• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 268
  • 111
  • 83
  • 50
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 10
  • 9
  • 5
  • 4
  • 3
  • Tagged with
  • 652
  • 111
  • 102
  • 79
  • 68
  • 65
  • 62
  • 60
  • 59
  • 59
  • 57
  • 54
  • 51
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Mouillage sur gels mous / Wetting on soft gels

Zhao, Menghua 12 September 2017 (has links)
Dans cette thèse, nous nous sommes intéressés à la statique et la dynamique du mouillage de gouttes d’eau sur des substrats mous tels que des gels, encore connu sous le nom d’élastomouillage. Pour ce faire, nous avons d'abord développé une méthode quantitative de visualisation par strioscopie permettant de mesurer la déformation de la surface d'un film de gel transparent avec une précision élevée. Nous montrons que la déformation superficielle de films mous de silicone (PDMS) dépend de la taille des gouttelettes déposées ainsi que de l'épaisseur et de l’élasticité de ces films. Nous avons construit un modèle basé sur la théorie de l'élasticité linéaire tenant compte de la tension superficielle des gels qui prédit bien la forme et l’amplitude de la déformation de surface. Nous apportons aussi la preuve expérimentale et l'analyse théorique de l’importance de l'hystérèse de l’angle de contact dans la description de la déformation en démontrant que la force tangentielle due à la tension superficielle entre liquide et vapeur à la ligne de contact, souvent négligé, contrôle la déformation de la surface. La dynamique de mouillage est étudiée en dégonflant des gouttelettes sur des films de PDMS avec une épaisseur bien contrôlée. Il est démontré que la dissipation d'énergie dans le gel dépend fortement de l'épaisseur lorsque cette dernière est inférieure à 100 μm). L'effet de freinage viscoélastique et l'effet d'épaisseur sont bien rationalisés avec un modèle basé sur la viscoélasticité linéaire et une simple loi l'échelle qui tient compte de l'effet d'épaisseur capture très bien nos expériences. Enfin, nous démontrons que nous pouvons dériver et guider les gouttelettes en mouvement avec la conception de surfaces couvertes de couches de gels ayant des gradients d'épaisseur. / In this thesis, we aim at obtaining a better understanding of the statics and dynamics of the wetting of liquids on soft gels, otherwise known as elastowetting. First, we develop a quantitative Schlieren optics to measure the surface deformation of a transparent gel film with a high precision over large areas in real time. The long-range surface deformation of soft PDMS films is found to be dependent on the sessile droplet size, and the thickness and elasticity of the soft films. We build a model based on linear elasticity theory with the integration of the surface tension of soft materials that predicts the long-range surface deformation in excellent agreement with the data. We also bring the experimental proof and theoretical analysis of the importance of contact angle hysteresis in the description of the deformation of the surface of the gel. We demonstrate that the tangential component of the liquid-vapor surface tension at the contact line, whose contribution are often neglected, significantly affects the surface deformation. Wetting dynamics is investigated by deflating droplets on PDMS films with well-controlled thickness. It is shown that energy dissipation in the soft gel depends on the thickness when the latter is smaller than 100 μm. The viscoelastic braking effect and the thickness effect are both well rationalized with a model based on the theory of linear viscoelasticity and a simple scaling law accounting for the thickness effect captures very well our experiments. Finally, we demonstrate that we are able to guide moving droplets with coatings having a gradient of their thickness.
472

Viscoelastic Characterization of Vapor-Grown Carbon Nanofiber/Vinyl Ester Nanocomposites using a Response Surface Methodology

Drake, Daniel Adam 11 May 2013 (has links)
The effects of vapor-grown carbon nanofiber (VGCNF) weight fraction, applied stress, and temperature on the viscoelastic responses (creep strain, creep rate, and creep compliance) of VGCNF/vinyl ester (VE) nanocomposites were studied using a central composite design (CCD). The nanocomposite test articles were fabricated by high shear mixing, casting, curing, and post-curing in an open face mold under a nitrogen environment. Short-term creep/creep recovery experiments were conducted at prescribed combinations of temperatures (23.8 – 69.2 C), applied stresses (30.2 – 49.8 MPa), and VGCNF weight fractions (0.00 – 1.00 parts of VGCNF per hundred parts of resin, phr) determined from the CCD. The response surface models (RSMs) for predicting these viscoelastic responses were developed using the least squares method and an analysis of variance procedure. The response surface estimates indicate that increasing the VGCNF weight fraction decreases the creep resistance of the VGCNF/VE nanocomposites at high temperatures (46.5 – 69.2 C).
473

Hochfrequent beanspruchte Polymerstrukturen für den Einsatz als endodontische Instrumente

Kucher, Michael 20 March 2023 (has links)
In der Zahnmedizin werden endodontische Instrumente aus metallischen und polymeren Werkstoffen zur Desinfektion infizierter Wurzelkanalsysteme eingesetzt. Durch den Einsatz von Polymeren ergeben sich aufgrund ihrer günstigen Werkstoffeigenschaften die Vorzüge einer minimal invasiven Arbeitsweise und einer geringeren Bruchgefahr. Demgegenüber besitzen die eingesetzten metallischen Instrumente durch hochfrequente Oszillationen eine verbesserte Reinigungswirkung. Zur Auslegung optimierter polymerbasierter Instrumente, die zuverlässig reinigen, wird daher eine simulationsbasierte Entwicklungsmethode erarbeitet. Ausgangspunkt hierfür ist die ingenieurwissenschaftliche Analyse der methodischen und experimentellen Grundlagen des Gesamtsystems. Die Beschreibung des instationären Schwingungsverhaltens der Instrumente erfolgt durch dynamische Finite-Elemente-Analysen unter Verwendung eines viskoelastischen Materialmodells. Das dazu erforderliche Materialverhalten des ausgewählten Polymers Polyetheretherketon wird mithilfe eines neu entwickelten Prüfaufbaus charakterisiert. Das erarbeitete Simulationsmodell ermöglicht erstmalig eine Analyse des kontaktmechanischen Verhaltens polymerer Miniaturstrukturen unter hochfrequenter Schwingungsanregung. Im Ergebnis steht mit diesem Modell eine realitätsnahe Beschreibung des Schwingungsverhaltens und der auftretenden Beanspruchungen zur Verfügung. Die gewonnenen Erkenntnisse leisten einen wesentlichen Beitrag zur gezielten, werkstoffgerechten und schwingungsoptimierten Auslegung von zukünftigen zahnmedizinischen Instrumenten zur Wurzelkanalreinigung.:1 Einleitung 1.1 Literaturübersicht 1.2 Problemstellung und Zielsetzung 2 Thermoplastische Polymere für die Anwendung in endodontischen Instrumenten 2.1 Mechanische und technische Anforderungen 2.1.1 Bestimmung einer repräsentativen Wurzelkanalgeometrie 2.1.2 Schwingungstechnik und Aufbau von Reinigungsansätzen 2.1.3 Werkstoffauswahl für Reinigungsansätze 2.1.4 Fertigungstechnologien für Miniaturstrukturen aus PEEK 2.2 Biologische und mechanische Wechselwirkungen 2.2.1 Verhalten gegenüber desinfizierenden Spüllösungen 2.2.2 Tribologie der Wurzelkanalreinigung 3 Analyse des zyklischen Verformungsverhaltens von PEEK 3.1 Phänomenologische Beschreibung des Verformungsverhaltens 3.1.1 Klassifizierung des Materialverhaltens 3.1.2 Elastische Verformung thermoplastischer Polymere 3.1.3 Mechanische Dämpfung 3.2 Experimentelle Untersuchungen 3.2.1 Probekörper 3.2.2 Versuchsaufbau und Durchführung 3.2.3 Voruntersuchungen 3.2.4 Ergebnisse der experimentellen Untersuchungen 4 Modellierung des zyklischen Deformationsverhaltens von PEEK 4.1 Einachsige rheologische viskoelastische Materialmodelle 4.1.1 Allgemeine konstitutive Gleichungen 4.1.2 Einachsige rheologische Grundelemente 4.1.3 Einachsige rheologische Modelle 4.1.4 Vergleich der einachsigen rheologischen Modelle 4.2 Charakterisierung des viskoelastischen Materialverhaltens 4.2.1 Analytische Beschreibung der Balkenschwingung 4.2.2 Resonanzkurvenverfahren 4.2.3 Bestimmung der Materialparameter von PEEK 4.3 Numerische Implementierung eines mehrachsigen Materialmodells 4.3.1 Mehrachsiges Materialmodell 4.3.2 Validierung des implementierten Materialmodells 5 Simulation des Schwingungsverhaltens und experimentelle Verifikation 5.1 Numerische Simulationsmodelle 5.1.1 Geometrische Modelle 5.1.2 Rand- und Anfangsbedingungen 5.1.3 Kontaktmodellierung 5.2 Simulationsergebnisse 5.2.1 Schwingungsverhalten ohne Oberflächenkontakt 5.2.2 Schwingungsverhalten mit Oberflächenkontakt 6 Zusammenfassung Literaturverzeichnis A Experimentelle Voruntersuchungen B Klassische Balkentheorie / In dentistry, endodontic instruments made of metallic and polymer materials are used for the disinfection of infected root canal systems. Due to their beneficial material properties, the use of polymers offers the advantages of a minimally invasive operation and a lower risk of breakage. In contrast, the metallic instruments used have an improved cleaning efficiency due to high-frequency oscillations. A simulation-based development method for the design of optimized polymer-based instruments that clean effectively is therefore being worked out. As starting point, an engineering analysis of the methodological and experimental fundamentals of the overall system has been carried out. The description of the instrument’s transient vibration behavior is performed by dynamic finite element analyses using a viscoelastic material model. The required material behavior of the selected polymer polyetheretherketone is characterized with the aid of a newly developed test setup. The resulting simulation model allows for the first time an analysis of the contact mechanical behavior of polymeric miniaturized structures under high-frequency vibration excitation. As a result, this model provides a realistic description of the vibration behavior and the stresses that occur. The knowledge gained will make a significant contribution to the targeted, material-specific and vibration-optimized design of future dental instruments for root canal irrigation.:1 Einleitung 1.1 Literaturübersicht 1.2 Problemstellung und Zielsetzung 2 Thermoplastische Polymere für die Anwendung in endodontischen Instrumenten 2.1 Mechanische und technische Anforderungen 2.1.1 Bestimmung einer repräsentativen Wurzelkanalgeometrie 2.1.2 Schwingungstechnik und Aufbau von Reinigungsansätzen 2.1.3 Werkstoffauswahl für Reinigungsansätze 2.1.4 Fertigungstechnologien für Miniaturstrukturen aus PEEK 2.2 Biologische und mechanische Wechselwirkungen 2.2.1 Verhalten gegenüber desinfizierenden Spüllösungen 2.2.2 Tribologie der Wurzelkanalreinigung 3 Analyse des zyklischen Verformungsverhaltens von PEEK 3.1 Phänomenologische Beschreibung des Verformungsverhaltens 3.1.1 Klassifizierung des Materialverhaltens 3.1.2 Elastische Verformung thermoplastischer Polymere 3.1.3 Mechanische Dämpfung 3.2 Experimentelle Untersuchungen 3.2.1 Probekörper 3.2.2 Versuchsaufbau und Durchführung 3.2.3 Voruntersuchungen 3.2.4 Ergebnisse der experimentellen Untersuchungen 4 Modellierung des zyklischen Deformationsverhaltens von PEEK 4.1 Einachsige rheologische viskoelastische Materialmodelle 4.1.1 Allgemeine konstitutive Gleichungen 4.1.2 Einachsige rheologische Grundelemente 4.1.3 Einachsige rheologische Modelle 4.1.4 Vergleich der einachsigen rheologischen Modelle 4.2 Charakterisierung des viskoelastischen Materialverhaltens 4.2.1 Analytische Beschreibung der Balkenschwingung 4.2.2 Resonanzkurvenverfahren 4.2.3 Bestimmung der Materialparameter von PEEK 4.3 Numerische Implementierung eines mehrachsigen Materialmodells 4.3.1 Mehrachsiges Materialmodell 4.3.2 Validierung des implementierten Materialmodells 5 Simulation des Schwingungsverhaltens und experimentelle Verifikation 5.1 Numerische Simulationsmodelle 5.1.1 Geometrische Modelle 5.1.2 Rand- und Anfangsbedingungen 5.1.3 Kontaktmodellierung 5.2 Simulationsergebnisse 5.2.1 Schwingungsverhalten ohne Oberflächenkontakt 5.2.2 Schwingungsverhalten mit Oberflächenkontakt 6 Zusammenfassung Literaturverzeichnis A Experimentelle Voruntersuchungen B Klassische Balkentheorie
474

Adhezivní vlastnosti matricových tablet / Adhesive properties of matrix tablets

Kišková, Martina January 2021 (has links)
Charles University, Faculty of Pharmacy in Hradci Králové Department of Pharmaceutical Technology Name: Martina Kišková Title of diploma thesis: Adhesive properties of matrix tablets Supervisor: PharmDr. Eva Šnejdrová, Ph.D. The diploma thesis deals with the evaluation of rheological and adhesive properties of the mucin, aqueous dispersions of polymeric carriers and matrix tablets based on chitosan and sodium alginate or iota-carrageenan loaded with the salicylic acid using absolute rotational rheometer. The theoretical part deals with the characterization and classification of matrix tablets, polymeric carriers (sodium alginate, chitosan and carrageenan) and with the principles of evaluation of rotational, adhesive and oscillational tests performed in the experimental part. The mucin from porcine gastric used as a model substrate for adhesion tests behaves as a viscoelastic solid and its adhesive strength decreases with increasing hydration. Significantly higher adhesive strength was found for chitosan at pH 1.2 and sodium alginate at pH 6.8 compared to the adhesive strength of iota-carrageenan. In terms of viscoelastic properties, chitosan and sodium alginate are viscoelastic fluids, but iota-carrageenan is a viscoelastic solid. Iota-carrageenan forms the stiffest gel after hydration at pH 6.8...
475

Characterization and Biomechanical Analysis of the Human Lumbar Spine with <em>In Vitro</em> Testing Conditions

Stolworthy, Dean K. 19 January 2012 (has links) (PDF)
Biomechanical testing of cadaveric spinal segments forms the basis for our current understanding of healthy, pathological, and surgically treated spinal function. Over the past 40 years there has been a substantial amount of data published based on a spinal biomechanical testing regimen known as the flexibility method. This data has provided valuable clinical insights that have shaped our understanding of low back pain and its treatments. Virtually all previous lumbar spinal flexibility testing has been performed at room temperature, under very low motion rates, without the presence of a compressive follower-load to simulate upper body weight and the action of the musculature. These limitations of previous work hamper the applicability of published spinal biomechanics data, especially as researchers investigate novel ways of treating low back pain that are intended to restore the spine to a healthy biomechanical state. Thus, the purpose of this thesis work was to accurately characterize the rate-dependent flexibility of the lumbar spine at body temperature while in the presence of a compressive follower-load. A custom spine simulator with an integrated environmental chamber was developed and built as part of this thesis work. Cadaveric spinal motion segments were tested at 12 different rates of loading spanning the range of voluntary motion rates. The testing methodology allowed for comparison of spinal flexibility at room and body temperatures in the three primary modes of spinal motion, both with and without a compressive follower-load. Additionally, the work developed a stochastic model for rate-dependent spinal flexibility that allows for accurate prediction of spinal flexibility at any rate within the range of voluntary motion, based on a single flexibility test. In conclusion, the biomechanical response was significantly altered due to testing temperature, loading-rate, and application of a compressive follower-load. The author emphasizes the necessity to simulate the physiological environment during ex vivo biomechanical analysis of the lumbar spine in order to obtain a physiological response. Simplified testing procedures may be implemented only after the particular effect is known.
476

Characterization of a Viscoelastic Response from Thin Metal Films Deposited on Silicon for Microsystem Applications

Meredith, Steven L 01 January 2009 (has links) (PDF)
Understanding the mechanisms that control the mechanical behavior of microscale actuators is necessary to design an actuator that responds to an applied actuation force with the desired behavior. Micro actuators which employ a diaphragm supported by torsional hinges which deform during actuation are used in many applications where device stability and reliability are critical. The material response to the stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. A fully recoverable non-linear viscoelastic response has been observed in electrostatically driven micro actuators employing torsional hinges of silicon covered with thin metal films. The viscoelastic response occurs over a time period of 50 minutes at an operating temperature of 35°C. This viscoelastic phenomenon is similar to that reported in articles addressing anelastic behavior associated with viscous grain boundary slippage and dislocation bowing. In order to investigate this viscoelastic response as a function of metal film composition and thickness, bi-layer torsional hinge actuators consisting of Si with a deposited metal layer were designed to exhibit similar stress levels as the electrostatically driven micro actuators. The test devices were fabricated using common semiconductor fabrication techniques. The actuators were micromachined by deep etching 100mm diameter, 425µm thick, double side polished, single crystal (100) wafers to create a 4.5µm thick device layer. Subsequent etching of the device layer released the fixed-fixed torsional hinge test actuators. Physical vapor depositions of Au, Al and Al-Ti in two different thicknesses (100nm, and 150nm) were deposited in order to investigate the impact of metal film thickness and composition on the viscoelastic response. Grain sizes of the deposited films were estimated using backscattered electron images. Rotational actuation of the test actuators was achieved by using a modified Ambios XP-1 surface profiler that applies a constant force of 0.28mN while measuring the displacement of the actuator with respect to time. The viscoelastic response was observed in the test devices with Au and Al thin films indicating that this phenomenon is attributable to the stresses induced on the torsional hinge. Results indicate that the viscoelastic response was not observed in AlTi thin films consisting of 0.3at% titanium. Two theoretical models are presented that discuss the mechanism associated with the viscoelastic response as well as a method for inhibiting these mechanisms by the addition of an alloying element to form a second phase precipitate.
477

Effect of Nuclear Stiffness on Cell Mechanics and Migration of Human Breast Cancer Cells

Fischer, Tony, Hayn, Alexander, Mierke, Claudia Tanja 03 April 2023 (has links)
The migration and invasion of cancer cells through 3D confined extracellular matrices is coupled to cell mechanics and the mechanics of the extracellular matrix. Cell mechanics is mainly determined by both the mechanics of the largest organelle in the cell, the nucleus, and the cytoskeletal architecture of the cell. Hence, cytoskeletal and nuclear mechanics are the major contributors to cell mechanics. Among other factors, steric hindrances of the extracellular matrix confinement are supposed to affect nuclear mechanics and thus also influence cell mechanics. Therefore, we propose that the percentage of invasive cells and their invasion depths into loose and dense 3D extracellular matrices is regulated by both nuclear and cytoskeletal mechanics. In order to investigate the effect of both nuclear and cytoskeletal mechanics on the overall cell mechanics, we firstly altered nuclear mechanics by the chromatin de-condensing reagent Trichostatin A (TSA) and secondly altered cytoskeletal mechanics by addition of actin polymerization inhibitor Latrunculin A and the myosin inhibitor Blebbistatin. In fact, we found that TSA-treated MDA-MB-231 human breast cancer cells increased their invasion depth in dense 3D extracellular matrices, whereas the invasion depths in loose matrices were decreased. Similarly, the invasion depths of TSA-treated MCF- 7 human breast cancer cells in dense matrices were significantly increased compared to loose matrices, where the invasion depths were decreased. These results are also valid in the presence of a matrix-metalloproteinase inhibitor GM6001. Using atomic force microscopy (AFM), we found that the nuclear stiffnesses of both MDA-MB- 231 and MCF-7 breast cancer cells were pronouncedly higher than their cytoskeletal stiffness, whereas the stiffness of the nucleus of human mammary epithelial cells was decreased compared to their cytoskeleton. TSA treatment reduced cytoskeletal and nuclear stiffness of MCF-7 cells, as expected. However, a softening of the nucleus by TSA treatment may induce a stiffening of the cytoskeleton of MDA-MB-231 cells and subsequently an apparent stiffening of the nucleus. Inhibiting actin polymerization using Latrunculin A revealed a softer nucleus of MDA-MB-231 cells under TSA treatment. This indicates that the actin-dependent cytoskeletal stiffness seems to be influenced by the TSA-induced nuclear stiffness changes. Finally, the combined treatment with TSA and Latrunculin A further justifies the hypothesis of apparent nuclear stiffening, indicating that cytoskeletal mechanics seem to be regulated by nuclear mechanics.
478

The Pertinent Role of Cell and Matrix Mechanics in Cell Adhesion and Migration

Mierke, Claudia Tanja 03 April 2023 (has links)
No description available.
479

Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics

Mierke, Claudia Tanja 03 April 2023 (has links)
Biological materials such as extracellular matrix scaffolds, cancer cells, and tissues are often assumed to respond elastically for simplicity; the viscoelastic response is quite commonly ignored. Extracellular matrix mechanics including the viscoelasticity has turned out to be a key feature of cellular behavior and the entire shape and function of healthy and diseased tissues, such as cancer. The interference of cells with their local microenvironment and the interaction among different cell types relies both on the mechanical phenotype of each involved element. However, there is still not yet clearly understood how viscoelasticity alters the functional phenotype of the tumor extracellular matrix environment. Especially the biophysical technologies are still under ongoing improvement and further development. In addition, the effect of matrix mechanics in the progression of cancer is the subject of discussion. Hence, the topic of this review is especially attractive to collect the existing endeavors to characterize the viscoelastic features of tumor extracellular matrices and to briefly highlight the present frontiers in cancer progression and escape of cancers from therapy. Finally, this review article illustrates the importance of the tumor extracellular matrix mechano-phenotype, including the phenomenon viscoelasticity in identifying, characterizing, and treating specific cancer types.
480

Tensile Mechanical Properties of Isolated Collagen Fibrils Obtained by Microelectromechanical Systems Technology

Shen, Zhilei Liu 10 December 2010 (has links)
No description available.

Page generated in 0.0703 seconds