS research group and contribute to the development of complete encoders for real-time processing of high definition digital video at 1080p.
144

Machine learning mode decision for complexity reduction and scaling in video applications

Grellert, Mateus January 2018 (has links)
As recentes inovações em técnicas de Aprendizado de Máquina levaram a uma ampla utilização de modelos inteligentes para resolver problemas complexos que são especialmente difíceis de computar com algoritmos e estruturas de dados convencionais. Em particular, pesquisas recentes em Processamento de Imagens e Vídeo mostram que é possível desenvolver modelos de Aprendizado de Máquina que realizam reconhecimento de objetos e até mesmo de ações com altos graus de confiança. Além disso, os últimos avanços em algoritmos de treinamento para Redes Neurais Profundas (Deep Learning Neural Networks) estabeleceram um importante marco no estudo de Aprendizado de Máquina, levando a descobertas promissoras em Visão Computacional e outras aplicações. Estudos recentes apontam que também é possível desenvolver modelos inteligentes capazes de reduzir drasticamente o espaço de otimização do modo de decisão em codificadores de vídeo com perdas irrelevantes em eficiência de compressão. Todos esses fatos indicam que Aprendizado de Máquina para redução de complexidade em aplicações de vídeo é uma área promissora para pesquisa. O objetivo desta tese é investigar técnicas baseadas em aprendizado para reduzir a complexidade das decisões da codificação HEVC, com foco em aplicações de codificação e transcodificação rápidas. Um perfilamento da complexidade em codificadores é inicialmente apresentado, a fim de identificar as tarefas que requerem prioridade para atingir o objetivo dessa tese. A partir disso, diversas variáveis e métricas são extraídas durante os processos de codificação e decodificação para avaliar a correlação entre essas variáveis e as decisões de codificação associadas a essas tarefas. Em seguida, técnicas de Aprendizado de Máquina são empregadas para construir classificadores que utilizam a informação coletada para prever o resultado dessas decisões, eliminando o custo computacional necessário para computá-las. As soluções de codificação e transcodificação foram desenvolvidas separadamente, pois o tipo de informação é diferente em cada caso, mas a mesma metologia foi aplicada em ambos os casos. Além disso, mecanismos de complexidade escalável foram desenvolvidos para permitir o melhor desempenho taxa-compressão para um dado valor de redução de complexidade. Resultados experimentais apontam que as soluções desenvolvidas para codificação rápida atingiram reduções de complexidade entre 37% e 78% na média, com perdas de qualidade entre 0.04% e 4.8% (medidos em Bjontegaard Delta Bitrate – BD-BR). Já as soluções para trancodificação rápida apresentaram uma redução de 43% até 67% na complexidade, com BD-BR entre 0.34% e 1.7% na média. Comparações com o estado da arte confirmam a eficácia dos métodos desenvolvidos, visto que são capazes de superar os resultados atingidos por soluções similares. / The recent innovations in Machine Learning techniques have led to a large utilization of intelligent models to solve complex problems that are especially hard to compute with traditional data structures and algorithms. In particular, the current research on Image and Video Processing shows that it is possible to design Machine Learning models that perform object recognition and even action recognition with high confidence levels. In addition, the latest progress on training algorithms for Deep Learning Neural Networks was also an important milestone in Machine Learning, leading to prominent discoveries in Computer Vision and other applications. Recent studies have also shown that it is possible to design intelligent models capable of drastically reducing the optimization space of mode decision in video encoders with minor losses in coding efficiency. All these facts indicate that Machine Learning for complexity reduction in visual applications is a very promising field of study. The goal of this thesis is to investigate learning-based techniques to reduce the complexity of the HEVC encoding decisions, focusing on fast video encoding and transcoding applications. A complexity profiling of HEVC is first presented to identify the tasks that must be prioritized to accomplish our objective. Several variables and metrics are then extracted during the encoding and decoding processes to assess their correlation with the encoding decisions associated with these tasks. Next, Machine Learning techniques are employed to construct classifiers that make use of this information to accurately predict the outcome of these decisions, eliminating the timeconsuming operations required to compute them. The fast encoding and transcoding solutions were developed separately, as the source of information is different on each case, but the same methodology was followed in both cases. In addition, mechanisms for complexity scalability were developed to provide the best rate-distortion performance given a target complexity reduction. Experimental results demonstrated that the designed fast encoding solutions achieve time savings of 37% up to 78% on average, with Bjontegaard Delta Bitrate (BD-BR) increments between 0.04% and 4.8%. In the transcoding results, a complexity reduction ranging from 43% to 67% was observed, with average BD-BR increments from 0.34% up to 1.7%. Comparisons with state of the art confirm the efficacy of the designed methods, as they outperform the results achieved by related solutions.
145

Desenvolvimento da arquitetura dos codificadores de entropia adaptativos CAVLC e CABAC do padrão H.264/AVC / Integrated architecture development of CAVLC and CABAC context-adaptive entropy encoders for H.264/AVC

Thiele, Cristiano January 2012 (has links)
Um codificador de entropia é responsável pela representação simbólica de dados de forma a representá-los com um menor número de bits. O H.264/AVC possui três codificadores de entropia: o Exponencial Golomb, o CAVLC que é o codificador de menor complexidade porém com um throughput maior de dados e o CABAC, com maior complexidade e com uma maior capacidade de compressão. A complexidade do codificador de entropia e a dependência dos dados sequenciais no bitstream original são os principais desafios para atender os requisitos de desempenho para compressão em tempo real. Por isso o desenvolvimento destas arquiteturas em hardware dedicado se faz necessário. Neste contexto, esta dissertação descreve os algoritmos que fazem parte da entropia do padrão H.264/AVC e as arquiteturas para estes codificadores entrópicos (Exponential Golomb, CAVLC e CABAC), além de uma arquitetura de hardware dedicada que integra todos estes a um montador final que atende às especificações da norma H.264/AVC. As arquiteturas foram escritas em VHDL e sintetizadas para dispositivos integrados FPGA. Em um dispositivo Virtex-5, este codificador de entropia completo suporta codificação de vídeos no nível 4.2 do padrão H.264/AVC (Full HD a 60 quadros por segundo). Esta arquitetura é a que apresenta o melhor desempenho de processamento dentre os melhores trabalhos relacionados, além de ser um codificador com todas as alternativas de codificação de entropia requeridas pela norma implementadas em um mesmo módulo. / An entropy encoder is responsible for the symbolic representation of a data stream so that the final representation contains less bits than the original. The H.264/AVC has three entropy coding schemes: the Exponential Golomb, the CAVLC encoder, that is less complex but with a higher data throughput, and the CABAC that is more complex while allowing for higher compression capability. The complexity of the entropy encoding and data dependencies on the original bitstream are the main challenges to meet the performance requirements for real-time compression. The development of these architectures in dedicated hardware is therefore necessary for high performance encoders. In this context, this work describes the algorithms that are part of the entropy encoders of the H.264/AVC standard, and the corresponding entropy coding architectures (Exponential Golomb, CAVLC and CABAC), plus a dedicated hardware architecture that integrates all of these encoders to a final bitstream assembler that is compliant to the aforementioned standard. The architectures were written in VHDL and synthesized into FPGA devices. In a Virtex-5 device, this full entropy encoder supports video encoding at level 4.2 of the H.264/AVC standard (Full HD at 60 frames per second). The developed architecture performs best among the most recent related architectures published, and has the unique feature of an encoder that implements in the same module all the alternative entropy encoders present in this standard for video compression.
146

Computational effort analysis and control in High Efficiency Video Coding

Silva, Mateus Grellert da January 2014 (has links)
Codificadores HEVC impõem diversos desafios em aplicações embarcadas com restrições computacionais, especialmente quando há restrições de processamento em tempo real. Para tornar a codificação de vídeos HEVC factível nessas situações, é proposto neste trabalho um Sistema de Controle de Complexidade (SCC) que se adapta dinamicamente a capacidades computacionais varáveis. Considera-se que o codificador faz parte de um sistema maior, o qual informa suas restrições como disponibilidade da CPU e processamento alvo para o SCC. Para desenvolver um sistema eficiente, uma extensiva análise de complexidade dos principais parâmetros de codificação é realizada. Nessa análise, foi definida uma métrica livre de particularidades da plataforma de simulação, como hierarquia de memória e acesso concorrente à unidade de processamento. Essa métrica foi chamada de Complexidade Aritmética e pode ser facilmente adaptada para diversas plataformas. Os resultados mostram que o SCC proposto atinge ganhos médios de 40% em complexidade com penalidade mínima em eficiência de compressão e qualidade. As análises de adaptabilidade e controlabilidade mostraram que o SCC rapidamente se adapta a diferentes restrições, por exemplo, quando a disponibilidade de recursos computacionais varia dinamicamente enquanto um vídeo é codificado. Comparado com o estado da arte, o SCC atinge uma redução de 44% no tempo de codificação com penalidade de 2.9% na taxa de compressão e acréscimo de 6% em BD-bitrate. / HEVC encoders impose several challenges in resource-/computationally-constrained embedded applications, especially under real-time throughput constraints. To make HEVC encoding feasible in such scenarios, an adaptive Computation Management Scheme (CMS) that dynamically adapts to varying compute capabilities is proposed in this work. It is assumed that the encoder is part of a larger system, which informs to the CMS its restrictions and requirements, like CPU availability and target frame rate. To effectively develop and apply such a scheme, an extensive computational effort analysis of key encoding parameters of the HEVC is carried out. For this analysis, a platform-orthogonal metric called “Arithmetic Complexity” was developed, which can be widely adopted for various computing platforms. The achieved results illustrate that the proposed CMS provides 40% cycle savings on average at the cost of small RD penalties. The adaptability and controllability analyses show that the CMS quickly adapts to different constrained scenarios, e.g., when the executing HEVC encoder requires more or less computation from the underlying platform. Compared to state of the art, the CMS achieves 44% encoding time savings while incurring a minor 2.9% increase in the bitrate and 6% increase in BD-bitrate.
147

Dedicated and reconfigurable hardware accelerators for high efficiency video coding standard / Aceleradores dedicados e reconfiguráveis para o padrão high efficiency video coding (HEVC)

Diniz, Claudio Machado January 2015 (has links)
A demanda por vídeos de resolução ultra-alta (além de 1920x1080 pontos) levou à necessidade de desenvolvimento de padrões de codificação de vídeo novos e mais eficientes para prover alta eficiência de compressão. O novo padrão High Efficiency Video Coding (HEVC), publicado em 2013, atinge o dobro da eficiência de compressão (ou 50% de redução no tamanho do vídeo codificado) comparado com o padrão mais eficiente até então, e mais utilizado no mercado, o padrão H.264/AVC (Advanced Video Coding). O HEVC atinge este resultado ao custo de uma elevação da complexidade computacional das ferramentas inseridas no codificador e decodificador. O aumento do esforço computacional do padrão HEVC e as limitações de potência das tecnologias de fabricação em silício atuais tornam essencial o desenvolvimento de aceleradores de hardware para partes importantes da aplicação do HEVC. Aceleradores de hardware fornecem maior desempenho e eficiência energética para aplicações específicas que os processadores de propósito geral. Uma análise da aplicação do HEVC realizada neste trabalho identificou as partes mais importantes do HEVC do ponto de vista do esforço computacional, a saber, o Filtro de Interpolação de Ponto Fracionário, o Filtro de Deblocagem e o cálculo da Soma das Diferenças Absolutas. Uma análise de tempo de execução do Filtro de Interpolação indica um grande potencial de economia de potência/energia pela adaptação do acelerador de hardware à carga de trabalho variável. Esta tese introduz novas contribuições no tema de aceleradores dedicados e reconfiguráveis para o padrão HEVC. Aceleradores de hardware dedicados para o Filtro de Interpolação de Pixel Fracionário, para o Filtro de Deblocagem, e para o cálculo da Soma das Diferenças Absolutas, são propostos, projetados e avaliados nesta tese. A arquitetura de hardware proposta para o filtro de interpolação atinge taxa de processamento similar ao estado da arte, enquanto reduz a área do hardware para este bloco em 50%. A arquitetura de hardware proposta para o filtro de deblocagem também atinge taxa de processamento similar ao estado da arte com uma redução de 5X a 6X na contagem de gates e uma redução de 3X na dissipação de potência. A nova análise comparativa proposta para os elementos de processamento do cálculo da Soma das Diferenças Absolutas introduz diversas alternativas de projeto de arquitetura com diferentes resultados de área, desempenho e potência. A nova arquitetura reconfigurável para o filtro de interpolação do padrão HEVC fornece 57% de redução de área em tempo de projeto e adaptação da potência/energia em tempo-real a cada imagem processada, o que ainda não é suportado pelas arquiteturas do estado da arte para o filtro de interpolação. Adicionalmente, a tese propõe um novo esquema de alocação de aceleradores em tempo-real para arquiteturas reconfiguráveis baseadas em tiles de processamento e de grão-misto, o que reduz em 44% (23% em média) o “overhead” de comunicação comparado com uma estratégia first-fit com reuso de datapaths, para números diferentes de tiles e organizações internas de tile. Este esquema de alocação leva em conta a arquitetura interna para alocar aceleradores de uma maneira mais eficiente, evitando e minimizando a comunicação entre tiles. Os aceleradores e técnicas dedicadas e reconfiguráveis propostos nesta tese proporcionam implementações de codificadores de vídeo de nova geração, além do HEVC, com melhor área, desempenho e eficiência em potência. / The demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need of developing new and more efficient video coding standards to provide high compression efficiency. The High Efficiency Video Coding (HEVC) standard, published in 2013, reaches double compression efficiency (or 50% reduction in size of coded video) compared to the most efficient video coding standard at that time, and most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC reaches this result at the cost of high computational effort of the tools included in the encoder and decoder. The increased computational effort of HEVC standard and the power limitations of current silicon fabrication technologies makes it essential to develop hardware accelerators for compute-intensive computational kernels of HEVC application. Hardware accelerators provide higher performance and energy efficiency than general purpose processors for specific applications. An HEVC application analysis conducted in this work identified the most compute-intensive kernels of HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter indicates a great potential of power/energy saving by adapting the hardware accelerator to the varying workload. This thesis introduces new contributions in the field of dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation are herein proposed, designed and evaluated. The interpolation filter hardware architecture achieves throughput similar to the state of the art, while reducing hardware area by 50%. Our deblocking filter hardware architecture also achieves similar throughput compared to state of the art with a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis also does a new comparative analysis of Sum of Absolute Differences processing elements, in which various architecture design alternatives with different area, performance and power results were introduced. A novel reconfigurable interpolation filter hardware architecture for HEVC standard was developed, and it provides 57% design-time area reduction and run-time power/energy adaptation in a picture-by-picture basis, compared to the state-of-the-art. Additionally a run-time accelerator binding scheme is proposed for tile-based mixed-grained reconfigurable architectures, which reduces the communication overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44% (23% on average) for different number of tiles and internal tile organizations. This run-time accelerator binding scheme is aware of the underlying architecture to bind datapaths in an efficient way, to avoid and minimize inter-tile communications. The new dedicated and reconfigurable hardware accelerators and techniques proposed in this thesis enable next-generation video coding standard implementations beyond HEVC with improved area, performance, and power efficiency.
148

RevGlyph - codificação e reversão esteroscópica anaglífica / RevGlyph - stereoscopic coding and reversing of anaglyphs

Matheus Ricardo Uihara Zingarelli 27 September 2013 (has links)
A atenção voltada à produção de conteúdos 3D atualmente tem sido alta, em grande parte devido à aceitação e à manifestação de interesse do público para esta tecnologia. Isso reflete num maior investimento das indústrias cinematográfica, de televisores e de jogos visando trazer o 3D para suas produções e aparelhos, oferecendo modos diferentes de interação ao usuário. Com isso, novas técnicas de captura, codificação e modos de reprodução de vídeos 3D, em especial, os vídeos estereoscópicos, vêm surgindo ou sendo melhorados, visando aperfeiçoar e integrar esta nova tecnologia com a infraestrutura disponível. Entretanto, notam-se divergências nos avanços feitos no campo da codificação, com cada método de visualização estereoscópica utilizando uma técnica de codificação diferente. Isso leva ao problema da incompatibilidade entre métodos de visualização. Uma proposta é criar uma técnica que seja genérica, isto é, independente do método de visualização. Tal técnica, por meio de parâmetros adequados, codifica o vídeo estéreo sem nenhuma perda significativa tanto na qualidade quanto na percepção de profundidade, característica marcante nesse tipo de conteúdo. A técnica proposta, denominada RevGlyph, transforma um par estéreo de vídeos em um único fluxo anaglífico, especialmente codificado. Tal fluxo, além de ser compatível com o método anaglífico de visualização, é também reversível a uma aproximação do par estéreo original, garantindo a independência do método de visualização / Attention towards 3D content production has been currently high, mostly because of public acceptance and interest in this kind of technology. That reflects in more investment from film, television and gaming industries, aiming at bringing 3D to their content and devices, as well as offering different ways of user interaction. Therefore, new capturing techniques, coding and playback modes for 3D video, particularly stereoscopic video, have been emerging or being enhanced, focusing on improving and integrating this new kind of technology with the available infrastructure. However, regarding advances in the coding area, there are conflicts because each stereoscopic visualization method uses a different coding technique. That leads to incompatibility between those methods. One proposal is to develop a generic technique, that is, a technique that is appropriate regardless the visualization method. Such technique, with suitable parameters, outputs a stereoscopic video with no significant loss of quality or depth perception, which is the remarkable feature of this kind of content. The proposed technique, named RevGlyph, transforms a stereo pair of videos into a single anaglyph stream, coded in a special manner. Such stream is not only compliant with the anaglyph visualization method but also reversible to something close to the original stereo pair, allowing visualization independence
149

Arquiteturas de hardware dedicadas para codificadores de vídeo H.264 : filtragem de efeitos de bloco e codificação aritmética binária adaptativa a contexto / Dedicated hardware architectures for h.64 video encoders – deblocking filter and context adaptive binary arithmetic coding

Rosa, Vagner Santos da January 2010 (has links)
Novas arquiteturas de hardware desenvolvidas para blocos chave do padrão de codificação de vídeo ISO/IEC 14496-10 são discutidas, propostas, implementadas e validades nesta tese. Também chamado de H.264, AVC (Advanced Video Coder) ou MPEG-4 parte 10, o padrão é o estado da arte em codificação de vídeo, apresentando as mais altas taxas de compressão possíveis por um compressor de vídeo padronizado por organismos internacionais (ISO/IEC e ITU-T). O H.264 já passou por três revisões importantes: na primeira foram incluídos novos perfis, voltados para a extensão da fidelidade e aplicações profissionais, na segunda veio o suporte a escalabilidade (SVC – Scalable Video Coder). Uma terceira revisão suporta fontes de vídeo com múltiplas vistas (MVC – Multi-view Video Coder). Nesta tese são apresentadas arquiteturas para dois módulos do codificador H.264: o CABAC e o Filtro de Deblocagem (Deblocking Filter). O CABAC (Context-Adaptive Binary Arithmetic Coder) possui desafios importantes devido às dependências de dados de natureza bit-a-bit. Uma revisão das alternativas arquiteturais e uma solução específica para a codificação CABAC é apresentada nesta tese. O filtro de deblocagem também apresenta diversos desafios importantes para seu desenvolvimento e foi alvo de uma proposta arquitetural apresentada neste trabalho. Finalmente a arquitetura de uma plataforma de validação genérica para validar módulos desenvolvidos para o codificador e decodificador H.264 também é apresentada. Os módulos escolhidos estão de acordo com os demais trabalhos realizados pelo grupo de pesquisa da UFRGS, que têm por objetivo desenvolver um decodificador e um codificador completos capazes de processar vídeo digital de alta definição no formato 1080p em tempo real. / New hardware architectures developed for key blocks of the ISO/IEC 14496-10 video coding standard are discussed, proposed, implemented, and validated in this thesis. The standard is also called H.264, AVC (Advanced Video Coder) or MPEG-4 part 10, and is the state-of-the-art in video coding, presenting the highest compression ratios achievable by an internationally standardized video coder (ISO/IEC and ITU-T). The H.264 has already been revised three times: the first included new profiles for fidelity extension and professional applications. The second brought the scalability support (SVC – Scalable Video Coder). The third revision supports video sources with multiple views (MVC – Multi-view Video Coder). The present work developed high performance architectures for CABAC (Context-Adaptive Binary Arithmetic Coder), which were challenging because of the bitwise data dependencies. A through revision of the alternative architectures and a specific architectural solution for CABAC encoding are presented in this thesis. A dedicated hardware architecture for a HIGH profile Deblocking Filter is also presented, developed, validated and synthesized for two different targets: FPGA and ASIC. The validation methodology is presented and applied to three different modules of the H.264 encoder. The H.264 blocks dealt with in this thesis work complement those developed by other works in the UFRGS research group and contribute to the development of complete encoders for real-time processing of high definition digital video at 1080p.
150

Dedicated and reconfigurable hardware accelerators for high efficiency video coding standard / Aceleradores dedicados e reconfiguráveis para o padrão high efficiency video coding (HEVC)

Diniz, Claudio Machado January 2015 (has links)
A demanda por vídeos de resolução ultra-alta (além de 1920x1080 pontos) levou à necessidade de desenvolvimento de padrões de codificação de vídeo novos e mais eficientes para prover alta eficiência de compressão. O novo padrão High Efficiency Video Coding (HEVC), publicado em 2013, atinge o dobro da eficiência de compressão (ou 50% de redução no tamanho do vídeo codificado) comparado com o padrão mais eficiente até então, e mais utilizado no mercado, o padrão H.264/AVC (Advanced Video Coding). O HEVC atinge este resultado ao custo de uma elevação da complexidade computacional das ferramentas inseridas no codificador e decodificador. O aumento do esforço computacional do padrão HEVC e as limitações de potência das tecnologias de fabricação em silício atuais tornam essencial o desenvolvimento de aceleradores de hardware para partes importantes da aplicação do HEVC. Aceleradores de hardware fornecem maior desempenho e eficiência energética para aplicações específicas que os processadores de propósito geral. Uma análise da aplicação do HEVC realizada neste trabalho identificou as partes mais importantes do HEVC do ponto de vista do esforço computacional, a saber, o Filtro de Interpolação de Ponto Fracionário, o Filtro de Deblocagem e o cálculo da Soma das Diferenças Absolutas. Uma análise de tempo de execução do Filtro de Interpolação indica um grande potencial de economia de potência/energia pela adaptação do acelerador de hardware à carga de trabalho variável. Esta tese introduz novas contribuições no tema de aceleradores dedicados e reconfiguráveis para o padrão HEVC. Aceleradores de hardware dedicados para o Filtro de Interpolação de Pixel Fracionário, para o Filtro de Deblocagem, e para o cálculo da Soma das Diferenças Absolutas, são propostos, projetados e avaliados nesta tese. A arquitetura de hardware proposta para o filtro de interpolação atinge taxa de processamento similar ao estado da arte, enquanto reduz a área do hardware para este bloco em 50%. A arquitetura de hardware proposta para o filtro de deblocagem também atinge taxa de processamento similar ao estado da arte com uma redução de 5X a 6X na contagem de gates e uma redução de 3X na dissipação de potência. A nova análise comparativa proposta para os elementos de processamento do cálculo da Soma das Diferenças Absolutas introduz diversas alternativas de projeto de arquitetura com diferentes resultados de área, desempenho e potência. A nova arquitetura reconfigurável para o filtro de interpolação do padrão HEVC fornece 57% de redução de área em tempo de projeto e adaptação da potência/energia em tempo-real a cada imagem processada, o que ainda não é suportado pelas arquiteturas do estado da arte para o filtro de interpolação. Adicionalmente, a tese propõe um novo esquema de alocação de aceleradores em tempo-real para arquiteturas reconfiguráveis baseadas em tiles de processamento e de grão-misto, o que reduz em 44% (23% em média) o “overhead” de comunicação comparado com uma estratégia first-fit com reuso de datapaths, para números diferentes de tiles e organizações internas de tile. Este esquema de alocação leva em conta a arquitetura interna para alocar aceleradores de uma maneira mais eficiente, evitando e minimizando a comunicação entre tiles. Os aceleradores e técnicas dedicadas e reconfiguráveis propostos nesta tese proporcionam implementações de codificadores de vídeo de nova geração, além do HEVC, com melhor área, desempenho e eficiência em potência. / The demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need of developing new and more efficient video coding standards to provide high compression efficiency. The High Efficiency Video Coding (HEVC) standard, published in 2013, reaches double compression efficiency (or 50% reduction in size of coded video) compared to the most efficient video coding standard at that time, and most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC reaches this result at the cost of high computational effort of the tools included in the encoder and decoder. The increased computational effort of HEVC standard and the power limitations of current silicon fabrication technologies makes it essential to develop hardware accelerators for compute-intensive computational kernels of HEVC application. Hardware accelerators provide higher performance and energy efficiency than general purpose processors for specific applications. An HEVC application analysis conducted in this work identified the most compute-intensive kernels of HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter indicates a great potential of power/energy saving by adapting the hardware accelerator to the varying workload. This thesis introduces new contributions in the field of dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation are herein proposed, designed and evaluated. The interpolation filter hardware architecture achieves throughput similar to the state of the art, while reducing hardware area by 50%. Our deblocking filter hardware architecture also achieves similar throughput compared to state of the art with a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis also does a new comparative analysis of Sum of Absolute Differences processing elements, in which various architecture design alternatives with different area, performance and power results were introduced. A novel reconfigurable interpolation filter hardware architecture for HEVC standard was developed, and it provides 57% design-time area reduction and run-time power/energy adaptation in a picture-by-picture basis, compared to the state-of-the-art. Additionally a run-time accelerator binding scheme is proposed for tile-based mixed-grained reconfigurable architectures, which reduces the communication overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44% (23% on average) for different number of tiles and internal tile organizations. This run-time accelerator binding scheme is aware of the underlying architecture to bind datapaths in an efficient way, to avoid and minimize inter-tile communications. The new dedicated and reconfigurable hardware accelerators and techniques proposed in this thesis enable next-generation video coding standard implementations beyond HEVC with improved area, performance, and power efficiency.

Page generated in 0.1246 seconds