• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 9
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Comparison of p53 and MAGI-3 regulation mediated by the E6 protein from high-risk human papillomavirus types 18 and 33

Ainsworth, Julia. January 2007 (has links)
The HPV E6-p53 interaction is well-understood, but not for all high-risk HPV types. In addition, HPV E6 p53-independent functions are gaining recognition for their importance in cellular transformation but require clarification. Thus, the aim of this study was two-fold: (1) to gain insight into the p53-E6 interaction for high-risk HPV-33 and, (2) to explore how high-risk HPV E6 proteins targets cellular MAGI-3 for degradation. / In vivo and in vitro results indicated that E6 from HPV types 18 and 33 interacted similarly with p53 although, variants of the HPV-33 E6 prototype demonstrated interesting disparities. Of note was HPV-33 E6 variant 2, which degraded p53 more efficiently than prototype HPV-33 E6 and HPV-18 E6. The E6 protein from HPV types 18 and 33 also potently degraded MAGI-3 via a different pathway than that used for p53. Specifically, proteasome inhibition did not interfere with MAGI-3 degradation and MAGI-3 was not ubiquitinated in the presence of the E6 protein. / Therefore, the results described herein enhance our understanding of high-risk HPV type 33 E6 and the E6-MAGI-3 interaction.
12

Comparison of p53 and MAGI-3 regulation mediated by the E6 protein from high-risk human papillomavirus types 18 and 33

Ainsworth, Julia January 2007 (has links)
No description available.
13

Altering the Tropism of Retroviral Vectors For In Vivo Gene Therapy: Pseudotyped Virus Targeting by Ligand-Receptor Interactions: A Dissertation

Gollan, Timothy J. 02 June 2002 (has links)
A potential approach to in vivo gene therapy is to target retrovirus to specific receptors through a ligand-receptor interaction. Previous studies have placed a ligand at or close to the N-terminus of the ecotropic Moloney murine leukemia virus envelope and require co-expression of a wild type envelope on the pseudotyped virus for successful transduction of human cells. In this study, over forty chimeric envelopes were generated, which have single or multiple insertions of a 13 or 21 amino acid RGD containing sequence, flanked by cysteine residues, that target the cellular integrin receptors (Chapter III). Virus displaying only the chimeric envelopes was generated from packaging cell lines that express the gag and pol genes. Many of the mutant envelopes demonstrated the formation of syncytia when they were transfected into the XC indicator cell line, which is frequently used to determine envelope binding and fusion capabilities. Pseudotyped virus for several of the chimeric envelopes, transduced both NIH 3T3 mouse fibroblasts and human A375 melanoma cells. Ligands placed in the N-terminal region, within the VRA variable domain, and close to the N-terminus of the proline-rich region (PRR), demonstrated transduction into human melanoma cells. Ligands placed within the PRR and the C-terminus of the envelope did not demonstrate transduction into melanoma cells, although host cell transduction was demonstrated. Pseudotyped virus expressing an RGE containing target sequence, replacing the RGD sequence, had significantly lower transduction efficiency of melanoma cells. These data indicate that the MLV envelope tropism can be altered by insertion of short ligands at various locations throughout the envelope. These initial results were promising and helped to define regions within the envelope that could accommodate the insertion of small targeting ligands, that could redirect the tropism of pseudo typed virus to human cells. In the second part of this study, the focus shifted to targeting receptors that were expressed on specific cells, such as carcinoma cells. We inserted short ligands, flanked with cysteines, into the envelope to generate numerous targeting constructs that bind to receptors over-expressed on a variety of carcinoma cells. These pseudotyped retroviral vectors were generated by packaging cell lines that express only the viral Gag and Pol genes, with no wild-type envelope present. Select chimeric envelopes that express the 21 amino acid bombesin (BN)/gastrin releasing protein (GRP) binding sequence successfully transduced human melanoma cells, breast cancer cells, and cells that express the cloned GRP receptor gene. Nine additional chimeric envelopes were generated, that express a modified 56 amino acid heregulin sequence (HRG), that targets c-rbB-3 (Her-3) and c-erbB-4 (Her-4) receptors on breast carcinoma cells. Pseudotyped virus expressing only the BN/GRP mutant envelopes, transduced NIH 3T3 host cells, and two human carcinoma cell lines; A375 melanoma and MDA-MB-231 breast cells. The HRG chimeric envelopes demonstrated transduction of NIH 3T3 cells and human MDA-MB-453 breast carcinoma cells. Finally, a pseudotyped virus that expressed the chimeric BN/GRP envelopes and packaged the thymidine kinase gene, transduced melenoma and breast carcinoma cells and demonstrated ganciclovir cytotoxicity. Collectively, these data indicate that ligands of various sizes can be used to target pseudotyped virus to a variety of human cancer cells and transfer genes of interest. These findings may expand the feasibility and potential scope of gene therapy.
14

Respiratory Syncytial Virus (RSV) Induces Innate Immunity through Toll-Like Receptors and Acquired Immunity via the RSV G Protein: A Dissertation

Murawski, Matthew R. 22 July 2009 (has links)
Respiratory syncytial virus (RSV) causes a common infection that is associated with a range of respiratory illnesses from common cold-like symptoms to serious lower respiratory tract illnesses such as pneumonia and bronchiolitis. RSV is the single most important cause of serious lower respiratory tract illness in children < 1 year of age. Host innate and acquired immune responses activated following RSV infection have been suspected as contributing to RSV disease. Toll-like receptors (TLRs) activate innate and acquired immunity and are candidates for playing key roles in the host immune response to RSV. Leukocytes express TLRs including TLR2, TLR6, TLR3, TLR4, and TLR7 that can potentially interact with RSV and promote immune responses following infection. Using knockout mice, we have demonstrated that TLR2 and TLR6 signaling in leukocytes can activate innate immunity against RSV by promoting TNF-α, IL-6, CCL2 (MCP-1), and CCL5 (RANTES) production. As previously noted, TLR4 also contributed to cytokine activation (71, 90). Furthermore, we demonstrated that signals generated following TLR2 and TLR6 activation were important for controlling viral replication in vivo. Additionally, TLR2 interactions with RSV promoted neutrophil migration and dendritic cell activation within the lung. Collectively, these studies indicate that TLR2 is involved in RSV recognition and subsequent innate immune activation and may play a role in modulating acquired immune responses through DCs. Despite the fact that RSV is the single most important cause of infant upper respiratory tract disease, there are no licensed vaccines available to prevent RSV disease. We have developed a virus-like particle (VLP) vaccine candidate for RSV. The VLP is composed of the NP and M proteins of Newcastle disease virus (NDV) and a chimera protein containing the cytoplasmic and transmembrane domains of the NDV HN protein and the ectodomain of the human RSV G protein (H/G). BALB/c mice immunized with 10 or 40 μg total VLP-H/G protein by intraperitoneal or intramuscular inoculation stimulated antibody responses to G protein as good as or better than comparable amounts of UV-inactivated RSV. Furthermore, VLP-H/G induced robust CTL responses in vaccinated animals. Immunization with two or even a single dose of these particles resulted in the complete protection of BALB/c mice from RSV replication in the lungs. Upon RSV challenge of VLP-H/G immunized mice, no enhanced pathology in the lungs was observed, although lungs of mice immunized in parallel with formalin-inactivated RSV (FI-RSV) showed the significant pathology that has been previously observed with FI-RSV vaccination. Thus, the VLP-H/G candidate vaccine was immunogenic in BALB/c mice and prevented replication of RSV in murine lungs with no evidence of immunopathology. These data support further development of virus-like particle vaccine candidates for RSV.
15

Mutations in the <em>vpu</em> and <em>env</em> Genes of HIV-1 Can Adversely Impact Infectivity: A Dissertation

Richards, Kathryn H. 12 May 2008 (has links)
The Human Immunodeficiency Virus (HIV) is able to infect CD4+ T cells as well as macrophages. Macrophage-tropism has been linked to determinants in the envelope of HIV. These determinants allow envelopes to exploit low levels of CD4 for infection. Macrophages are an important reservoir of virus, especially during chronic infection, and are likely responsible for the bulk of virus produced after CD4+T cells have declined. Viral factors that may impact the ability to infect macrophages are worth studying because this cell type is so important in infection. It was previously reported that the macrophage-tropic primary isolate AD8 was vpu-independent. The molecular clone YU-2, derived from brain tissue without culture, was also reported to be macrophage-tropic despite having a mutation in the vpu start codon. It was therefore possible that vpu-independent envelopes could evolve in vivo. To examine this possibility, I constructed chimeras containing wild type or defective vpu start codons, and gp160 sequences from AD8, YU-2 or SF162 (a vpu-dependent control). I also used full length AD8 and YU-2 with wild type or defective vpu start codons. I infected macrophages with equal amounts of virus, and measured viral output over two weeks. Viruses with defective vpu start codons were released to lower levels compared to their wild type vpucounterparts. In contrast to previous reports, the AD8 envelope is not vpu-independent for replication in macrophages. The YU-2 envelope is also not vpu-independent. Macrophage-tropic envelopes from late stages of infection can be sensitive to antibodies that bind the CD4 binding site on gp120, implying that macrophage-tropic envelopes have more exposed CD4 binding sites. Neutralizing antibodies may act as modulators of macrophage-tropism over the course of infection. Using chimeras containing gp120 sequences derived from the PBMC of four HIV+patients, I examined the capacity for envelopes to infect macrophages. Three patients (MM1, 4, and 8) had macrophage-tropic envelopes before and after developing autologous neutralizing antibodies. Three patients (MM1, 4, and 23) developed heterologous antibodies against IIIB, an easily neutralized T-cell line adapted strain of HIV-1. This data indicates that macrophage-tropism in these patients is not modulated by the presence of neutralizing antibodies. The macrophage-tropism of envelopes tends to segregate depending on the tissue origin of the virus. Envelopes from two separate tissues from the same patient exhibit very different infectivity characteristics. The B33 envelope, from brain tissue, is very infectious and is macrophage-tropic, while the LN40 envelope, from lymph node tissue, is weakly infectious and is not macrophage-tropic. Replacing the entire gp41 of LN40 with that of B33 restores some infectivity to LN40. The cytoplasmic domain of gp41 contains many motifs important for assembly and infectivity. To examine which motifs are responsible for the weak infectivity of LN40, I made chimeras of gp41, as well as point mutations in gp41. The LN40 chimera containing the entire gp41 of B33 restored the most infectivity. Point mutations in the palmitoylation site, Pr55gagbinding region, and dileucine motif at the C-terminus also restored infectivity when combined. Determinants in the gp41 cytoplasmic domain are responsible for the weak infectivity of LN40; however, it is possible that there are contributing determinants in gp120, such as the ability to use low levels of CD4. Here, I examined how changes in the vpu and env genes of HIV-1 can impact infectivity, especially infectivity of macrophages. Changes that adversely impact the virus’ ability to infect macrophages may also impact the overall course of disease. However, the data here show that retaining the ability to infect, and replicate in, macrophages give HIV an advantage. I speculate that retaining the ability to infect macrophages gives the virus a reservoir for later in disease, when CD4+ T cells have been depleted, as well as way of avoiding neutralizing antibodies. This work further defines the importance of macrophages in HIV-1 infectivity and disease.
16

Desenvolvimento de estratégias para aumento da imunogenicidade da vacina de DNA HIVBr18 baseadas na fusão com a glicoproteína D do herpes vírus humano tipo 1 e na coadministração de citocinas / Developing strategies for increasing the immunogenicity of DNA vaccine HIVBr18 based on fusion with human herpes virus type 1 glycoprotein and cytokine coadministration

Santana, Vinicius Canato 07 July 2014 (has links)
A formulação HIVBr18, previamente desenvolvida e testada, é uma vacina de DNA que codifica 18 epítopos CD4, promíscuos e conservados do HIV-1, e que após imunização de camundongos transgênicos para diversas moléculas de HLA de classe II humanas, observou-se proliferação de linfócitos T CD4+ e CD8+ e produção de IFN-? direcionadas a múltiplos epítopos codificados pela vacina. Abordamos aqui estratégias baseadas na fusão ou combinação dos epítopos codificados pela vacina HIVBr18 à glicoproteína D (gD) do HSV-1, e também na coadministração de plasmídeos que codificam citocinas (IL-2, -12, -15 e GM-CSF) visando aumentar a imunogenicidade de HIVBr18. A sequencia de DNA que codifica os 18 peptídeos da vacina HIVBr18 foi amplificada por PCR e clonada em um plasmídeo que abrigava a sequencia da gD do HSV-1. dando origem ao plasmídeo pVAX-gDh-HIVBr18. Animais imunizados com gDh-HIVBr18 apresentaram resposta imunológica similar ao grupo que recebeu somente HIVBr18, não sendo diferente também daqueles que receberam plasmídeos gDh-HIVBr18 que sofreram alterações nas sequências para melhorar o padrão de distribuição hidrofóbica e permitir a migração da proteína de fusão para o meio extracelular. Construímos e testamos um plasmídeo bicistrônico que expressa gDh e HIVBr18 isoladamente, mas também não observamos aumento na resposta imune induzida. A coadministração com o plasmídeo HIVBr18 e plasmídeos que codificam as citocinas IL-12, IL-15 e GM-CSF, proporciona um aumento na magnitude da resposta imunológica induzida contra o pool de peptídeos codificados pela vacina, entretanto sem alteração da amplitude da resposta. Além disso, o plasmídeo de GM-CSF induziu maior número de células T CD4+ polifuncionais. Demonstramos também que a coadministração do plasmídeo que codifica GM-CSF, induz uma resposta imune celular de maior magnitude mesmo em uma condição de dose reduzida. Entretanto, observamos que esta citocina não é um bom adjuvante quando utilizamos como vetor de imunização um adenovírus que expressa os 18 epítopos / The formulation HIVBr18, previously developed and tested, is based on a DNA vaccine encoding 18 conserved and promiscuous HIV-1 CD4 epitopes and after immunization of transgenic mice for many human HLA class II molecules using this DNA vaccine, could be observed proliferation of CD4+ and CD8+ T cells and IFN-y production directed to multiple epitopes encoded by the vaccine. We intend to explore here, strategies based on fusion or combination of epitopes encoded by HIVBr18 vaccine with glycoprotein D (gD) of HSV- 1 and also the coadministration of cytokine-encoding plasmids (pIL-2, -12, -15 and pGM -CSF) aiming to enhance immunogenicity of HIVBr18. The DNA sequence of epitopes encoded by HIVBr18 vaccine was amplified by PCR and cloned into a plasmid that contained the sequence of gD, giving rise to plasmid pVAX-gDh-HIVBr18. After mice immunization, animals immunized with this construct showed similar immune response to the group that received HIVBr18, and also the group of animals that received gDh-HIVBr18 plasmid that had been modified by exchange in peptides order to assure to the molecule a better hydrophobic distribution and allow translocation to the extracellular face of cell membrane. We constructed and injected mice with a bicistronic plasmid expressing gDh and HIVBr18, simultaneously and isolated, but no increase in the magnitude of the immune response was observed. HIVBr18 coadministration with cytokine-encoding plasmids pIL-12, pIL-15 and pGM-CSF, provides an increase in the magnitude of immune response induced against the peptides encoded by the vaccine, and similar breadth. In addition, co-immunization with pGM-CSF induced greater number of polyfunctional CD4 + T cells. We also demonstrate that, even in a low dose approach coadministration of pGM-CSF induced a higher immune response than HIVBr18 alone in the same dose. However, we observed that this cytokine is not a good adjuvant when used in combination with an adenovirus that expresses the 18 HIV-1 epitopes.
17

Desenvolvimento de estratégias para aumento da imunogenicidade da vacina de DNA HIVBr18 baseadas na fusão com a glicoproteína D do herpes vírus humano tipo 1 e na coadministração de citocinas / Developing strategies for increasing the immunogenicity of DNA vaccine HIVBr18 based on fusion with human herpes virus type 1 glycoprotein and cytokine coadministration

Vinicius Canato Santana 07 July 2014 (has links)
A formulação HIVBr18, previamente desenvolvida e testada, é uma vacina de DNA que codifica 18 epítopos CD4, promíscuos e conservados do HIV-1, e que após imunização de camundongos transgênicos para diversas moléculas de HLA de classe II humanas, observou-se proliferação de linfócitos T CD4+ e CD8+ e produção de IFN-? direcionadas a múltiplos epítopos codificados pela vacina. Abordamos aqui estratégias baseadas na fusão ou combinação dos epítopos codificados pela vacina HIVBr18 à glicoproteína D (gD) do HSV-1, e também na coadministração de plasmídeos que codificam citocinas (IL-2, -12, -15 e GM-CSF) visando aumentar a imunogenicidade de HIVBr18. A sequencia de DNA que codifica os 18 peptídeos da vacina HIVBr18 foi amplificada por PCR e clonada em um plasmídeo que abrigava a sequencia da gD do HSV-1. dando origem ao plasmídeo pVAX-gDh-HIVBr18. Animais imunizados com gDh-HIVBr18 apresentaram resposta imunológica similar ao grupo que recebeu somente HIVBr18, não sendo diferente também daqueles que receberam plasmídeos gDh-HIVBr18 que sofreram alterações nas sequências para melhorar o padrão de distribuição hidrofóbica e permitir a migração da proteína de fusão para o meio extracelular. Construímos e testamos um plasmídeo bicistrônico que expressa gDh e HIVBr18 isoladamente, mas também não observamos aumento na resposta imune induzida. A coadministração com o plasmídeo HIVBr18 e plasmídeos que codificam as citocinas IL-12, IL-15 e GM-CSF, proporciona um aumento na magnitude da resposta imunológica induzida contra o pool de peptídeos codificados pela vacina, entretanto sem alteração da amplitude da resposta. Além disso, o plasmídeo de GM-CSF induziu maior número de células T CD4+ polifuncionais. Demonstramos também que a coadministração do plasmídeo que codifica GM-CSF, induz uma resposta imune celular de maior magnitude mesmo em uma condição de dose reduzida. Entretanto, observamos que esta citocina não é um bom adjuvante quando utilizamos como vetor de imunização um adenovírus que expressa os 18 epítopos / The formulation HIVBr18, previously developed and tested, is based on a DNA vaccine encoding 18 conserved and promiscuous HIV-1 CD4 epitopes and after immunization of transgenic mice for many human HLA class II molecules using this DNA vaccine, could be observed proliferation of CD4+ and CD8+ T cells and IFN-y production directed to multiple epitopes encoded by the vaccine. We intend to explore here, strategies based on fusion or combination of epitopes encoded by HIVBr18 vaccine with glycoprotein D (gD) of HSV- 1 and also the coadministration of cytokine-encoding plasmids (pIL-2, -12, -15 and pGM -CSF) aiming to enhance immunogenicity of HIVBr18. The DNA sequence of epitopes encoded by HIVBr18 vaccine was amplified by PCR and cloned into a plasmid that contained the sequence of gD, giving rise to plasmid pVAX-gDh-HIVBr18. After mice immunization, animals immunized with this construct showed similar immune response to the group that received HIVBr18, and also the group of animals that received gDh-HIVBr18 plasmid that had been modified by exchange in peptides order to assure to the molecule a better hydrophobic distribution and allow translocation to the extracellular face of cell membrane. We constructed and injected mice with a bicistronic plasmid expressing gDh and HIVBr18, simultaneously and isolated, but no increase in the magnitude of the immune response was observed. HIVBr18 coadministration with cytokine-encoding plasmids pIL-12, pIL-15 and pGM-CSF, provides an increase in the magnitude of immune response induced against the peptides encoded by the vaccine, and similar breadth. In addition, co-immunization with pGM-CSF induced greater number of polyfunctional CD4 + T cells. We also demonstrate that, even in a low dose approach coadministration of pGM-CSF induced a higher immune response than HIVBr18 alone in the same dose. However, we observed that this cytokine is not a good adjuvant when used in combination with an adenovirus that expresses the 18 HIV-1 epitopes.

Page generated in 0.0636 seconds