Spelling suggestions: "subject:"colume calculation"" "subject:"1volume calculation""
1 |
Implementering av drönarteknik i byggprocessen / Implementation of drones in the construction processDaoud, Abraham, Andric, Nikola January 2017 (has links)
Byggbranschen genomgår en digitalisering där drönartekniken ingår som en del av moderniseringen. Företag inom branschen strävar efter att tids- och kostnadseffektivisera sin byggprocess samtidigt som arbetsmiljön ska förbättras. Drönare används av allt fler byggföretag och syftet med den här rapporten är att jämföra hur implementering av drönare påverkar arbetsmiljö, kostnad och tidsåtgång vid utvändig besiktning och inspektion av byggnader samt volymberäkning. För att samla in relevant information har undersökningen bestått av litteraturstudier, intervjuer, frågeformulär samt fallstudier där drönare som verktyg har testats i praktiken. Resultatet av undersökningen har visat på fördelar med att implementera drönare som arbetsverktyg sett till arbetsmiljö, ekonomi, och tid. Jämfört med traditionella arbetsmetoder visar resultaten på att drönaren är ett billigare och smidigare verktyg att använda, dessutom förbättras arbetsmiljön då drönaren kan styras från marknivå. Baserat på rapportens resultat har slutsatsen varit att vinningar kan göras genom att implementera drönare hos byggföretag. Rekommendationen är således att inköp av drönare ska ses som en god investering för byggföretag. / The construction industry is undergoing a digitalization, where drone technology is part of the modernization of working methods. Drones are used by an increasing number of companies. Construction companies aim to make cost and time effective solutions while improving the working environment. The purpose of this report is to compare how implementation of drone technology affects economy, time and work environment during external inspection of buildings and volume calculations. In order to collect relevant information, the survey consisted of literature studies, interviews, questionnaires and case studies in which a drone as a tool has been tested in practice. The results of the survey have demonstrated the benefits of implementing drones as a work tool in terms of economy, time and work environment. Compared to traditional working methods, the results show that the drone is a cheaper and more flexible tool to use, as well as improving the working environment since the drone can be operated from ground level. Based on the results of the report, the conclusion has been that profits can be made by implementing drones at construction companies. The recommendation is that the purchase of drones should be regarded as a good investment for construction companies.
|
2 |
O uso da planilha eletrônica no estudo das funções e equações polinomiaisMogilka, Marcelo 22 July 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-08T13:29:12Z
No. of bitstreams: 1
arquivototal.pdf: 8624212 bytes, checksum: 8123f6eb13506d5865b46a957bfa1ae6 (MD5) / Approved for entry into archive by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-08T13:51:23Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 8624212 bytes, checksum: 8123f6eb13506d5865b46a957bfa1ae6 (MD5) / Made available in DSpace on 2017-09-08T13:51:23Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 8624212 bytes, checksum: 8123f6eb13506d5865b46a957bfa1ae6 (MD5)
Previous issue date: 2016-07-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The use of technologies as teaching tool is a reality experienced by a significant
portion of the student body in Brazil. However, there is still considerable demand
for educational projects involving the teaching of mathematics with the technologies
offered by computer programs. This work will address - through the Delta Project
the usage of electronic spreadsheets as a tool for analysis and resolution of func-
tional and polynomial equations, establishing links between the mathematical and
computational knowledge. / A utilização das tecnologias como ferramentas didaticas ja é uma realidade vivida
por uma parte significativa do alunado no Brasil. No entanto, o ritmo vertiginoso
do avanço dessas tecnologias não é acompanhado pela devida adaptação e aplicação
a realidade das escolas e, sobretudo, a realidade dos alunos. Diante deste descom-
passo faz-se necessário ampliar as ofertas de trabalhos acadêmicos que utilizem as
tecnologias oferecidas na forma de aplicativos, softwares ou programas específicos
da area de educação, para auxiliar o professor na difícil tarefa de ensinar a matema-
tica. Essa dissertação pretende contribuir exatamente nesse sentido. Através de um
projeto didatico aplicado em sala de aula - o Projeto Delta - que tem como prin-
cipal objetivo ampliar e aprofundar os conceitos de função quadratica, resolução de
equações polinomiais, divisão de polinômios e cálculo de áreas e volumes de sólidos
geométricos utilizando para tanto a planilha eletrônica como ferramenta didática e
link entre os saberes das áreas de matemática e programação. Por meio de exemplos
práticos da utilização da planilha eletrônica na criação de programas pelos alunos
que participaram do Projeto Delta, e da devida fundamentação teórica, esse tra-
balho acadêmico pretende mostrar que no processo de criar programas na planilha
eletrônica para auxiliar a resolução de problemas matemáticos o aluno tem como
subproduto positivo um aprofundamento do entendimento desses saberes matema-
ticos e, mais ainda, uma postura analítica e protagonista diante dos conhecimentos
dessa matéria em oposição a postura passiva e pouco reflexiva que, infelizmente,
ainda é assumida por grande parte dos nossos alunos.
|
3 |
Zaměření a tvorba 3D modelu pro hydrotechnický projekt / Surveying and Creation of 3D Model for Hydro Technical ProjectBárta, František January 2013 (has links)
The thesis deals with the issues of digital terrain model creation. It aims to explain the solution of an international contract, starting from gathering the data and finishing with the creation and visualization of the digital terrain model of the given location. The software AutoCAD Civil 3D 2013 is used for modeling. Main outcomes of the thesis are volume calculation of flood line, contoured map of the dam area, the digital model and its visualization.
|
4 |
Volymberäkning från punktmoln skapatgenom Structure from Motion medbildunderlag från mobilkameraSigurdsson, Andreas, Lehr, Amadeus January 2021 (has links)
Tekniken hos mobiler och utvecklingen av programvaror för digitalafotogrammetriska tjänster har haft en snabb utveckling, vilket har gjort detmöjligt att enkelt kunna skapa 3D-modeller.Syftet med denna studie är att undersöka om det är möjligt att med hjälp avbildunderlag från en mobiltelefon kunna volymberäkna objekt så som t.ex.grushögar och diken. Den teknik som används är en automatiskbildjusteringsalgoritm som heter Structure from Motion (SfM). Från en seriedigitalafoton, som täcker objektet från olika vinklar och djup kan SfMidentifiera gemensamma punkter i fotona och sammanfläta dessa till ettpunkmoln som kan användas för att skapa en 3D-modell. Utifrån 3Dmodellen kan sedan en volymbestämning ske från mjukvaran AgisoftMetashape.Denna studie utför ett flertal olika tester för att utvärdera Structure fromMotion med bildunderlag från mobiltelefon för volymberäkning. Vissa objekthar att filmats med olika typer av telefoner och sedan jämförts mot terresterlaserskanning (TLS) som är en vanlig metod vid insamling av data förvolymberäkning. Volymberäkningarna har gjorts för både positiva ochnegativa volymer. Metoden har enbart använt sig av referensmått frånmåttband ute i fält. Detta gör att ingen avancerad mätutrustning har använts.Ett ljustest genomfördes för att se hur olika ljusförhållanden viddatainsamlandet kan påverka databearbetningen och volymberäkningen.Genom att beräkna skillnader i volym mellan 3D-modellerna kommer ettresultat tas fram.Resultaten från de 3D-modeller som skapats med dataunderlag från SfM gervolymskillnader i jämförelsen mot terrester laserskanning mellan 2,2% och6,8%. Dessa resultat är från en mur och ett dike som användes i studien,skillnaden motsvarar 0,031 m3 och 15,086 m3. Den negativa volym somberäknades, dvs. diket, är det objekt som ger störst avvikelse i volym, delsmellan de olika mobiltelefonerna, dels jämfört med TLS. Metoden ger enindikation på att det finns en stor möjlighet att kunna effektivisera processenför volymbestämning då metoden inte kräver speciella mätverktyg ellersärskilda förkunskaper vilket kan både spara tid och pengar. / The technology of smartphones and the development of software for digitalphotogrammetric services have developed rapidly, which has made it possibleto easily create 3D models.The purpose of this study is to investigate whether it is possible with the helpof image data from a mobile phone to be able to calculate the volume ofobjects such as e.g. gravel piles and ditches. The technology used is anautomatic image adjustment algorithm called Structure from Motion (SfM).From a series of digital photos, which cover the object from different anglesand depths, SfM can identify common points in the photos and intertwinethese into a point cloud that can be used to create a 3D model. Based on the3D model, a volume determination can then be made from the AgisoftMetashape software.This study performed a number of different tests to evaluate Structure fromMotion with image data from a smartphone for volume calculation. Someobjects have been filmed with different types of phones and then compared toterrestrial laser scanning (TLS) which is a common method of collecting datafor volume calculation. The volume calculations have been made for bothpositive and negative volumes. The method has only used referencemeasurements from measuring tapes in the field. This means that no advancedmeasuring equipment has been used. A light test was performed to see howdifferent light conditions during the data collection can affect the dataprocessing and volume calculation. By calculating differences in volumebetween the 3D models, a result will be produced.The results from 3D modeling created with data from SfM give a volumedifferences in the comparison with terrestrial laser scanning between 2.2%and 6.8%. These results are from a small stone wall and a ditch used in thestudy, the difference corresponds to 0.031 m3and 15.086 m3. The negativevolume that was calculated, ie. the ditch, is the object that gives the largestdeviation in volume, partly between the different mobile phones, partlycompared to TLS. The method gives an indication that there is a greatopportunity to be able to streamline the work process for volume calculationas the method does not require special measurement tools or special priorknowledge which can save both time and money.
|
5 |
Solids of Revolution – from the Integration of a given Function to the Modelling of a Problem with the help of CAS and GeoGebraWurnig, Otto 22 May 2012 (has links) (PDF)
After the students in high school have learned to integrate a function, the calculation of the volume of a solid of revolution, like a rotated parabola, is taken as a good applied example. The next step is to calculate the volume of an object of reality which is interpreted as a solid of revolution of a given function f(x). The students do all these
calculations in the same way and get the same result. Consequently the teachers can easily decide if a result is right or wrong. If the students have learned to work with a graphical or CAS calculator, they can calculate the volume of solids of revolution in reality by modelling a possible fitted function f(x). Every student has to decide which points of the curve that generates the solid of revolution can be taken and which function will suitably fit the curve. In Austrian high schools teachers use GeoGebra as a software which allows you to insert photographs or scanned material in the geometric window as a
background picture. In this case the student and the teacher can control if the graph of the calculated function will fit the generating curve in a useful way.
|
6 |
Solids of Revolution – from the Integration of a given Functionto the Modelling of a Problem with the help of CAS and GeoGebraWurnig, Otto 22 May 2012 (has links)
After the students in high school have learned to integrate a function, the calculation of the volume of a solid of revolution, like a rotated parabola, is taken as a good applied example. The next step is to calculate the volume of an object of reality which is interpreted as a solid of revolution of a given function f(x). The students do all these
calculations in the same way and get the same result. Consequently the teachers can easily decide if a result is right or wrong. If the students have learned to work with a graphical or CAS calculator, they can calculate the volume of solids of revolution in reality by modelling a possible fitted function f(x). Every student has to decide which points of the curve that generates the solid of revolution can be taken and which function will suitably fit the curve. In Austrian high schools teachers use GeoGebra as a software which allows you to insert photographs or scanned material in the geometric window as a
background picture. In this case the student and the teacher can control if the graph of the calculated function will fit the generating curve in a useful way.
|
Page generated in 0.0899 seconds