• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The regulatory potential of marine cyanobacteria

Axmann, Ilka Maria 16 March 2007 (has links)
Das Leben auf der Erde wird maßgeblich durch die Kraft der oxygenen Photosythese bestimmt, die Sonnen- in chemische Energie umwandelt. Cyanobakterien wie Prochloro- und Synechococcus zählen zu den wichtigsten primären Produzenten der Ozeane und werden zunehmend als Modelle für photosynthetische Organismen genutzt. Um die Regulationsmechanismen dieser Picocyanobakterien besser zu verstehen, wurde hier die Information von vier Genomen hochgradig verwandter aber dennoch ökologisch unterschiedlich angepasster mariner Stämme genutzt in einer Kombination aus computer-gestützten und experimentellen Untersuchungen. Sequenzsignale und RNA-kodierende Gene wurden als neuartige Regulationselemente identifiziert und entlang des phylogenetischen Gradienten verglichen. Mittels ''phylogenetic footprinting'' konnte ein minimales, konserviertes Set möglicher Transkriptionsfaktoren, deren Bindestellen und Regulons aufgedeckt werden. NtcA-, LexA- und ArsR-ähnliche Motive wurden ebenso gefunden wie neue regulatorische Elemente. Mit Hilfe von RACE Experimenten wurden einige der vorhergesagten Bindestellen Promotorregionen zugeordnet. Eine Suche nach konservierten Sekundärstrukturen detektierte mehrere nicht-kodierende RNAs, benannt Yfr für cYanobacterial Functional RNA. Eine vergleichende Analyse von Yfr7 innerhalb der cyanobakteriellen Linie ergab, dass diese RNA wahrscheinlich ein Homolog der E. coli 6S RNA ist. Zwei verschiedene Yfr7 Transkripte mit einem zirkadianen aber zeitversetzten Akkumulationsmuster lassen eine Verknüpfung ihrer Expression mit dem zirkadianen Rhythmus oder der Lichtintensität vermuten. Experimente in Synechocystis deckten einen neuartigen Regulationsmechanismus durch eine antisense RNA auf, welche die Menge der isiA mRNA kontrolliert und die Assemblierung von IsiA-Superkomplexen beeinflusst. Die funktionelle Zuordnung dieser neuen Elemente wird zu einem besseren Verständnis regulatorischer Netzwerke in marinen Cyanobakterien und darüber hinaus führen. / Life on Earth is driven by the power of oxygenic photosynthesis transforming solar into chemical energy. Cyanobacteria such as Prochlorococcus and Synechococcus belong to the most important primary producers within the oceans and increasingly serve as models for photosynthetic organisms. To better understand the regulatory mechanisms in these picocyanobacteria, here the information from four genomes of closely related and even so ecologically divergent marine strains was used in a combined computational and experimental approach. Sequence signals and RNA-coding genes as novel elements in the regulation of gene expression were identified and their distribution along the phylogenetic gradient compared. Phylogenetic footprinting revealed a minimal conserved set of putative transcription factors, their binding sites and regulons. Sites for NtcA, LexA and ArsR-like regulators were found as well as new cis elements. RACE experiments verified several of these predicted sites belonging to the promoter region. A search, focussing on conserved secondary structures, detected several non-coding RNAs named Yfr for cYanobacterial Functional RNA. A comparative analysis of Yfr7 structures, transcript types and accumulation throughout the cyanobacterial radiation indicated this RNA as the likely homologue of the E. coli 6S RNA. Two distinct Yfr7 transcripts with a circadian but time-shifted expression pattern suggested a coupling of their expression to the circadian rhythm or light intensity. Experiments in Synechocystis discovered a novel antisense RNA-mediated regulatory mechanism that controls isiA mRNA abundance and assembly of IsiA-photosystem I supercomplexes. Functional assignments of these new elements in the future will contribute to a deeper understanding of the regulatory network of marine cyanobacteria and promote new studies on bacterial ncRNAs.
2

Characterization and manipulation of the biosynthetic pathway of cyanobacterial tricyclic microviridins in E. coli

Weiz, Annika R 26 April 2012 (has links)
Microviridine sind ribosomal synthetisierte, cyanobakterielle Depsipeptide. Die genetische Basis der Microviridinproduktion ist ein Gencluster mit den Genen mdnABCDE. Zwei neuartige ATP-grasp-Ligasen, MdnB und MdnC, katalysieren die Bildung von Lacton- und Lactamringen durch die Einführung von zwei -Ester-und einer -Amidbindung. Die Prozessierung wird von einer bislang unbekannten Peptidase durchgeführt. Neben den filamentösen Nostoc und Planktothrix gehört die einzellige, blütenbildende Cyanobakteriengattung Microcystis zu den Microviridinproduzenten. Die inhibitorische Aktivität gegenüber Serinproteasen verleiht Microviridinen ökologische und pharmazeutische Relevanz. Im Rahmen dieser Arbeit wurde eine kleine Microviridin Expressionsplattform konstruiert. Ein neuartiges Microviridin Gencluster aus Microcystis aeruginosa Nies843 wurde heterolog in E. coli exprimiert, bioinformatisch analysiert und mutiert. Das hochkonservierte PFFARFL-Motif im Precursorpeptid MdnA wurde als Erkennungssequenz für die ATP-grasp Ligasen identifiziert. Manipulationen am C-Terminus des leader-Peptids führten zu einer Inhibierung der Aktivität von MdnB. Peptid-Protein-Interaktionen zwischen MdnA und den ATP-grasp Ligasen wurden untersucht. Der ABC-Transporter MdnE stabilisiert höchstwahrscheinlich einen Microviridin Biosynthesekomplex an der inneren Membran, wofür zwei mögliche Modelle vorgeschlagen werden. Punktmutationen in der Microviridin core-Sequenz offenbarten Flexibilität des Microviridin-Biosyntheseapparates für das peptide engineering. Es wurde eine Mutante konstruiert, deren inhibitorische Aktivität gegen Elastase um den Faktor 100 verbessert wurde. Durch die Konstruktion einer Precursoraustauschplattform konnten bisher kryptische Microviridine produziert werden. Diese Methode hat Potential für den Bau von Microviridinbibliotheken. Letztlich wird eine Hypothese zum Bindungsmechanismus von Microviridinen an Proteasen aufgestellt. / Microviridins are ribosomally synthesized cyanobacterial oligopeptides. These peptides comprise an unrivaled multicyclic cage-like structure, carrying two characteristic  ester and one amide bond, which are introduced by the two novel ATP-grasp ligases MdnB and MdnC. In addition to the filamentous species Nostoc and Planktothrix, the unicellular, bloom-forming cyanobacterium Microcystis aeruginosa Nies843 is one of the microviridin producer strains. The potent serine protease inhibitory activity contributes to both ecological and pharmacological relevance of microviridins. During this work, a small expression platform carrying the microviridin gene cassette mdnABCDE was established. Microviridins were heterologously expressed in E. coli and analyzed using bioinformatics and mutational analysis. The strictly conserved PFFARFL motif in the precursor peptide MdnA was identified and characterized as a binding sequence for the ATP-grasp ligases. Protein interactions of MdnA with B and C were studied. The ABC transporter MdnE was unveiled to be crucial for cyclization and processing of microviridins, probably stabilizing a putative microviridin maturation complex at the inner membrane. Two initial models for the peptide recognition and processing have been proposed. Point mutations in the microviridin core sequence showed some flexibility of the microviridin biosynthetic pathway to be used for peptide engineering. The exchange of a phenylalanine against a leucine in position 5 of the core region resulted in more than a 100-fold increased inhibitory activity against the attractive drug target elastase. The possibility to express cryptic microviridin precursor peptides in a precursor exchange platform showed the potential to create peptide libraries. Finally, a hypothesis about the binding mechanism of microviridins is presented.
3

The cyanobacterial circadian clock / four different phosphorylated forms of KaiC assure the performance of the core oscillator

Brettschneider, Christian 10 October 2011 (has links)
Cyanobakterien zŠhlen zu den Šltesten Lebewesen auf der Erde. Diese Bakterien, auch Blaualgen genannt, trugen wesentlich zur Sauerstoffanreicherung der Erde bei, da sie eine ausgeprŠgte FŠhigkeit zur Photosynthese besitzen. Der produzerte Sauerstoff der Photosynthese hemmt jedoch eine weitere AktivitŠt von Cyanobakterien, die Stickstofffixierung. Um die Hemmung zu vermeiden, werden diese AktivitŠten zeitlich getrennt und optimal dem tŠglichen Hell-Dunkel-Rhythmus angepasst. Ein evolutionŠrer Vorteil wird erzielt, wenn der Organismus diesen Rhythmus antizipiert und sich darauf vorbereitet. Aus diesem Grund haben Cyanobakterien eine innere Uhr entwickelt, deren Rhythmus zirkadian ist, ãzirka diemÒ bedeutet ãungefŠhr ein TagÒ. Cyanobakterien der Spezies Synechococcus elongatus PCC 7942 haben sich als Modellorganismus etabliert, weil in ihnen die ersten bakteriellen zirkadianen Oszillationen auf molekularer Ebene entdeckt worden sind. Ihre zirkadiane Uhr entspringt dreier, auf der DNS beieinanderliegenden, Gene (kaiA, kaiB, kaiC) und ihrer dazugehšrigen Proteine. Phosphorylierte KaiC-Proteine Ÿben eine RŸckkopplung auf die Transkription von kaiB und kaiC aus, wodurch die AktivitŠt des kaiBC-Promotors zirkadian oszilliert. Eines der wichtigsten Experimente der letzten Jahre hat gezeigt, dass dieser Transkriptions-Translations-Oszillator mit einem weiteren Oszillator gekoppelt ist, der nicht von Transkription und Translation abhŠngt. Das Experiment des Kondo Labors rekonstruiert zirkadiane Oszillationen mit nur drei Proteinen KaiA, KaiB, KaiC und ATP. Die Proteine bilden Komplexe verschiedener Stoichiometrie, die durchschnittliche Phosphorylierung des Proteins KaiC zeigt stabile Oszillationen mit einer zirkadianen Periode. Da ein Entfernen von einem der Proteine zum Verlust der Oszillationen fŸhrt, wird dieser Post-Translations-Oszillator auch als Kernoszillator bezeichnet. Der Phosphorylierungszyklus von KaiC wird bestimmt durch fortlaufende Phosphorylierung und Dephosphorylierung an zwei Positionen des Proteins, den AminosŠuren Serin 431 und Threonin 432. Die Phase des Kernoszillators kann an der Verteilung der vier PhosphorylierungszustŠnde (nicht-, serin-, threonin- und doppeltphosphoryliert) abgelesen werden. KaiC wechselwirkt mit KaiA und KaiB, damit verschieden phosphorylierte KaiC synchronisieren und die Uhr Ÿber mehrere Tage konstante Oszillationen zeigt. Die Details dieser Wechselwirkung sind jedoch unbekannt. In dieser Dissertation erstelle ich ein mathematisches Modell des Kernoszillators und simuliere die vorliegenden Experimente des O''Shea Labors. Die Simulation reproduziert den KaiC Phosphorylierungszyklus der Uhr quantitativ. Um die wichtigsten experimentellen Nebenbedingungen zu erfŸllen, muss das theoretische Modell zwei molekulare Eigenschaften von KaiC berŸcksichtigen, wodurch ich wichtige Vorhersagen treffe. Die erste Nebenbedingung ist durch die Robustheit des Systems gegeben. Die KaiC-Phosphorylierung Šndert sich nicht, wenn die Gesamtkonzentrationen der drei Proteine in gleicher Weise variiert werden. Um diese Bedingung zu erfŸllen, muss das Modell zwei verschiedenartige Komplexe von KaiA und KaiC berŸcksichtigen. ZusŠtzlich zu einem KaiAC Komplex, der die Autophosphorylierung von KaiC unterstŸtzt, muss KaiC den grš§ten Teil von KaiA unabhŠngig vom Phosphorylierungszustand sequestrieren. Diese zweite Bindestelle ist meine erste theoretische Vorhersage. Die zweite Nebenbedingung ist durch das Ÿbergangsverhalten nach Hinzugabe von KaiB gegeben. KaiB induziert eine Dephosphorylierung von KaiC, die abhŠngig vom Phosphorylierungsniveau ist. Ein Umschalten zwischen phosphoylierendem und dephosphorylierendem KaiC ist deshalb nur in bestimmten Zeitfenstern mšglich. Um die gemessenen Zeitfenster in der Simulation zu reproduzieren, postuliere ich im Modell, dass sechsfach Serin phosphorylierte KaiBC Komplexe KaiA inaktivieren. Diese hochgradig nichtlineare RŸckkopplung ist meine zweite theoretische Vorhersage. Die beiden Vorhersagen werden anschlie§end experimentell ŸberprŸft. HierfŸr werden aufgereinigte Kai-Proteine mit ATP gemischt. Proben an ausgewŠhlten Zeitpunkten werden mit der nativen Massenspektrometrie untersucht. Diese ist eine neuartige Methode, die es erlaubt, intakte Proteinkomplexe zu untersuchen. Die Spektren bestŠtigen sowohl die zweite KaiAC-Bindestelle als auch die nichtlineare RŸckkopplung. Das mathematische Modell erlaubt es au§erdem, die drei definierenden Prinzipien von zirkadianen Uhren fŸr den Kernoszillator zu erklŠren. Erstens sichern konstante Phosphorylierungs- und Dephosphorylierungsraten von KaiC und ein pŸnktliches Umschalten zwischen beiden Phasen den Freilauf des Oszillators. Dieser Freilauf bewirkt, dass die zirkadiane Uhr auch unter konstanten Bedingungen, vor allem gleichbleibenden LichtverhŠltnissen, weiterlaufen kann. Zweitens muss die Periodendauer des Oszillators zu unterschiedlichen Šu§eren Bedingungen erhalten bleiben (Temperaturkompensation). Diese Bedingung wird realisiert, indem temperaturabhŠngige Dissoziationskonstanten von KaiAC und KaiBC Komplexen Phasenverschiebungen erzeugen, die sich gegenseitig kompensieren. Drittens muss die Phase des Oszillators sich dem Tagesrhythmus anpassen kšnnen. Diese Anpassung folgt aus einem Šu§eren Warm-Kalt-Rhythmus, der die drei temperaturabhŠngigen Phasenverschiebungen nur zum Teil einschaltet und damit die Kompensation verhindert. Eine in silico Evolutionsanalyse zeigt, dass eine zweite phosphorylierbare AminosŠure einen evolutionŠren Vorteil bringt und die Verteilung der PhosphorylierungszustŠnde optimiert ist, um eindeutig die Zeit zu bestimmen. Das Ergebnis weist darauf hin, dass diese Verteilung die physiologisch wichtige Ausgangsgrš§e der Uhr ist und die vier PhosphroylierungszustŠnde die Funktionen der zirkadianen Uhr von Cyanobakterien sichern. / Biological activities in cyanobacteria are coordinated by an internal clock. The rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 originates from the kai gene cluster and its corresponding proteins. In a test tube, the proteins KaiA, KaiB and KaiC form complexes of various stoichiometry and the average phosphorylation level of KaiC exhibits robust circadian oscillations in the presence of ATP. The characteristic cycle of individual KaiC proteins is determined by phosphorylation of serine 431 and threonine 432. Differently phosphorylated KaiC synchronize due to an interaction with KaiA and KaiB. However, the details of this interaction are unknown. Here, I quantitatively investigate the experimentally observed characteristic phosphorylation cycle of the KaiABC clockwork using mathematical modeling. I thereby predict the binding properties of KaiA to both KaiC and KaiBC complexes by analyzing the two most important experimental constraints for the model. In order to reproduce the KaiB-induced dephosphorylation of KaiC a highly non-linear feedback loop has been identified. This feedback originates from KaiBC complexes, which are exclusively phosphorylated at the serine residue. The observed robustness of the KaiC phosphorylation level to concerted changes of the total protein concentrations demands an inclusion of two KaiC binding sites to KaiA in the mathematical model. Besides the formation of KaiAC complexes enhancing the autophosphorylation activity of KaiC, the model accounts for a KaiC binding site, which constantly sequestrates a large fraction of free KaiA. These theoretical predictions have been confirmed by the novel method of native mass spectrometry, which was applied in collaboration with the Heck laboratory. The mathematical model elucidates the mechanism by which the circadian clock satisfies three defining principles. First, the highly non-linear feedback loop assures a rapid and punctual switch to dephosphorylation which is essential for a precise period of approximately 24 h (free-running rhythm). Second, the dissociation of the protein complexes increases with increasing temperatures. These perturbations induce opposing phase shifts, which exactly compensate during one period (temperature compensation). Third, a shifted external rhythm of low and high temperature affects only a part of the three compensating phase perturbations, which leads to phase shifts (phase entrainment). An in silico evolution analysis shows that the existing second phosphorylatable residue of KaiC is not necessary for the existence of sustained oscillations but provides an evolutionary benefit. The analysis demonstrates that the distribution of four phosphorylated states of KaiC is optimized in order for the organism to uniquely distinguish between dusk and dawn. Consequently, this thesis emphasizes the importance of the four phosphorylated states of KaiC, which assure the outstanding performance of the core oscillator.
4

Cellular trade-offs and resource allocation during photoautotrophic growth

Faizi, Marjan 24 February 2020 (has links)
Cyanobakterien sind die einzig bekannten Prokaryoten, die in der Lage sind oxygene Photosynthese zu betreiben. Sie besitzen ein großes Potenzial als nachhaltige Ressourcen für die Herstellung zahlreicher industriell und medizinisch relevanter Wirkstoffe. Trotz ihrer essentiellen Bedeutung ist jedoch das Wachstum von Cyanobakterien bis jetzt nur unzureichend verstanden. Im Rahmen dieser Arbeit habe ich daher ein mathematisches Modell entwickelt, das das Wachstum von Cyanobakterien auf der Grundlage von intrazellulärer Proteinverteilung beschreibt. Dabei wurde das Proteom in wenige relevante Protein-Klassen unterteilt, die an fundamentalen zellulären Prozessen beteiligt sind, darunter Kohlenstoffaufnahme, -fixierung und -stoffwechsel, sowie Photosynthese und Proteintranslation. Besonders interessant sind die aus dem Modell resultierenden sogenannten mikrobiellen Wachstumsgesetze, sprich die Korrelationen zwischen der Wachstumsrate und der Proteinverteilung, die im stationären Zustand des Wachstums beobachtet werden. Das Modell prognostiziert eine charakteristische Krümmung für die Wachstumsgesetze jener Proteine, welche mit Lichtabsorption und Proteintranslation assoziiert werden. Verursacht wird diese Krümmung durch hohe Lichtintensitäten, die eine Abnahme der Wachstumsrate zur Folge haben. Die prognostizierten Wachstumsgesetze werden durch Proteindaten, die mittels Massenspektrometrie erhoben wurden, vom Cyanobakterium Synechocystis sp. PCC 6803 gestützt. Des Weiteren bietet das Modell einen geeigneten Ausgangspunkt für die Erweiterung von der Charakterisierung von Einzelzellen zu einer Population von Zellen in einem lichtlimitierten Chemostat. Das erweiterte Modell stellt einen Zusammenhang her zwischen intrazellulärer Proteinverteilung, Wachstum der Population und Kultivierungseigenschaften, und bietet somit einen neuartigen Ansatz zur Untersuchung und Verbesserung der Kultivierung von phototrophen Organismen und die Optimierung der photosynthetischen Produktivität. / Cyanobacteria are the only known prokaryotes that perform oxygenic photosynthesis, and therefore, hold significant potential as sustainable resources for the production of numerous industrially and medically relevant compounds. Despite their importance, however, the (molecular) limits and cellular economy of photoautotrophic growth are still insufficiently understood. In this thesis, I present a mathematical model based on a coarse-grained description of cellular protein allocation to describe cyanobacterial growth. The model describes cellular trade-offs considering only proteins that are involved in key cellular processes (carbon uptake, fixation, and metabolism, as well as photosynthesis and protein translation). Of particular interest are the resulting microbial growth laws, i.e., correlations between the growth rate and the protein distribution observed during balanced growth. The model predicts a characteristic kink for the growth laws of the light harvesting components and the translational machinery induced by photoinhibition, a decrease in growth rate due to high light intensities. The resulting growth laws are supported by quantitative mass spectrometry-based proteomics data of the cyanobacterium Synechocystis sp. PCC 6803. The proteomics data shows that the mathematical model has intrinsic predictive power, and thus, provides a suitable starting point for extending it from describing single cells to describe a growing population in a light-limited chemostat. The extended modeling framework goes beyond current models using phenomenological growth equations and establishes a mechanistic link between intracellular protein allocation, population growth and cultivation properties. The extended model provides a novel approach to study and guide phototrophic cultivation improvements that maximize photosynthetic productivity.
5

Analysis of diurnal gene regulation and metabolic diversity in Synechocystis sp. PCC 6803 and other phototrophic cyanobacteria

Beck, Johannes Christian 21 June 2018 (has links)
Cyanobakterien sind meist photoautotroph lebende Prokaryoten, welche nahezu alle Biotope der Welt besiedeln. Sie gehören zu den wichtigsten Produzenten der weltweiten Nahrungskette. Um sich auf den täglichen Wechsel von Tag und Nacht einzustellen, besitzen Cyanobakterien eine innere Uhr, bestehend aus den Proteinen KaiA, KaiB und KaiC, deren biochemische Interaktionen zu einem 24-stündigen Rhythmus von Phosphorylierung und Dephosphorylierung führen. Die circadiane Genexpression im Modellorganismus Synechocystis sp. PCC 6803 habe ich mittels drei verschiedener Zeitserienexperimente untersucht, wobei ich einen genauen Zeitplan der Genaktivierung in einer Tag-Nacht-Umgebung, aber keine selbsterhaltenden Rhythmen entdecken konnte. Allerdings beobachtete ich einen überaus starken Anstieg der ribosomalen RNA in der Dunkelheit. Aufgrund ihrer hohen Wachstumsraten und der geringen Anforderungen an die Umwelt bilden Cyanobakterien eine gute Grundlage für die nachhaltige Erzeugung von Biokraftstoffen, für einen industriellen Einsatz sind aber weitere Optimierung und ein verbessertes Verständnis des Metabolismus von Nöten. Hierfür habe ich die Orthologie von verschiedenen Cyanobakterien sowie die Konservierung von Genen und Stoffwechselwegen untersucht. Mit einer neu entwickelten Methode konnte ich gemeinsam vorkommende Gene identifizieren und zeigen, dass diese Gene häufig an einem gemeinsamen biologischen Prozess beteiligt sind, und damit bisher unbekannte Beziehungen aufdecken. Zusätzlich zu den diskutierten Modulen habe ich den SimilarityViewer entwickelt, ein grafisches Computerprogramm für die Identifizierung von gemeinsam vorkommenden Partnern für jedes beliebige Gen. Des Weiteren habe ich für alle Organismen automatische Rekonstruktionen des Stoffwechsels erstellt und konnte zeigen, dass diese die Synthese von gewünschten Stoffen gut vorhersagen, was hilfreich für zukünftige Forschung am Metabolismus von Cyanobakterien sein wird. / Cyanobacteria are photoautotrophic prokaryotes populating virtually all habitats on the surface of the earth. They are one of the prime producers for the global food chain. To cope with the daily alternation of light and darkness, cyanobacteria harbor a circadian clock consisting of the three proteins KaiA, KaiB, and KaiC, whose biochemical interactions result in a phosphorylation cycle with a period of approximately 24 hours. I conducted three time-series experiments in the model organism Synechocystis sp. PCC 6803, which revealed a tight diurnal schedule of gene activation. However, I could not identify any self-sustained oscillations. On the contrary, I observed strong diurnal accumulation of ribosomal RNAs during dark periods, which challenges common assumptions on the amount of ribosomal RNAs. Due to their high growth rates and low demand on their environment, cyanobacteria emerged as a viable option for sustainable production of biofuels. For an industrialized production, however, optimization of growth and comprehensive knowledge of the cyanobacterial metabolism is inevitable. To address this issue, I analyzed the orthology of multiple cyanobacteria and studied the conservation of genes and metabolic pathways. Systematic analysis of genes shared by similar subsets of organisms indicates high rates of functional relationship in such co-occurring genes. I designed a novel approach to identify modules of co-occurring genes, which exhibit a high degree of functional coherence and reveal unknown functional relationships between genes. Complementing the precomputed modules, I developed the SimilarityViewer, a graphical toolbox that facilitates further analysis of co-occurrence with respect to specific cyanobacterial genes of interest. Simulations of automatically generated metabolic reconstructions revealed the biosynthetic capacities of individual cyanobacterial strains, which will assist future research addressing metabolic engineering of cyanobacteria.

Page generated in 0.025 seconds