• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 26
  • 10
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 63
  • 52
  • 48
  • 46
  • 42
  • 36
  • 30
  • 29
  • 27
  • 27
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Offshore Marine Substation for Grid-Connection of Wave Power Farms : An Experimental Approach

Ekström, Rickard January 2014 (has links)
Wave power is a renewable energy source with great potential, which is why there are more than a hundred ongoing wave power projects around the world. At the Division of Electricity, Uppsala University, a point-absorber type wave energy converter (WEC) has been proposed and developed. The WEC consists of a linear synchronous generator placed on the seabed, connected to a buoy floating on the surface. Power is absorbed by heave motion of the buoy, and converted into electric energy by the generator. The point-absorber WEC must be physically much smaller than the wavelength of the incoming waves, and can therefore not be scaled to very high power levels. Instead, the total power output is boosted by increasing the number of WECs, connecting them in wave power farms. To transfer the electric energy to the grid, an intermediate marine substation is proposed, where an AC/DC/AC conversion step is performed. Within this PhD-work, a full-scale offshore marine substation has been designed, constructed and experimentally evaluated. The substation is rated for grid-connection of seven WECs to the local 1kV-grid, and is placed on the seabed 3km off the coast at a depth of 25m. Various aspects of the substation design have been considered, including the mechanical and electrical systems, the WEC electrical interface, offshore operations and the automatic grid connection control system. A tap change circuit and different multilevel topologies have also been proposed. This dissertation has an experimental approach, validating a major part of the work with lab results. The final substation electrical circuit has been tested at rated grid voltage with a fluctuating input power source. The efficiency has been measured and the implemented functions are verified. Offshore operations have been successfully carried out and offshore wave farm data is expected in the nearby future.
42

Insulation Coordination of Solid State Devices Connected Directly to the Electric Power Distribution System

January 2017 (has links)
abstract: With the penetration of distributed renewable energy and the development of semiconductor technology, power electronic devices could be utilized to interface re- newable energy generation and the distribution power grid. However, when directly connected to the power grid, the semiconductors inside the power electronic devices could be vulnerable to the power system transient, especially to lightning strikes. The work of this research focuses on the insulation coordination of power elec- tronic devices connected directly to the power distribution system. The Solid State Transformer (SST) in Future Renewable Electric Energy Delivery and Management (FREEDM) system could be a good example for grid connected power electronic devices. Simulations were conducted in Power Systems Computer Aided Design (PSCAD) software. A simulation done to the FREEDM SST showed primary re- sults which were then compare to simulation done to the grid-connected operating Voltage Source Converter (VSC) to get more objective results. Based on the simulation results, voltage surges caused by lightning strikes could result in damage on the grid-connected electronic devices. Placing Metal Oxide Surge Arresers (MOSA, also known as Metal Oxide Surge Varistor, MOV) at the front lter could provide eective protection for those devices from power transient. Part of this research work was published as a conference paper and was presented at CIGRE US National Conference: Grid of the Future Symposium [1] and North American Power Symposium [2]. / Dissertation/Thesis / Masters Thesis Engineering 2017
43

Modelagem e acionamento de uma máquina de indução de nove fases baseado em modulação espacial vetorial - SVPWM / Modeling of a nine-phase induction machine and a drive based on space vector modulation – SVPWM

Silva, Ivan da 27 February 2015 (has links)
Submitted by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-06T15:48:55Z No. of bitstreams: 1 arquivototal.pdf: 3791340 bytes, checksum: 58dd4dde93f8552a891a0760151a7c10 (MD5) / Made available in DSpace on 2015-11-06T15:48:55Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3791340 bytes, checksum: 58dd4dde93f8552a891a0760151a7c10 (MD5) Previous issue date: 2015-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The interest for the study of multiphase (more than three phases) machines and variable speed drives has substantially increased in the last two decades. The advantages presented by the multiphase systems compared to their three-phase counterparts have being the the main effort to increase researches all over the world. Reduction in torque oscillation, lower current ratings, high drive reliability, better fault tolerance and harmonic content reduction in the DC bus are some of these advantages. The additional degrees of freedom due to extra phases make multiphase systems very flexible when it comes to control systems and modulation strategies. Although three-phase systems are predominant in industrial applications, the use of multiphase machines and drives has increased in very specific areas such as locomotive traction, electric ship propulsion, aerospace industry (more electric aircraft), electric and hybrid vehicles and industrial high power systems. Due to high coupling degree between electric variables in multiphase systems, modeling of multiphase machines has been and still is a challenge task in research centers. In this present work, analitic modeling of symmetric and asymmetric nine-phase machines using natural variables and space vector decomposition are presented. The principles used in the study are the same used for three-phase systems. However, multiphase systems are analised in multiple d-q planes. PWM modulation strategies based on space vectors theory (SVPWM) for a voltage source inverter (VSI) are presented. The multiphase drive system presented works in the linear operation region with sinusoidal voltage generation. Results for both machines and drive modeled are verified by simulation programs developed in C programming language an Matlab. / O interesse pelo estudo de máquinas de indução multifases (mais de três fases) e dos seus sistemas de acionamento cresceu substancialmente nas últimas duas décadas. As muitas vantagens apresentadas pelos sistemas multifases, em relação aos sistemas trifásicos convencionais, têm sido fatores motivadores para o aumento de pesquisas em todo o mundo. Redução das oscilações de torque, redução da corrente por fase, maior confiabilidade do acionamento, grande tolerância à faltas e redução no conteúdo harmônico da corrente no barramento CC são algumas destas vantagens. O maior grau de liberdade proporcionado pelas fases extras torna os sistemas multifases bastante flexíveis quanto às estratégias de modulação e de controle. Apesar da atual predominância da utilização das máquinas e acionamentos trifásicos na indústria, as máquinas multifases estão sendo cada vez mais utilizadas em áreas de aplicações específicas tais como tração de locomotivas, propulsão de navios elétricos de grande porte, indústria aeroespacial, tração de veículos híbridos e elétricos e sistemas industriais de alta potência. Devido ao alto grau de acoplamento entre as variáveis elétricas de um sistema multifases, a modelagem e análise desses sistemas tem representado uma tarefa desafiadora nos centros de pesquisa. No presente trabalho são apresentadas as modelagens analíticas de uma máquina de indução de nove fases simétrica e de uma máquina de nove fases assimétrica pelo método de variáveis naturais e pelo método de decomposição vetorial. Os princípios utilizados na modelagem são os mesmos utilizados nos sistemas trifásicos. No entanto, sistemas multifases são analisados em múltiplos planos d-q. Estratégias de modulação PWM baseadas na teoria de vetores espaciais (SVPWM) para um inversor de nove fases tipo VSI (Inversor Fonte de Tensão) são apresentadas para acionamento das máquinas. O sistema de acionamento apresentado trabalha na região linear de operação e gera tensão de saída senoidal. Dados de simulação obtidos a partir de programas desenvolvidos em linguagem C e Matlab são apresentados para ambas as máquinas de nove fases modeladas.
44

Estratégias de energização e desenergização de um compensador estático síncrono para distribuição

Duarte, Samuel Neves 08 March 2017 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-01T17:54:00Z No. of bitstreams: 1 samuelnevesduarte.pdf: 5789380 bytes, checksum: b5b511b2ce2bf7c5f0c6c6b3ef94a9c1 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-02T15:58:36Z (GMT) No. of bitstreams: 1 samuelnevesduarte.pdf: 5789380 bytes, checksum: b5b511b2ce2bf7c5f0c6c6b3ef94a9c1 (MD5) / Made available in DSpace on 2017-06-02T15:58:36Z (GMT). No. of bitstreams: 1 samuelnevesduarte.pdf: 5789380 bytes, checksum: b5b511b2ce2bf7c5f0c6c6b3ef94a9c1 (MD5) Previous issue date: 2017-03-08 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esta dissertação propõe estratégias de energização/desenergização de um compensador estático síncrono para distribuição. É também proposta uma alteração na topologia do compensador estático síncrono com a inclusão de dois circuitos capazes de realizar o procedimento de energização/desenergização proposto. O primeiro circuito é baseado em um retificador semi–controlado enquanto o segundo circuito é baseado na topologia de um gradador. A metodologia de controle é derivada da modelagem matemática do circuito equivalente formado durante a energização e a desenergização. A equação obtida é resolvida numericamente pelo método de Newton-Raphson e posteriormente usa-se uma aproximação linear por partes para representar os pontos intermediários da curva que relaciona a tensão do barramento CC do compensador com o ângulo de disparo dos tiristores. Um modelo digital do compensador estático, desenvolvido no programa PSIM, e um modelo experimental de pequena escala (3,8 kVA/220 V) são usados para validar a metodologia proposta. Resultados de simulação e experimentais demonstram a eficiência dos controladores de energização e desenergização. / This dissertation proposes strategies to energize/de-energize a distribution static synchronous compensator. It is also proposed a change in the topology of the static synchronous compensator with the inclusion of two circuits capable of performing the energization/de-energization procedure. The first circuit is based on a semi-controlled rectifier while the second one is based on a grader. The control methodology is derived from the mathematical modeling of the equivalent circuit formed during the energization and de-energization process. The resulting equation is numerically solved by the Newton-Raphson method and a piecewise linear method is used to model the curve that relates the DC bus voltage of the compensator to the firing angle of the thyristors. A digital model, in the PSIM program, and a small scale laboratory prototype (3,8 kVA/220 V) are used to validate the proposed methodology. Simulation and experimental results demonstrates the effectiveness of the energization and de-energization controllers.
45

Smart Inverter Control and Operation for Distributed Energy Resources

Tazay, Ahmad F. 27 October 2017 (has links)
The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. \indent In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1- Low-level control of a single smart Inverter. 2- High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.
46

Elektronická aktivní zátěž pro podporu laboratorní práce – studium proveditelnosti / Electronically adjustable active load for support of laboratory work – feasibility of an implementation

Němec, Pavel January 2020 (has links)
This master’s thesis deals with active electronic loads focusing mostly on alternating input signals. The principles and modes of both DC and AC loads are described, as well as the most important parameters of MOSFET transistor which is used as the main power component. It deals with designing a regulation circuit of an AC load in detail. This work also discusses the possibilities of realisation of the remaining parts of the device. At the end of the thesis the function of the designed regulation circuit is verified by simple measurements on a prototype.
47

Verluste in synchronen Reluktanzmaschinen am Spannungszwischenkreis-Umrichter

Winkler, Stefan, Werner, Ralf 28 February 2020 (has links)
In diesem Beitrag wird gezeigt, welche Auswirkung die Rotorform einer Reluktanzmaschine und die Ansteuerung mittels Umrichter auf den Verlusthaushalt der Maschine hat. Darüber hinaus werden die Möglichkeiten zur Verluststeuerung, welche sich durch den Betrieb von Reluktanzmaschinen ergeben, vorgestellt. / This paper shows the effect of the rotor shape of a reluctance machine and the converter control on the losses of the machine. In addition, it will be shown which possibilities for loss control will result from the operation of reluctance machines.
48

A Distributed Digital Control Architecture for Power Electronics Systems

Celanovic, Ivan 25 September 2000 (has links)
This thesis proposes a novel approach to power electronics system design that is based on the open-architecture distributed digital controller and modular power electronics building blocks (PEBBs). The proposed distributed digital controller partitions the controller in three levels of control authority. The power stage controller, designated as hardware manager, is responsible for low-level hardware oriented tasks; the high level controller, designated as applications manager, performs higher-level application-oriented tasks; and the system level controller handles system control and monitoring functions. Communications between the hardware-oriented controller and the higher-level controller are implemented with the previously proposed 125 Mbits/sec daisy-chained fiber optic communication protocol. Real-time control and status data are communicated by means of communication protocol. The distributed controller on the power converter level makes the system open, flexible and simple to use. Furthermore, this work gives an overview and comparison of current state-of-the-art communication protocols for real-time control applications with emphasis on industrial automation and motion control. All of the studied protocols have been considered as local area networks (LAN) for system-level control in power converter systems. The most promising solution has been chosen for the system level communication protocol. This thesis also provides the details of design and implementation of the distributed controller. The design of both the hardware and software components are explained. A 100 kVA three-phase voltage source inverter (VSI) prototype was built and tested using the distributed controller approach to demonstrate the feasibility of the proposed concept. / Master of Science
49

Derivation of Parabolic Current Control with High Precision, Fast Convergence and Extended Voltage Control Application

Zhang, Lanhua 24 October 2016 (has links)
Current control is an important topic in modern power electronics system. For voltage source inverters, current control loop ensures the waveform quality at steady state and the fast response at transient state. To improve the current control performance, quite a few nonlinear control strategies have been presented and one well-known strategy is the hysteresis current control. It achieves fast response without stability issue and it has high control precision. However, for voltage source inverter applications, hysteresis current control has a wide switching frequency range, which introduces additional switching loss and impacts the design of harmonic filter. Other nonlinear current control strategies include one-cycle control, non-linear carrier control, peak current control, charge control, and so on. However, these control strategies are just suitable for specific topologies and it cannot be directly used by voltage source inverters. The recently proposed parabolic current control solves the frequency variation problem of hysteresis current control by employing a pair of parabolic carriers as the control band. By the use of parabolic current control, approximate-constant switching frequency can be achieved. Due to the cycle-by-cycle control structure, it inherently has fast response speed and high precision. These advantages make it suitable for voltage source inverters, including stand-alone inverters, grid connected inverters, active power filters, and power factor correction applications. However, parabolic current control has some limitations, such as dead-time effects, only working as bipolar PWM, complex hardware implementation, non-ideal converging speed. These problems are respectively solved in this dissertation and solutions include dead-time compensation, the implementation on dual-carrier unipolar PWM, sensorless parabolic current control, single-step current control. With the proposed dead-time compensation strategy, current control precision is improved and stable duty-cycle range are extended. Dual-carrier PWM implementation of parabolic current control has smaller harmonic filter size and lower power loss. Sensorless parabolic current control decreases the cost of system and enhances the noise immunity capability. Single-step current control pushes the convergence speed to one switching operation with simple implementation. High switching frequency is allowed and power density can be improved. Detailed analysis, motivation and experimental verification of all these innovations are covered in this dissertation. In addition, the duality phenomenon exists in electrical circuits, such as Thevenin's theorem and Norton's theorem, capacitance and inductance. These associated pairs are called duals. The dual of parabolic current control is derived and named parabolic voltage control. Parabolic voltage control solves the audible noise problem of burst mode power converters and maintains high efficiency in the designed boost converter. / Ph. D.
50

Examination of Power Systems Solutions Considering High Voltage Direct Current Transmission

Ridenour, Daniel Keith 05 October 2015 (has links)
Since the end of the Current Wars in the 19th Century, alternating current (AC) has dominated the production, transmission, and use of electrical energy. The chief reason for this dominance was (and continues to be) that AC offers a way minimize transmission losses yet transmit large power from generation to load. With the Digital Revolution and the entrance of most of the post-industrialized world into the Information Age, energy usage levels have increased due to the proliferation of electrical and electronic devices in nearly all sectors of life. A stable electrical grid has become synonymous with a stable nation-state and a healthy populace. Large-scale blackouts around the world in the 20th and the early 21st Centuries highlighted the heavy reliance on power systems and because of that, governments and utilities have strived to improve reliability. Simultaneously occurring with the rise in energy usage is the mandate to cut the pollution by generation facilities and to mitigate the impact grid expansion has on environment as a whole. The traditional methods of transmission expansion are beginning to show their limits as utilities move generation facilities farther from load centers, which reduces geographic diversity, and the integration of nondispatchable, renewable energy sources upsets the current operating regime. A challenge faces engineers - how to expand generation, expand transmission capacity, and integrate renewable energy sources while maintaining maximum system efficiency and reliability. A technology that may prove beneficial to the operation of power system is high voltage direct current transmission. The technology brings its own set of advantages and disadvantages, which are in many ways the complement of AC. It is important to update transmission planning processes to account for the new possibilities that HVDC offers. This thesis submits a discussion of high voltage direct current transmission technology itself and an examination of how HVDC can be considered in the planning process. / Master of Science

Page generated in 0.0362 seconds