• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Voies de signalisation dépendantes de la protéine prion : de la physiologie à la pathologie / Prion protein-dependent cell signalling : from physiology to pathology

Hirsch, Théo Z. 24 November 2016 (has links)
La conversion de la protéine prion cellulaire PrPC en une isoforme pathologique, la protéine prion scrapie PrPSc, est à l'origine d'un groupe de maladies neurodégénératives, les Encéphalopathies Spongiformes Transmissibles (EST). De nombreux travaux indiquent que la toxicité de la PrPSc implique une déviation de la fonction normale de la PrPC, cependant le rôle physiologique de la protéine prion n’est que partiellement compris. Dans ce travail, nous nous sommes attachés à identifier des voies de signalisation mobilisées par la PrPC qui pourraient à la fois rendre compte du rôle de cette protéine dans le développement du système nerveux et être impliquées dans la pathogénèse des EST. Nous montrons que la protéine prion contrôle l’activité de la voie Notch, une voie de signalisation qui joue un rôle majeur dans le développement mais également dans l’homéostasie du système nerveux central et la plasticité synaptique. Dans des modèles ex vivo et in vivo d’EST, nous mettons en évidence une diminution de l’activité de la voie Notch, ainsi que de l’expression des récepteurs de la famille Eph - connus pour leur implication dans l’activité synaptique. Cette diminution des Eph est retrouvée dans des cellules dépourvues de PrPC. Ainsi, l’observation d’un profil similaire entre la perte d’expression de la PrPC et l’infection par les prions renforce l’idée d’une déviation de la fonction normale de la PrPC par la PrPSc. Des inhibiteurs de l’activité histone désacétylase (HDAC) permettent de rétablir l’expression des acteurs de la voie Notch et des récepteurs Eph aussi bien dans les cellules déplétées en PrPC que dans celles infectées par les prions, suggérant que des mécanismes épigénétiques sont impliqués dans le contrôle transcriptionnel de ces gènes par la protéine prion. Ce travail fournit les bases pour évaluer un effet bénéfique des inhibiteurs de HDAC dans un modèle de souris infectées par les prions et ainsi déterminer si les HDAC pourraient constituer de nouvelles cibles thérapeutiques pour combattre les EST. / The conversion of the cellular prion protein PrPC into a pathogenic isoform, the scrapie prion protein PrPSc, lies at the root of a group of neurodegenerative disorders known as Transmissible Spongiform Encephalopathies (TSEs). Several lines of evidence indicate that PrPSc-mediated toxicity involves a subversion of PrPC normal function, however, our knowledge of PrPC physiological role is still far from complete. In this work, we sought to identify signalling pathways mobilized by PrPC that could accommodate both its role in central nervous system development and its implication in TSE pathogenesis. We show that the prion protein controls the activity of the Notch pathway, which plays an overriding role during embryonic development as well as central nervous system homeostasis and synaptic plasticity. In both ex vivo and in vivo models of TSE, we monitored a decrease in Notch activity, together with reduced expression of Eph receptors, which are key players in synaptic activity. The reduction in Eph is also found in PrPC-depleted cells. Hence, our observation of a similar signature of PrPC depletion and prion infection strengthens the view that PrPSc diverts PrPC function. We found a restoration of Notch and Eph effectors expression in response to histone deacetylase (HDAC) inhibitors, both in PrPC-depleted and prion-infected cells, suggesting that epigenetic mechanisms are involved in the PrP-dependent transcriptional control of these genes. This work provides a foundation for assessing a beneficial effect of HDAC inhibition in prion-infected mice and thereby defining whether HDAC could represent novel therapeutic targets to combat TSEs.
2

Dialogue entre le corégulateur transcriptionnel RIP140 et la voie de signalisation Notch/HES1 dans les cellules cancéreuses colorectales / Cross-talk between the transcriptional coregulator RIP140 and the Notch/HES1 pathway in colon cancer cells

Sfeir, Nour 26 October 2018 (has links)
La voie de signalisation Notch joue un rôle essentiel dans le développement et l'homéostasie de l’épithélium intestinal et présente un potentiel oncogénique dans le cancer du côlon (CRC). L'un de ses gènes cibles, HES1, est un répresseur transcriptionnel de divers gènes, dont KLF4, facteur impliqué dans l'homéostasie intestinale et qui favorise la différenciation des cellules à mucus. De plus, afin d’éviter une activité aberrante de la voie Notch, HES1 exerce une boucle de rétrocontrôle négative sur son propre promoteur. Notre laboratoire s’intéresse à RIP140, un corégulateur transcriptionnel qui réprime l'activité de nombreux facteurs de transcription impliqués dans divers processus physiopathologiques. Dans l'épithélium intestinal, RIP140 inhibe la prolifération cellulaire et régule la différenciation en cellules de Paneth. L'objectif de ce travail a été d'étudier le dialogue entre RIP140 et la voie de signalisation Notch/HES1 ainsi que son impact sur différents paramètres cellulaires en utilisant différentes lignées cellulaires cancéreuses colorectales humaines ainsi que des modèles murins présentant une invalidation du gène Rip140. Pour cela, diverses expériences ont été mises en place en utilisant le gène HES1 comme principal marqueur d’activation de la voie Notch dans les lignées cellulaires de CRC SW620 et HT29. L’expression du gène HES1 a été analysée au niveau protéique, ARNm et transcriptionel en utilisant respectivement les techniques de Western-blot et d’immunofluorescence, de RT-QPCR et de gène rapporteur luciférase. L'activité de la voie Notch a été modulée par l'expression ectopique du domaine intracellulaire de récepteur Notch (NICD) ou en utilisant un inhibiteur de la γ-sécrétase. Le dialogue entre RIP140 et la voie de signalisation Notch est étroitement lié au niveau d'activation de la voie Notch et au niveau d’expression du facteur de transcription HES1. A de faibles niveaux d’activité de la voie Notch, RIP140 est une cible négative de NICD et exerce un effet positif sur la transcription du gène HES1 qui implique, au moins en partie, le complexe RBPJ/NICD. A de niveaux élevés d’activé de la voie Notch, RIP140 devient une cible positive de HES1 et exerce un effet négatif sur la transcription de ce gène en contribuant à la boucle de rétrocontrôle négative de HES1. De manière intéressante, comme le gène HES1, RIP140 a un impact important sur différents paramètres cellulaires. En effet, RIP140, est non seulement capable d’inhiber la prolifération des cellules intestinales, mais est également capable d’augmenter l'expression du gène KLF4 et de favoriser la différenciation en cellules à mucus. Conformément à ce dialogue entre RIP140 et la voie Notch/HES1, nous avons ensuite montré que HES1 et RIP140 inhibent mutuellement leurs effets sur la différenciation et la prolifération cellulaires. Nos données démontrent ainsi l'existence d'une boucle de rétrocontrôle impliquant RIP140 et la voie Notch/HES1 dans les lignées cellulaires de CRC. En effet, le gène RIP140 est à la fois une cible et un régulateur de la voie de signalisation Notch/HES1. Une activité aberrante de la voie Notch bascule la régulation de l'expression du gène HES1 par RIP140 d'un effet positif à un effet négatif via la boucle de rétrocontrôle négative de HES1. De plus, ce lien puissant entre RIP140 et HES1 a un impact sur la différenciation et la prolifération cellulaires. Il sera nécessaire d’analyser le recrutement de RIP140 et HES1 sur différents promoteurs cibles et de valider l'impact de ce dialogue in vivo, en utilisant un modèle de souris que j’ai développé au sein du laboratoire et qui présentent une invalidation conditionnelle du gène Rip140 dans l'épithélium intestinal. / The Notch signaling pathway plays an essential role in intestinal development and homeostasis and has an oncogenic potential in colon cancer (CRC). One of its target genes HES1 is a transcription repressor of a number of genes, including KLF4, which is implicated in intestinal homeostasis and promotes Goblet cell differentiation. In addition, to avoid aberrant activity of the Notch pathway, HES1 exerts a negative feedback loop on its own promoter. Our laboratory is studying RIP140, a transcriptional coregulator which represses the activity of many transcription factors involved in various pathophysiological processes. In the intestinal epithelium, RIP140 inhibits cell proliferation and regulates differentiation towards the Paneth cell lineage. The goal of this work was to investigate the crosstalk between RIP140 and the Notch/HES1 pathway and to study its cellular impacts in human CRC cells. Various experiments have been set up using the HES1 gene as the main output of the Notch pathway in two CRC cell lines (SW620 and HT29). HES1 gene expression has been assessed at the protein, mRNA and transcriptional levels using western-blot/immunofluorescence, RT-QPCR and luciferase reporter assays, respectively. The activity of the Notch pathway has been modulated through ectopic expression of the Notch intracellular domain (NICD) or using a γ-secretase inhibitor. RIP140 crosstalk with the Notch signaling pathway is tightly related to the level of activation of the Notch pathway and to the level of HES1 expression. At low Notch activity, RIP140 is a negative target of NICD and exerts a positive effect on HES1 gene transcription which involves, at least partly, the RBPJ/NICD complex. When the Notch pathway is fully activated, RIP140 becomes a positive target of HES1 and exerts a negative effect on HES1 gene transcription by contributing to the HES1 negative feedback loop. Interestingly, as it is the case for HES1, RIP140 has a strong impact on different cellular parameters. Indeed, we found that RIP140, not only decreases intestinal cell proliferation, but also increases KLF4 gene expression and Goblet cell differentiation. In line with the strong crosstalk between RIP140 and the Notch/HES1 pathway, we then showed that HES1 and RIP140 mutually inhibit their effects on cell differentiation and proliferation. Altogether, our data demonstrated the existence of a feed-back loop involving RIP140 and the Notch/HES1 pathway in CRC cells. Indeed, the RIP140 gene is both a target and a regulator of the Notch/HES1 signaling pathway. A high level of Notch/HES1 activity switches the regulation of HES1 gene expression by RIP140 from a positive to a negative effect through the HES1 negative feedback loop. Moreover, this strong link between RIP140 and HES1 has an impact on cell differentiation and proliferation. It would be however interesting to demonstrate the recruitment of each factor on target promoters and to validate the impact of this strong crosstalk, in vivo, using the newly mouse model that I developed with a conditional knock-out of the Rip140 gene in the intestinal epithelium.
3

Caractérisation moléculaire du rôle de Lhx2 dans le développement de l'oeil et du cerveau

Tétreault, Nicolas 12 1900 (has links)
Le développement du système nerveux central (SNC) chez les vertébrés est un processus d'une extrême complexité qui nécessite une orchestration moléculaire très précise. Certains gènes exprimés très tôt lors du développement embryonnaire sont d'une importance capitale pour la formation du SNC. Parmi ces gènes, on retrouve le facteur de transcription à Lim homéodomaine Lhx2. Les embryons de souris mutants pour Lhx2 (Lhx2-/-) souffre d'une hypoplasie du cortex cérébral, sont anophtalmiques et ont un foie de volume réduit. Ces embryons mutants meurent in utero au jour embryonnaire 16 (e16) dû à une déficience en érythrocytes matures. L'objectif principal de cette thèse est de caractériser le rôle moléculaire de Lhx2 dans le développement des yeux et du cortex cérébral. Lhx2 fait partie des facteurs de transcription à homéodomaine exprimé dans la portion antérieure de la plaque neurale avec Rx, Pax6, Six3. Le développement de l'oeil débute par une évagination bilatérale de cette région. Nous démontrons que l'expression de Lhx2 est cruciale pour les premières étapes de la formation de l'oeil. En effet, en absence de Lhx2, l'expression de Rx, Six3 et Pax6 est retardée dans la plaque neurale antérieure. Au stade de la formation de la vésicule optique, l'absence de Lhx2 empêche l'activation de Six6 (un facteur de transcription également essentiel au développement de l'œil). Nous démontrons que Lhx2 et Pax6 coopèrent en s'associant au promoteur de Six6 afin de promouvoir sa trans-activation. Donc, Lhx2 est un gène essentiel pour la détermination de l'identité rétinienne au niveau de la plaque neurale. Plus tard, il collabore avec Pax6 pour établir l'identité rétinienne définitive et promouvoir la prolifération cellulaire. De plus, Lhx2 est fortement exprimé dans le télencéphale, région qui donnera naissance au cortex cérébral. L'absence de Lhx2 entraîne une diminution de la prolifération des cellules progénitrices neurales dans cette région à e12.5. Nous démontrons qu'en absence de Lhx2, les cellules progénitrices neurales (cellules de glie radiale) se différencient prématurément en cellules progénitrices intermédiaires et en neurones post-mitotiques. Ces phénotypes sont corrélés à une baisse d'activité de la voie Notch. En absence de Lhx2, DNER (un ligand atypique de la voie Notch) est fortement surexprimé dans le télencéphale. De plus, Lhx2 et des co-répresseurs s'associent à la chromatine de la région promotrice de DNER. Nous concluons que Lhx2 permet l'activation de la voie Notch dans le cortex cérébral en développement en inhibant la transcription de DNER, qui est un inhibiteur de la voie Notch dans ce contexte particulier. Lhx2 permet ainsi la maintenance et la prolifération des cellules progénitrices neurales. / Central nervous system (CNS) development in vertebrates is an extremely complex process that requires tight molecular control. Some very early expressed genes during embryonic development are of tremendous importance for CNS development. Among those, we find the LIM homeodomain protein Lhx2. Embryos that lack Lhx2 (Lhx2-/-) suffer from cerebral cortex hypoplasia, are anophtalmic and have smaller liver. The mutant embryos die in utero at embryonic day 16 (e16) due to a deficit in mature erythrocytes. The principal objective of this thesis was to characterize the molecular function of Lhx2 in eye and cerebral cortex development. Lhx2 is a part of the homeodomain transcription factors expressed in the anterior neural plate along with Rx, Pax6 and Six3. Eye development starts by a bilateral evagination of this region. We show here that Lhx2 expression is crucial for the first steps of eye formation. Indeed, in absence of Lhx2, Rx, Six3 and Pax6 expression is delayed in the anterior neural plate. At the optic vesicle stage, Lhx2 mutation precludes the initiation of Six6 expression (an homeodomain transcription factor essential for eye development). We demonstrate that Lhx2 and Pax6 bind to Six6 promoter and cooperate for its trans‐activation. So, Lhx2 is essential for retinal identity determination in the neural plate. Later on, it cooperates with Pax6 to establish definitive retinal identity and promote cell proliferation. Lhx2 is strongly express in the telencephalon, the embryonic region that will give rise to cerebral cortex. Lhx2 ablation causes a decrease in neural progenitor cells proliferation in this region. We show that the lack of Lhx2 causes a premature differentiation of the radial glia cells into intermediate progenitors and post‐mitotic neurons. These phenotypes correlate with a decrease activity of the Notch pathway. In Lhx2-/- telencephalon, the atypical Notch‐ligand DNER is strongly overexpressed. Furthermore, Lhx2 and co‐repressors associate at the DNER promoter region. We conclude that Lhx2 allows Notch pathway activation in the developing cerebral cortex. It does so by inhibiting DNER transcription, which is a Notch pathway repressor in this particular context. Thus, Lhx2 allows the maintenance and the proliferation of neural progenitor cells.
4

Caractérisation moléculaire du rôle de Lhx2 dans le développement de l'oeil et du cerveau

Tétreault, Nicolas 12 1900 (has links)
Le développement du système nerveux central (SNC) chez les vertébrés est un processus d'une extrême complexité qui nécessite une orchestration moléculaire très précise. Certains gènes exprimés très tôt lors du développement embryonnaire sont d'une importance capitale pour la formation du SNC. Parmi ces gènes, on retrouve le facteur de transcription à Lim homéodomaine Lhx2. Les embryons de souris mutants pour Lhx2 (Lhx2-/-) souffre d'une hypoplasie du cortex cérébral, sont anophtalmiques et ont un foie de volume réduit. Ces embryons mutants meurent in utero au jour embryonnaire 16 (e16) dû à une déficience en érythrocytes matures. L'objectif principal de cette thèse est de caractériser le rôle moléculaire de Lhx2 dans le développement des yeux et du cortex cérébral. Lhx2 fait partie des facteurs de transcription à homéodomaine exprimé dans la portion antérieure de la plaque neurale avec Rx, Pax6, Six3. Le développement de l'oeil débute par une évagination bilatérale de cette région. Nous démontrons que l'expression de Lhx2 est cruciale pour les premières étapes de la formation de l'oeil. En effet, en absence de Lhx2, l'expression de Rx, Six3 et Pax6 est retardée dans la plaque neurale antérieure. Au stade de la formation de la vésicule optique, l'absence de Lhx2 empêche l'activation de Six6 (un facteur de transcription également essentiel au développement de l'œil). Nous démontrons que Lhx2 et Pax6 coopèrent en s'associant au promoteur de Six6 afin de promouvoir sa trans-activation. Donc, Lhx2 est un gène essentiel pour la détermination de l'identité rétinienne au niveau de la plaque neurale. Plus tard, il collabore avec Pax6 pour établir l'identité rétinienne définitive et promouvoir la prolifération cellulaire. De plus, Lhx2 est fortement exprimé dans le télencéphale, région qui donnera naissance au cortex cérébral. L'absence de Lhx2 entraîne une diminution de la prolifération des cellules progénitrices neurales dans cette région à e12.5. Nous démontrons qu'en absence de Lhx2, les cellules progénitrices neurales (cellules de glie radiale) se différencient prématurément en cellules progénitrices intermédiaires et en neurones post-mitotiques. Ces phénotypes sont corrélés à une baisse d'activité de la voie Notch. En absence de Lhx2, DNER (un ligand atypique de la voie Notch) est fortement surexprimé dans le télencéphale. De plus, Lhx2 et des co-répresseurs s'associent à la chromatine de la région promotrice de DNER. Nous concluons que Lhx2 permet l'activation de la voie Notch dans le cortex cérébral en développement en inhibant la transcription de DNER, qui est un inhibiteur de la voie Notch dans ce contexte particulier. Lhx2 permet ainsi la maintenance et la prolifération des cellules progénitrices neurales. / Central nervous system (CNS) development in vertebrates is an extremely complex process that requires tight molecular control. Some very early expressed genes during embryonic development are of tremendous importance for CNS development. Among those, we find the LIM homeodomain protein Lhx2. Embryos that lack Lhx2 (Lhx2-/-) suffer from cerebral cortex hypoplasia, are anophtalmic and have smaller liver. The mutant embryos die in utero at embryonic day 16 (e16) due to a deficit in mature erythrocytes. The principal objective of this thesis was to characterize the molecular function of Lhx2 in eye and cerebral cortex development. Lhx2 is a part of the homeodomain transcription factors expressed in the anterior neural plate along with Rx, Pax6 and Six3. Eye development starts by a bilateral evagination of this region. We show here that Lhx2 expression is crucial for the first steps of eye formation. Indeed, in absence of Lhx2, Rx, Six3 and Pax6 expression is delayed in the anterior neural plate. At the optic vesicle stage, Lhx2 mutation precludes the initiation of Six6 expression (an homeodomain transcription factor essential for eye development). We demonstrate that Lhx2 and Pax6 bind to Six6 promoter and cooperate for its trans‐activation. So, Lhx2 is essential for retinal identity determination in the neural plate. Later on, it cooperates with Pax6 to establish definitive retinal identity and promote cell proliferation. Lhx2 is strongly express in the telencephalon, the embryonic region that will give rise to cerebral cortex. Lhx2 ablation causes a decrease in neural progenitor cells proliferation in this region. We show that the lack of Lhx2 causes a premature differentiation of the radial glia cells into intermediate progenitors and post‐mitotic neurons. These phenotypes correlate with a decrease activity of the Notch pathway. In Lhx2-/- telencephalon, the atypical Notch‐ligand DNER is strongly overexpressed. Furthermore, Lhx2 and co‐repressors associate at the DNER promoter region. We conclude that Lhx2 allows Notch pathway activation in the developing cerebral cortex. It does so by inhibiting DNER transcription, which is a Notch pathway repressor in this particular context. Thus, Lhx2 allows the maintenance and the proliferation of neural progenitor cells.
5

Régulation de la quiescence des cellules souches du muscle squelettique par la voie Notch / Regulation of adult muscle stem cell quiescence by Notch signalling

Baghdadi, Meryem 19 September 2017 (has links)
Le muscle squelettique adulte est capable de se régénérer à plusieurs reprises après blessure grâce à sa population de cellules souches résidentes: les cellules satellites. Cependant, les mécanismes impliquant les cellules satellite dans la recouvrement de l'homéostasie et de l'intégrité musculaire ne sont toujours pas clairs. Chez l'adulte, les cellules satellites sont quiescentes et localisées dans une niche entre la lame basale et la fibre musculaire. Après blessure, elles prolifèrent, se différencient et fusent afin de restaurer les fibres endommagées. Lorsque la niche des cellules satellite est altérée elles expriment rapidement le marqueur d'activation Myod puis prolifèrent. La lame basale des cellules souches est riche en collagène, glycoprotéines et de protéoglycan. Cependant, le mécanisme de fonction de ces protéines de la matrice extracellulaire (MEC) dans le maintien de la cellule satellite dans sa niche est toujours inconnu. De plus, l'interaction entre la MEC et des voies de signalisation cellulaire essentielles au maintien des cellules souches quiescentes sont toujours un mystère. Nous avons identifiés la voie Notch comme effecteur indispensable à la quiescence des cellules satellites. Un ChIP screening dans des cellules musculaires nous a permit d'identifier des microRNAs et collagènes spécifiques comme des gènes cibles de la voie Notch. L'utilisation d'outils génétiques permettant de moduler l'activité de la voie Notch démontrent que ces microRNAs et collagènes sont régulés transcriptionnellement par la voie Notch in vitro et in vivo. Nous proposons que le Collagène de type V et miR-708, induits par Notch, peuvent autoréguler la niche des cellules souches. / Adult skeletal muscles can regenerate after repeated trauma, yet our understanding of how adult muscle satellite (stem) cells (MuSCs) restore muscle integrity and homeostasis after regeneration is limited. In the adult mouse, MuSCs are quiescent and located between the basal lamina and the myofibre. After injury, they re-enter the cell cycle, proliferate, differentiate and fuse to restore the damaged fibre. A subpopulation of myogenic cells then self-renews and replenishes the stem cell pool for future repair. When MuSCs are removed from their niche, they rapidly express the commitment marker Myod and proliferate. The basal lamina that ensheaths MuSCs is rich in collagens, non-collagenous glycoproteins and proteoglycans. Whether these and other extracellular matrix (ECM) proteins constitute functional components of MuSCs niche remains unclear. Moreover, although signalling pathways that maintain MuSCs quiescence have been identified, how these regulate stem cell properties and niche composition remains largely unknown. Sustained, high activity of the Notch signalling pathway is critical for the maintenance of MuSCs in a quiescence state. Of interest, whole-genome ChIP for direct Notch/Rbpj transcriptional targets identified specific micro-RNAs and collagen genes in satellite cells. Using genetic tools to conditionally activate or abrogate Notch signalling, we demonstrate that the expression of these target genes is controlled by the Notch pathway in vitro and in vivo. Further, we propose that Collagen V and miR708 can contribute cell-autonomously to the generation of the MuSCs niche via a Notch signalling-regulated mechanism.
6

Détermination neurale et neuronale : implication des protéines de la superfamille Snail dans le lignage des soies mécanosensorielles chez la drosophile / Neural and neuronal determination : involvement of Snail superfamily proteins in Drosophila bristle cell lineage

Roque, Anne 29 September 2014 (has links)
L'engagement des cellules vers un destin donné, ou détermination cellulaire, est un processus clé du développement. Quels sont les mécanismes qui sous-tendent la détermination cellulaire ? Pour aborder cette question, nous utilisons le lignage des soies mécanosensorielles de la drosophile. Dans ce lignage, la diversité des cellules résulte de l'activation différentielle de la voie Notch ainsi que la ségrégation asymétrique de déterminants cellulaire à chaque division. Cependant, comment la répétition d’un même mécanisme peut-elle être à l’origine des destins cellulaires différents ? D'autres facteurs doivent être impliqués dans ce processus. Afin des les identifier, mon intérêt s’est porté sur les facteurs de transcription de la superfamille Snail, connus pour être impliqués dans la détermination cellulaire au cours du développement de la drosophile.Deux membres de cette superfamille, Escargot (Esg) et Scratch (Scrt) sont exprimés dans le lignage des soies, en particulier dans les cellules neurales et leurs précurseurs. Des analyses de perte et de gain de fonction indiquent qu’Esg et Scrt, agissant de manière redondante, sont nécessaires pour le maintien de l'identité du précurseur secondaire neural. Des tests d’interaction génétique ont montré que ces facteurs agissent en interaction avec la voie Notch, probablement via la répression de l’expression des gènes cibles de la voie. De plus, Esg, mais pas Scrt, a un rôle supplémentaire lors de la formation du lignage des soies. La perte de fonction de ce facteur provoque un défaut de l’arborisation et de la croissance axonales. En outre, l'expression des gènes impliqués dans la différenciation neuronale, tels que Elav et Prospero, est altérée dans ce contexte, suggérant qu’Esg contrôle la différenciation neuronale en régulant l'expression de gènes clés de l’identité neuronale.Ensemble, mes résultats ont montré qu’Esg et Scrt participent à la mise en place de la diversité cellulaire dans le lignage des soies de la drosophile. / The commitment of cells to a given fate, or cell fate determination, is a key process in development. Cell type diversity arises from variations in this process. What are the mechanisms underlying cell determination and how is cell diversity achieved? In order to approach these questions, we use the Drosophila mechanosensory bristle lineage. In this lineage, cell diversity arises from the differential activation of the Notch pathway as well as the asymmetric segregation of cell fate determinants at each division. However, how does the repetition of the same mechanism trigger different cell fates? Other factors might be involved in cell fate commitment. In order to identify such factors, I focused my interest on the transcription factor of the Snail superfamily, known to be involved in cell determination during Drosophila development.Two members of this superfamily, escargot (esg) and scratch (scrt) are expressed in the bristle lineage, specifically in the inner neural cells and their precursor cells. Loss and gain of function analysis indicate that Esg and Scrt, acting redundantly, are necessary for the maintenance of the neural secondary precursor cell identity. A genetics interaction test showed that this role is achieved in interaction with the Notch pathway, probably through the repression of Notch target genes expression. Moreover, Esg, but not Scrt, has an additional role during the inner bristle cell formation. Loss of function of this factor induces a defect in neuronal differentiation, specifically axon growth and patterning. Moreover, the expression of genes involved in neuronal differentiation, such as elav and prospero, is impaired in this context. Altogether, these data suggests that Esg is involved in neuronal differentiation by regulating the expression of key neuronal genes.Together, my results showed that Esg and Scrt participate to the establishment of cell diversity in Drosophila bristle cell lineage.
7

Biologie des cellules souches cochléaires : perspectives dans le traitement de la surdité sensorielle / Stem cell biology of the inner ear : potential therapeutic application of sensory deafness

Savary, Etienne 14 December 2010 (has links)
La destruction des cellules ciliées de la cochlée entraine des surdités sensorielles. Chez les mammifères ces cellules ne se régénèrent pas et les déficits auditifs occasionnés sont définitifs. Aucune thérapie visant à remplacer les cellules ciliées détruites n'est actuellement proposée.L'objectif de cette thèse est de contribuer au développement d'une thérapie cellulaire basée sur la greffe de cellules souches / progénitrices cochléaires et destinée à promouvoir la régénération des cellules ciliées.Au cours de nos travaux, nous avons isolé une population de cellules souches cochléaires chez des souris néonatales appartenant à la « side population » (Savary et al. 2007). Nous avons également montré, par des expériences de perte et de gain de fonction in vitro, que la voie de signalisation Notch est nécessaire pour l'auto-renouvellement et la différenciation de ces cellules (Savary et al., 2008). Des lignées de souris transgéniques exprimant la GFP sous le promoteur de la GFAP et de la Nestine nous ont permis de suivre l'expression de ces marqueurs de cellules souches dans des cochlées de souris P3 et adultes. En étudiant l'expression combinée d'autres marqueurs comme Sox2 et Abcg2, nous avons montré que les cellules progénitrices cochléaires sont réparties différemment chez les souris néonatales et les souris adultes (Smeti, Savary et al 2010).Nos expériences préliminaires de transplantation in vitro dans un modèle murin de surdité génétique humaine de type DFNA15 démontrent que les cellules souches / progénitrices greffées sont capables d'intégrer l'épithélium sensoriel lésé et de se différencier en cellules exprimant un marqueur de cellules ciliées. / The destruction of cochlear hair cells causes sensory deafness. In Mammals these cells do not regenerate and damages are irreversible. Currently, there is no proposed therapy to replace the destroyed hair cells.The focus of this thesis is to develop a novel cell therapy based on transplantation of cochlear progenitor cells in order to promote regeneration of hair cells.We first isolated a population of cochlear stem cells from neonatal mice by using the side population analysis technique (Savary et al. 2007). Then, we showed, by in vitro loss and gain of function experiments, that the Notch signaling pathway is necessary for cellular self-renewal and differentiation (Savary et al., 2008).Transgenic mice strains expressing GFP under the control of GFAP and Nestin promotors allowed us to monitor the expression of these markers of stem cells in the P3 and adult mice cochleae. By studying the combined expression of other stem cells markers such as Sox2 and ABCG2, we showed that the niches of cochlear progenitor cells are differently distributed in neonatal and adult mice (Smati, Savary et al 2010).Our preliminary in vitro transplantation experiments in a mouse model that mimics human genetic deafness DFNA15 show that the transplanted stem / progenitor cells are able to migrate to the lesion site, to integrate the damaged sensory epithelium and to differentiate into cells expressing a marker of hair cells.

Page generated in 0.4297 seconds