• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 26
  • 10
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 63
  • 52
  • 48
  • 46
  • 42
  • 36
  • 30
  • 29
  • 27
  • 27
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analysis Of A Wave Power System With Passive And Active Rectification

Wahid, Ferdus January 2020 (has links)
Wave energy converter (WEC) harnesses energy from the ocean to produce electrical power. The electrical power produced by the WEC is fluctuating and is not maximized as well, due to the varying ocean conditions. As a consequence, without any intermediate power conversion stage, the output power from the WEC can not be fed into the grid. To feed WEC output power into the grid, a two-stage power conversion topology is used, where the WEC output power is first converted into DCpower through rectification, and then a DC-AC converter (inverter) is used to supply AC power into the grid. The main motive of this research is to extract maximum electrical power from the WEC by active rectification and smoothing the power fluctuation of the wave energy converter through a hybrid energy storage system consisting of battery and flywheel. This research also illustrates active and reactive power injection to the grid according to load demand through a voltage source inverter.
32

Číslicově řízený zdroj střídavého napětí / Digitally controlled AC voltage source

Dalík, Vladimír January 2010 (has links)
The thesis deals of microprocesor controlled instrument for measuring. In general it is about of controlling instruments and their usage in standard industry. laboratories and measuring systems. The first part contens theoretical knowledge of controlling instrument, his funtions and describes circuitry of sources of AC voltages. This part describes blocks of instrument and basis connecting in system of instrument. Each block is described with examples in praxis. Examples contents typical connecting and their problems out of view in parameters of instrumenr. In this part is whole theory of analysis and practical using separately parts of instrument. Next part is aimed at searching of interrelationship between the teoretical model of source that described by different circuits and practical connections with electronic parts. These part analyse concrete design with exactly sized parameters and connections. In last part contents describing of measuring at prototype. The appendix contains schematics and boards with electronic parts and test reports of measuring output voltage and frequency with required accuracies.
33

Power Electronics for Mitigation of Voltage Sags and Improved Control of AC Power Systems

Magalhães de Oliveira, Marcio January 2000 (has links)
The thesis deals with the application of compensators andswitches based on power electronics in AC transmission anddistribution systems. The objective of the studieddevices/equipment is the power flow and voltage control intransmission systems and the mitigation of voltage sags andmomentary interruptions to critical loads in distributionsystems. For validating the power electronics based devices/equipmentdescribed in the thesis, scaled models at a real-time simulatorhave been built. Simulation results of these models arepresented and discussed in the thesis. The equipment studied in the thesis exploit the fast controlactions that can be taken by power electronics devices, whichare much faster than the speed of conventional equipment andprotection systems, based on electromechanical devices. In thisway, the power quality of distribution systems is improved,regarding duration and magnitude of voltage sags (dips) andmomentary interruptions, which are the most relevant types ofdisturbances in distribution systems. The thesis presents some compensators based onforced-commutation voltage-source converters for correctingvoltage sags and swells to critical loads. The seriesconverter, usually denoted Dynamic Voltage Restorer (DVR), hasbeen proved suitable for the task of compensating voltage sagsin the supply network. The use of solid-state devices ascircuit breakers in distribution systems has also been studiedwith the objective of achieving fast interruption or limitationof fault currents. The location and practical aspects for theinstallation of these solid-state breakers are presented. Ithas beenshown that a configuration based on shunt and seriesconnected solid-state devices with controllable turn-offcapability can also provide voltage sag mitigation, without theneed of transformers and large energy storage elements. The operation and control of two Flexible AC TransmissionSystem (FACTS) devices for voltage and power flow control intransmission systems, namely the Static Synchronous Compensator(STATCOM) and the Unified Power Flow Controller (UPFC),respectively, are also studied. A faster response compared totraditional equipment consisting of mechanically based/switchedelements is then achieved. This allows a more flexible controlof power flow and a secure loading of transmission lines tolevels nearer to their thermal limits. The behaviour of thesedevices during faults in the transmission system is alsopresented. Keywords: power electronics, power quality, voltagesags, voltage-source converters, Custom Power, FACTS, real-timesimulations, solid-state devices.
34

Modeling and Control of VSC-HVDC Links Connected to Weak AC Systems

Zhang, Lidong January 2010 (has links)
For high-voltage direct-current (HVDC) transmission, the strength of the ac system is important for normal operation. An ac system can be considered as weak either because its impedance is high or its inertia is low. A typical high-impedance systemis when an HVDC link is terminated at a weak point of a large ac system where the short-circuit capacity of the ac system is low. Low-inertia systems are considered to have limited number of rotating machines, or no machines at all. Examples of such applications can be found when an HVDC link is powering an isand system, or if it is connected to a wind farm. One of the advantages of applying a voltage-source converter (VSC) based HVDC systemis its potential to be connected to very weak ac systems where the conventional linecommutated converter (LCC) based HVDC system has difficulties. In this thesis, the modeling and control issues for VSC-HVDC links connected to weak ac systems are investigated. In order to fully utilize the potential of the VSC-HVDC system for weak-ac-system connections, a novel control method, i.e., powersynchronization control, is proposed. By using power-synchronization control, the VSC resembles the dynamic behavior of a synchronous machine. Several additional functions, such as high-pass current control, current limitation, etc. are proposed to deal with  issues during operation. For modeling of ac/dc systems, the Jacobian transfer matrix is proposed as a unified modeling approach. With the ac Jacobian transfer matrix concept, a synchronous ac system is viewed upon as one multivariable feedback system. In the thesis, it is shown that the transmission zeros and poles of the Jacobian transfer matrix are closely related to several power-system stability phenomena. The similar modeling concept is extended to model a dc system with multiple VSCs. It is mathematically proven that the dc system is an inherently unstable process, which requires feedback controllers to be stabilized. For VSC-HVDC links using power-synchronization control, the short-circuit ratio (SCR) of the ac system is no longer a limiting factor, but rather the load angles. The righthalf plane (RHP) transmission zero of the ac Jacobian transfer matrix moves closer to the origin with larger load angles, which imposes a fundamental limitation on the achievable bandwidth of the VSC. As an example, it is shown that a VSC-HVDC link using powersynchronization control enables a power transmission of 0.86 p.u. from a system with an SCR of 1.2 to a system with an SCR of 1.0. For low-inertia systemconnections, simulation studies show that power-synchronization control is flexible for various operation modes related to island operation and handles the mode shifts seamlessly. / QC20100607
35

Design and Development of a Power Modulator for Insulation Testing

Montasser, Yuseph January 2006 (has links)
Variable speed drives allow for more precise speed control of induction motors, are of high power factor, and offer fast response characteristics, compared to older technologies, such as motor-generator sets and eddy current clutches. However, due to the high switching frequencies as well as the high dV/dt in the output increased dielectric stresses are produced in the insulation system of the motor they supply. Due to the use of these solid state drives there have been concerns of premature failure in large, medium and high voltage, motors. To fully understand and deal with these concerns requires studying the degradation mechanisms, in the insulation system, caused by these drives; which, on an actual motor is both extremely costly as well as impractical. Therefore, coil samples which accurately represent the construction of the actual insulation system, must be aged and studied instead. In addition, to ideally replicate the aging process, the same waveform that the motor is subjected to must be applied to these samples. As a result of this requirement, a low power, two-level, high voltage PWM inverter has been built to replicate the most important characteristics of the output waveform of a variable speed drive. This power modulator allows for testing the insulation systems considering a real PWM waveform in which both the fast pulses and the fundamental low frequency are included. The results of these tests show that the effects of PWM waveforms cannot be entirely replicated by a unipolar pulse generator.
36

Design and Development of a Power Modulator for Insulation Testing

Montasser, Yuseph January 2006 (has links)
Variable speed drives allow for more precise speed control of induction motors, are of high power factor, and offer fast response characteristics, compared to older technologies, such as motor-generator sets and eddy current clutches. However, due to the high switching frequencies as well as the high dV/dt in the output increased dielectric stresses are produced in the insulation system of the motor they supply. Due to the use of these solid state drives there have been concerns of premature failure in large, medium and high voltage, motors. To fully understand and deal with these concerns requires studying the degradation mechanisms, in the insulation system, caused by these drives; which, on an actual motor is both extremely costly as well as impractical. Therefore, coil samples which accurately represent the construction of the actual insulation system, must be aged and studied instead. In addition, to ideally replicate the aging process, the same waveform that the motor is subjected to must be applied to these samples. As a result of this requirement, a low power, two-level, high voltage PWM inverter has been built to replicate the most important characteristics of the output waveform of a variable speed drive. This power modulator allows for testing the insulation systems considering a real PWM waveform in which both the fast pulses and the fundamental low frequency are included. The results of these tests show that the effects of PWM waveforms cannot be entirely replicated by a unipolar pulse generator.
37

Design And Implementation Of A Voltage Source Converter Based Hybrid Active Power Filter

Ucak, Onur 01 September 2009 (has links) (PDF)
This research work is devoted to the analysis, design and implementation of a shunt connected Hybrid Active Power Filter by the use of a lower rated voltage source PWM converter, and a series connected LC passive filter. In recent years, voltage and current harmonics have become a serious problem both in transmission and distribution systems, due to the widespread usage of non-linear loads such as diode/thyristor rectifiers, electric arc furnaces and motor drives. In order to obtain a better performance than those of the conventional passive filter solutions, active power filters (APF) have been worked on and developed. Among various configurations listed in the literature, conventional shunt connected voltage source active power filter is widely used in industrial applications. Unfortunately, for large power applications, the losses and the rating of the APF increase considerably. As a result, various hybrid filter topologies have been developed which combine the advantages of both passive and active filters. In this thesis, a shunt connected hybrid active power filter is developed by combining a 4.7 kVA voltage source converter and a 30kVAR 7th harmonic passive filter. The developed system has been implemented to eliminate the most dominant 5th, 7th and 11th current harmonic components existing at 400V low voltage bus of TUBITAK SPACE Technologies Institute. The theoretical and experimental results have shown that the DC link voltage of the converter and the rating of APF are minimized while keeping the filtering performance satisfactory.
38

Design and analysis of modern three-phase AC/AC power converters for AC drives and utility interface

Kwak, Sangshin 29 August 2005 (has links)
Significant advances in modern ac/ac power converter technologies and demands of industries have reached beyond standard ac/ac power converters with voltage-source inverters fed from diode rectifiers. Power electronics converters have been matured to stages toward compact realization, increased high-power handling capability, and improving utility interface. Modern ac/ac power converter topologies with various control strategies have been introduced for the further improvements, such as matrix converters, current-fed converters, PWM rectifiers, and active power filters. In this dissertation, several new converter topologies are proposed in conjunction with developed control schemes based on the modern ac/ac converters which enhance performance and solve the drawbacks of conventional converters. In this study, a new fault-tolerant PWM strategy is first proposed for matrix converters. The added fault-tolerant scheme would strengthen the matrix converter technology for aerospace and military applications. A modulation strategy is developed to reshape output currents for continuous operation, against fault occurrence in matrix converter drives. This study designs a hybrid, high-performance ac/ac power converter for high power applications, based on a high-power load commutated inverter and a mediumpower voltage source inverter. Natural commutation of the load commutated inverter is actively controlled by the voltage source inverter. In addition, the developed hybrid system ensures sinusoidal output current/voltage waveforms and fast dynamic response in high power areas. A new topology and control scheme for a six-step current source inverter is proposed. The proposed topology utilizes a small voltage source inverter, to turn off main thyristor switches, transfer reactive load energy, and limit peak voltages across loads. The proposed topology maximizes benefits of the constituent converters: highpower handling capability of large thyristor-based current source inverters as well as fast and easy control of small voltage source inverters. This study analyzes, compares, and evaluates two topologies for unity power factor and multiple ac/ac power conversions. Theoretical analyses and comparisons of the two topologies, grounded on mathematical approaches, are presented from the standpoint of converter kVA ratings, dc-link voltage requirements, switch ratings, semiconductor losses, and reactive component sizes. Analysis, simulation, and experimental results are detailed for each proposed topology.
39

Power Electronics for Mitigation of Voltage Sags and Improved Control of AC Power Systems

Magalhães de Oliveira, Marcio January 2000 (has links)
<p>The thesis deals with the application of compensators andswitches based on power electronics in AC transmission anddistribution systems. The objective of the studieddevices/equipment is the power flow and voltage control intransmission systems and the mitigation of voltage sags andmomentary interruptions to critical loads in distributionsystems.</p><p>For validating the power electronics based devices/equipmentdescribed in the thesis, scaled models at a real-time simulatorhave been built. Simulation results of these models arepresented and discussed in the thesis.</p><p>The equipment studied in the thesis exploit the fast controlactions that can be taken by power electronics devices, whichare much faster than the speed of conventional equipment andprotection systems, based on electromechanical devices. In thisway, the power quality of distribution systems is improved,regarding duration and magnitude of voltage sags (dips) andmomentary interruptions, which are the most relevant types ofdisturbances in distribution systems.</p><p>The thesis presents some compensators based onforced-commutation voltage-source converters for correctingvoltage sags and swells to critical loads. The seriesconverter, usually denoted Dynamic Voltage Restorer (DVR), hasbeen proved suitable for the task of compensating voltage sagsin the supply network. The use of solid-state devices ascircuit breakers in distribution systems has also been studiedwith the objective of achieving fast interruption or limitationof fault currents. The location and practical aspects for theinstallation of these solid-state breakers are presented. Ithas beenshown that a configuration based on shunt and seriesconnected solid-state devices with controllable turn-offcapability can also provide voltage sag mitigation, without theneed of transformers and large energy storage elements.</p><p>The operation and control of two Flexible AC TransmissionSystem (FACTS) devices for voltage and power flow control intransmission systems, namely the Static Synchronous Compensator(STATCOM) and the Unified Power Flow Controller (UPFC),respectively, are also studied. A faster response compared totraditional equipment consisting of mechanically based/switchedelements is then achieved. This allows a more flexible controlof power flow and a secure loading of transmission lines tolevels nearer to their thermal limits. The behaviour of thesedevices during faults in the transmission system is alsopresented. Keywords: power electronics, power quality, voltagesags, voltage-source converters, Custom Power, FACTS, real-timesimulations, solid-state devices.</p>
40

Comparison of soft magnetic materials response to sinusoidal voltage and current excitation

Tatarchuk, John Jacob 30 September 2011 (has links)
A pulse hysteresisgraph system was constructed capable outputting current source and voltages source waveforms. MATLAB scripts were created to analyze the collected data. Three toroidal samples of soft magnetic materials were prepared. Theoretical modeling was done to predict the variation of effective applied magnetic fields inside the toroids from ideal assumptions due to three effects: wire spacing, cylindrical spreading, and eddy current generated fields. Data was collected under sinusoidal voltage source and sinusoidal current source excitation at 1 kHz. Large differences in core loss were noted especially at higher field excitations. Core loss under sinusoidal current source excitation was found to always be greater than or equal to core loss under sinusoidal voltage source. Normal magnetization curves under sinusoidal current and voltage source excitation were also compared. Significant differences were apparent in the magnetization curves of one sample toroid, and slight differences noted in the curves of the other two samples. Eddy currents were offered as a primary mechanism for the difference in core loss between sinusoidal current source and sinusoidal voltage source. A formula to predict the relative eddy current losses to be expected from an arbitrary, periodic voltage waveform shape is given. / text

Page generated in 0.0455 seconds