• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • Tagged with
  • 20
  • 20
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from aeronet, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model

Lennartson, Elizabeth Marie 01 May 2018 (has links)
Spatial distribution of diurnal variations of aerosol properties in South Korea, both long term and short term, is studied by using 9 AERONET sites from 1999 to 2017 for long-term averages and from an additional 10 sites during the KORUS-AQ field campaign. The extent to which WRF-Chem model and the GOCI satellite retrieval can describe these variations is also analyzed. In daily average, Aerosol Optical Depth (AOD) at 550 nm is 0.386 and shows a diurnal variation of +20 to -30% in inland sites, respectively larger than the counterparts of 0.308 and ± 20% in coastal sites. Both the inland and coastal sites have their diurnal variation peaks in the early morning and in the evening with noontime and early afternoon valleys. In contrast, Angstrom exponent values in all sites are between 1.2 and 1.4 with the exception of the inland rural sites having smaller values near 1.0 during the early morning hours. All inland sites experience a pronounced increase of Angström Exponent from morning to evening, reflecting overall decrease of particle size in daytime. To statistically obtain the climatology of diurnal variation of AOD, a minimum of requirement of ~2 years of observation is needed in coastal rural sites, twice more than the urban sites, which suggests that diurnal variation of AOD in urban setting is distinct and persistent. AERONET, GOCI, WRF-Chem, and observed PM2.5 data consistently show dual peaks for both AOD and PM2.5, one at ~ 10 KST and another ~14 KST. While Korean GOCI satellite is able to consistently capture the diurnal variation of AOD, WRF-Chem clearly has the deficiency to describe the relatively change of peaks and variations between the morning and afternoon, suggesting further studies for the diurnal profile of emissions. Overall, the relative small diurnal variation of PM2.5 is in high contrast with large AOD diurnal variation, which suggests the need to use AOD from geostationary satellites for constrain either modeling or analysis of surface PM2.5 for air quality application.
12

Improving air quality prediction through characterizing the model errors using data from comprehensive field experiments

Abdioskouei, Maryam 01 December 2018 (has links)
Uncertainty in the emission estimates is one the main reasons for shortcomings in the Chemistry Transport Models (CTMs) which can reduce the confidence level of impact assessment of anthropogenic activities on air quality and climate. This dissertation focuses on understating the uncertainties within the CTMs and reducing these uncertainties by improving emission estimates The first part of this dissertation focuses on reducing the uncertainties around the emission estimates from oil and Natural Gas (NG) operations by using various observations and high-resolution CTMs. To achieve this goal, we used Weather Research and Forecasting with Chemistry (WRF-Chem) model in conjunction with extensive measurements from two major field campaigns in Colorado. Ethane was used as the indicator of oil and NG emissions to explore the sensitivity of ethane to different physical parametrizations and simulation set-ups in the WRF-Chem model using the U.S. EPA National Emission Inventory (NEI-2011). The sensitivity analysis shows up to 57.3% variability in the modeled ethane normalized mean bias (NMB) across the simulations, which highlights the important role of model configurations on the model performance. Comparison between airborne measurements and the sensitivity simulations shows a model-measurement bias of ethane up to -15ppb (NMB of -80%) in regions close to oil and NG activities. Under-prediction of ethane concentration in all sensitivity runs suggests an actual under-estimation of the oil and NG emissions in the NEI-2011 in Colorado. To reduce the error in the emission inventory, we developed a three-dimensional variational inversion technique. Through this method, optimal scaling factors up to 6 for ethane emission rates were calculated. Overall, the inversion method estimated between 11% to 15% higher ethane emission rates in the Denver-Julesburg basin compared to the NEI-201. This method can be extended to constrain oil and NG emissions in other regions in the US using the available measurement datasets. The second part of the dissertation discusses the University of Iowa high-resolution chemical weather forecast framework using WRF-Chem designed for the Lake Michigan Ozone Study (LMOS-2017). LMOS field campaign took place during summer 2017 to address high ozone episodes in coastal communities surrounding Lake Michigan. The model performance for clouds, on-shore flows, and surface and aircraft sampled ozone and NOx concentrations found that the model successfully captured much of the observed synoptic variability of onshore flows. Selection of High-Resolution Rapid Refresh (HRRR) model as initial and boundary condition, and the Noah land surface model, significantly improved comparison of meteorology variables to both ground-based and aircraft data. Model consistently underestimated the daily maximum concentration of ozone. Emission sensitivity analysis suggests that increase in Hydrocarbon (HC). Variational inversion method and measurements by GeoTAS and TROPOMI instruments and airborne and ground-based measurements can be used to constrain NOx emissions in the region.
13

Modelling the spatial distribution, direct radiative forcing and impact of mineral dust on boundary layer dynamics

Alizadeh Choobari, Omid January 2013 (has links)
Mineral dust aerosols, the tiny soil particles in the atmosphere, play a key role in the atmospheric radiation budget through their radiative and cloud condensation nuclei effects. It is therefore important to evaluate the radiative forcing of mineral dust and subsequent changes in atmospheric dynamics. The Weather Research and Forecasting with Chemistry (WRF/Chem) regional model with the integrated dust modules and available observations have been used to investigate the three-dimensional distribution of mineral dust over Australia. Additionally, the WRF/Chem model was used to estimate the direct radiative forcing by mineral dust over Australia. Particular emphasize has been given to direct radiative feedback effect of mineral dust on boundary layer dynamics. Two dust emission schemes embedded within the WRF/Chem model have been utilized in this study: the dust transport (DUSTRAN) and the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) schemes. The refractive index of mineral dust depends on the mineralogy, size and composition of dust over a given region. The refractive index of mineral dust for shortwave radiation was considered to be wavelength independent and set based on previous mineralogical studies over North Africa and Australia. However, the refractive index of mineral dust for longwave radiation was considered to be wavelength dependent and to vary for 16 longwave spectral bands. Model results were compared with observations to validate the performance of the model, including satellite datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), as well as ground-based measurements obtained from air quality monitoring sites over Australia. The major results can be summarized as follows: (1) Lake Eyre Basin is the most important source of dust in Australia, with a peak activity identified to be during austral spring and summer, and dust emission within the basin is often associated with the passage of dry cold fronts; (2) Mineral dust from Lake Eyre Basin can be transported long distances to southeastern Australia in association with eastward propagating frontal systems, reaching as far as New Zealand and beyond, and to northern tropical Australia by postfrontal southerly winds, and subsequently towards northwestern Australia and the Indian Ocean by southeasterly trade winds; (3) Australian dust plumes are mainly transported in the lower atmosphere, although variation of boundary layer depth during the passage of cold frontal systems, as well as ascending motion at the leading edge of these systems and descending motion where postfrontal anticyclonic circulation is dominant contribute to the vertical extent of mineral dust aerosols; (4) the shortwave direct radiative effect of mineral dust results in cooling of the atmosphere from the surface to near the boundary layer top, but warming of the boundary layer top and lower free atmosphere; (5) changes in the vertical profile of temperature result in an overall decrease of wind speed in the lower boundary layer and an increase within the upper boundary layer and lower free atmosphere; (6) the longwave warming effect of mineral dust partly offsets its shortwave cooling effect at the surface. This compensation is significantly larger over and immediately downwind of dust source regions where coarse particles are more abundant, as they have stronger interaction with longwave radiation emitted from the Earth’s surface; (7) both shortwave and longwave radiative forcing by mineral dust was found to have a diurnal variation in response to changes in solar zenith angle and in the intensity of longwave radiation, respectively; (8) the absorptive nature of dust was shown to be associated with the shortwave heating of the atmosphere; (9) on the other hand, longwave cooling of the atmosphere was identified because absorption of longwave radiation by dust is less than its emission to the surface and top of the atmosphere (TOA).
14

Emissions From Concentrated Animal Feeding Operations During Wet and Dry Periods in the Southeastern United States

Winchester, Jesse N. F. 01 May 2015 (has links)
Air quality modeling is a recent development in atmospheric science dedicated to simulating the characteristics of surface emissions within the context of a variety of meteorological conditions. In western Kentucky, there are several concentrated animal feeding operations (CAFOs) that emit a variety of gases, including sulfur dioxide (SO2). The hypothesis was that the concentration and spread of SO2 emissions from these sources would differ between wet and dry periods over the CAFO locations. In this thesis, point emissions from locations representing CAFOs in western Kentucky and the transit of SO2throughout the southeastern U.S. were simulated in multiple sensitivity experiments using the Weather Research and Forecasting model with Chemistry (WRFChem). Simulations were performed for the convective precipitation events that occurred over western Kentucky between July 7 and July 13, 2012. The spatial coverage of SO2 emissions originating from the locations was reduced during precipitation events and expanded during dry periods. The average concentration of SO2 over the study area was also higher during the breaks between precipitation events than during times when precipitation was occurring. The highest concentrations of SO2 exceeding 1,000 pptv remained within close range of the emission locations for the majority of the simulations, except for when local surface winds were blowing at higher speeds. Most emissions from the locations remained limited to the surface and 850 mb levels.
15

Estudo numérico do impacto da representação do terreno nas concentrações de SO2 na região de Candiota - RS / Numerical Study of the impact of the terrain representation on SO2 concentrations in the Candiota Region

Mollmann Junior, Ricardo Antonio January 2018 (has links)
O objetivo deste trabalho foi o analisar o impacto da resolução dos conjuntos de dados topográficos nas simulações das concentrações de dióxido de enxofre (SO2) emitido por uma fonte localizada no Sul do Brasil. Para isso foram realizadas duas simulações aplicando o modelo regional Weather Research and Forecasting acoplado com a química (WRF/Chem), configurado com duas representações do terreno de diferentes resoluções espaciais. Foram utilizados os dados padrão do modelo com melhor resolução, Global 30 Arc-Second Elevation (GTOPO), com aproximadamente 1 km, e inserido no bancos de dados do modelo as informações de terreno em alta-resolução do Radar Shuttle Topography Mission (SRTM) (30 metros). Para as emissões antrópicas do modelo foi elaborado um programa capaz inserir os volumes do poluente SO2 de forma horária expelidos pela chaminé, de acordo com as taxas de emissão medidos diretamente na fonte. O programa representou a emissão do poluente no ponto de grade correspondente a localização e a altura acima da superfície da chaminé da fonte. As simulações foram configuradas com os seguintes esquemas de parametrização: para microfísica de nuvens foi utilizado o Goddard Cumulus Ensemble; os esquemas de radiação de onda longa e curta foram o Goddard e o Rapid Radiative Transfer Model para modelos de circulação geral da atmosfera (MCGA); para a parametrização de cumulus o esquema utilizado foi o Grell 3D Ensemble Scheme; e para os esquemas de camada superficial e camada limite planetária foram utilizados os da teoria da similaridade do Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) e o Yonsey University, respectivamente. A escolha desta combinação de esquemas foi definida a partir de um estudo inicial da sensibilidade do modelo à mudança das parametrizações. Os resultados dos experimentos numéricos alterando a topografia foram validados a partir dos dados de monitoramento das estações meteorológica e da qualidade do ar pertencentes à empresa responsável pelo empreendimento associado à fonte. Foi observado que as simulações com os dados SRTM expressaram o terreno da região de estudo mais próximo à realidade, representando o aspecto heterogêneo do relevo, ressaltando os picos e os vales. Os resultados das validações meteorológicas utilizando os dados topográficos indicaram melhoras nas simulações das variáveis meteorológicas: temperatura, umidade relativa, velocidade do vento e precipitação. Os experimentos com os dados topográficos GTOPO e SRTM no modelo WRF/Chem, configurado com as emissões horárias da fonte de Candiota, reproduziram o comportamento dos ventos para transporte de SO2 até as estações de monitoramento conforme os dados observados. Porém foram identificados padrões diferentes na representação das concentrações do poluente entre as duas simulações do modelo, associados aos escoamentos dos ventos representados pelos experimentos. A resolução da topografia afetou na simulação de SO2 devido ao aumento da forçante superficial induzida pelo terreno. Este aumento na forçante, influenciou a advecção da pluma de SO2, resultando em diferentes padrões das concentrações de SO2 no ponto de grade correspondente às estações de monitoramento. Contudo, os resultados das simulações das concentrações de SO2, tanto de forma horária quanto na abordagem das médias diárias, não indicaram uma relação linear entre a utilização de dados em alta resolução e a melhora na representação do SO2 pelo modelo WRF/Chem. / The objective of this work was to analyze the impact of the higher resolution topographic data sets in the simulations of the Sulfur dioxide (SO2) concentrations emitted by a source located Southern Brazil. Two simulations were performed applying the Weather Research and Forecasting model coupled with Chemistry – WRF/Chem, configured with two representations of the terrain with different spatial resolutions. The standard data of the model with the best resolution (approximately 1 km), Global 30 Arc-Second Elevation (GTOPO), and was inserted in the model databases the high-resolution (30 meters) terrain information of the Radar Shuttle Topography Mission (SRTM). For the anthropic emissions of the model, a program was developed capable of inserting the hourly SO2 pollutant volumes expelled by the chimney, according to the emission rates measured directly at the source. The program inserted these emissions into the grid point corresponding to the location and height above the surface of the emission source. The simulations were configured with the following parameterization schemes: for cloud microphysics Goddard Cumulus Ensemble; for the long and short wave radiation treatment it was used the Goddard and the Rapid Radiative Transfer Model for general circulation models; for the cumulus parameterization the scheme it was used the Grell 3D Ensemble Scheme; and for the surface layer and planetary boundary layer schemes, the similarity theory of the Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) and the Yonsey University, respectively. The choice of this combination of schemes was defined from an initial study of the sensitivity of the model to the change of parametrizations. The results of the numerical experiments altering the topography were validated from the monitoring data of the meteorological stations and the air quality belonging to the company responsible for the enterprise associated to the source. It was observed that the simulations with the SRTM data expressed the terrain of the region of study closest to reality, representing the heterogeneous aspect of the terrain, highlighting the peaks and valleys. The results of the meteorological validations using the new topographic data indicated an improvement in the simulations of the meteorological variables: temperature, relative humidity, wind speed and precipitation. The experiments with the GTOPO and SRTM topographic data in WRF/Chem model, configured with the hourly emissions of the Candiota source, reproduced the winds behavior that transported the SO2 to the monitoring stations according to the observed data. However, different patterns were identified in the pollutant concentrations between the two simulations of the model, associated to the wind flows represented by the experiments. The topography resolution affected in the simulation of SO2 due to the increase of the surface forcing induced by the terrain. This increase in the forcing influenced the advection of the SO2 plume, resulting in different patterns of SO2 concentrations at the grid point corresponding to the monitoring stations. However, the results of simulations of SO2 concentrations, both hourly and in the approach of daily averages, did not indicate a linear relationship between the use of high resolution data and the improvement in the representation of SO2 by WRF/Chem model.
16

Regional modelling of air quality and aerosol-interactions over southern Africa : impact of aerosols and regional-scale meteorology

Wiston, Modise January 2016 (has links)
Atmospheric trace components play a critical role in the earth–atmosphere system through their interaction and perturbation to global atmospheric chemistry. They perturb the climate through scattering and absorbing of solar radiation (direct effects), thereby impacting on the heat energy balance of the atmosphere, and alter cloud microphysical properties affecting cloud formation, cloud lifetime and precipitation formation (indirect effects). These trace components can also have adverse effects on human health, visibility and air quality (AQ) composition, including various feedback processes on the state of the atmosphere. As well as their direct and indirect effects, aerosols are important for cloud formation. They serve as cloud condensation and ice nuclei (CCN and IN) during cloud droplet and ice crystal formations. Although many connections between clouds and aerosol effects have been established in cloud physics and climate modelling, aerosol–cloud interaction (ACI) is still one of the areas of large uncertainties in modern climate and weather projections. Different models have been developed placing much emphasis on ACIs, to have robust and more consistent description processes within the meteorological and chemical variables to account for ACIs and feedback processes. Because pollutant distributions are controlled by a specific meteorology that promotes residence times and vertical mixing in the atmosphere, reliable chemical composition measurements are required to understand the changes occurring in the earth–atmosphere system. Also, because atmospheric pollution is a combination of both natural and man-made (anthropogenic) sources, to direct controlled and/or mitigation procedures efficiently, contributions of different sources need to be considered. Occasionally these are explored from a particular region or global environment, depending on a specific area of interest. A fully coupled online meteorology–chemistry model framework (WRF-Chem) is used to investigate atmospheric ACIs over southern Africa –a region characterized by a strong and intense seasonal biomass burning (BB) cycle. The large transport of aerosol plumes originating from the seasonal burning from agriculture, land-use management and various activities give rise to a unique situation warranting special scrutiny. Simulations are conducted for the 2008 dry season BB episode, implementing a chemical dataset from various emission sources (anthropogenic, BB, biogenic, dust and sea salt) with the meteorological conditions. A base line (CNTRL) simulation was conducted with all emission sources from 26 August to 10 September 2008. To probe the contribution of BB on the regional pollution and influence on ACIs, a sensitivity (TEST) simulation was conducted without BB emissions and compared to the base line. The impact of natural and anthropogenic aerosol particles is studied and quantified for the two simulations, focusing on aerosol concentration and cloud responses under different model resolutions. A statistical analysis of pollutant concentration of major regulated species and cloud variables is conducted and the percentage difference used to assess the contribution due to BB emissions. Results confirm the high variability of spatial and temporal patterns of chemical species, with the greatest discrepancies occurring in the tropical forests whereas the subtropics show more urban/industrial related emissions. Whilst CO and O3 show statistically significant increases over a number of cities/towns, the trend and spatial variability is much less uniform with NO2 and PM in most urban and populous cities. Statistical analysis of major chemical pollutants was mainly influenced by BB emissions. O3, NOx, CO and PM increase by 24%, 76%, 51%, 46% and 41% over the main source regions, whereas in the less affected regions concentrations increased by 5%, 5%, 5%, 3% and 2% when BB emissions are included. This study sheds new light on the response of cloud processes to changing aerosol concentrations and different model resolutions. In the parameterised case (dx = 20 km), clouds become more cellular, correlated with high supersaturations, whereas in the resolved case (dx = 4 km), they become more faint with relatively lower supersaturations. Aerosol effects on cloud properties were further studied and statistical analysis conducted on CCN, cloud droplet number concentration (CDNC), supersaturation and aerosol optical depth (AOD) at two different grid spacings. Most clouds occur to the west of the domain coincident with increase in aerosol concentration and AOD, while single scattering albedo (SSA) decreases. A considerable cloud ‘burn-off’ occurs in tropical west Africa, where aerosols can also be lofted up to 500-hPa level when BB emissions are included in the simulation. Due to BB, absorbing aerosol increased by 76% and 23% over tropical west and subtropical southeast, while tropical east shows no change. The study shows that tropical central Africa is characterized by an increased build-up in biomass burning aerosols (BBAs), forming a regional haze with high AOD; this becomes stronger near active burning areas with a significant proportion occurring to the west. AOD enhancement increases up to 38%, 31% and 11% in the west, east and south respectively. Although CDNC increased in areas with high aerosol concentration, supersaturation decreases (in the small domains) since increase in aerosol number concentration decreases maximum supersaturation Smax. Changes in absorbed radiation increased by +56 Wm-2, +23 Wm-2 and +14 Wm-2 in the west, east and southeast. To further evaluate the model sensitivity and its skill, an analysis was conducted by comparing the model performance with measurement data. Simulated AOD, surface concentrations of CO and O3, ozonesondes and liquid water path (LWP) were compared with measured data from MODIS satellite, SAFARI2000 field study and Cape Point WMO. The model shows a good skill in capturing and reproducing the trends as that measured. However, a severe lack of measurement data over southern Africa makes it more difficult to effectively evaluate WRF-Chem over southern Africa. There is a need for increased availability of measurements to adequately compare with models. This study is one of the first WRF-Chem studies conducted over southern Africa to simulate the weather and pollution interaction. The novelty of the present study is the combined analysis of ACI sensitivity to aerosol loading and cloud response in a regime-based approach. The study concludes with a brief discusssion of future directions for work on AQ and modelling interactions between pollution and weather over southern Africa.
17

Estudo numérico do impacto da representação do terreno nas concentrações de SO2 na região de Candiota - RS / Numerical Study of the impact of the terrain representation on SO2 concentrations in the Candiota Region

Mollmann Junior, Ricardo Antonio January 2018 (has links)
O objetivo deste trabalho foi o analisar o impacto da resolução dos conjuntos de dados topográficos nas simulações das concentrações de dióxido de enxofre (SO2) emitido por uma fonte localizada no Sul do Brasil. Para isso foram realizadas duas simulações aplicando o modelo regional Weather Research and Forecasting acoplado com a química (WRF/Chem), configurado com duas representações do terreno de diferentes resoluções espaciais. Foram utilizados os dados padrão do modelo com melhor resolução, Global 30 Arc-Second Elevation (GTOPO), com aproximadamente 1 km, e inserido no bancos de dados do modelo as informações de terreno em alta-resolução do Radar Shuttle Topography Mission (SRTM) (30 metros). Para as emissões antrópicas do modelo foi elaborado um programa capaz inserir os volumes do poluente SO2 de forma horária expelidos pela chaminé, de acordo com as taxas de emissão medidos diretamente na fonte. O programa representou a emissão do poluente no ponto de grade correspondente a localização e a altura acima da superfície da chaminé da fonte. As simulações foram configuradas com os seguintes esquemas de parametrização: para microfísica de nuvens foi utilizado o Goddard Cumulus Ensemble; os esquemas de radiação de onda longa e curta foram o Goddard e o Rapid Radiative Transfer Model para modelos de circulação geral da atmosfera (MCGA); para a parametrização de cumulus o esquema utilizado foi o Grell 3D Ensemble Scheme; e para os esquemas de camada superficial e camada limite planetária foram utilizados os da teoria da similaridade do Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) e o Yonsey University, respectivamente. A escolha desta combinação de esquemas foi definida a partir de um estudo inicial da sensibilidade do modelo à mudança das parametrizações. Os resultados dos experimentos numéricos alterando a topografia foram validados a partir dos dados de monitoramento das estações meteorológica e da qualidade do ar pertencentes à empresa responsável pelo empreendimento associado à fonte. Foi observado que as simulações com os dados SRTM expressaram o terreno da região de estudo mais próximo à realidade, representando o aspecto heterogêneo do relevo, ressaltando os picos e os vales. Os resultados das validações meteorológicas utilizando os dados topográficos indicaram melhoras nas simulações das variáveis meteorológicas: temperatura, umidade relativa, velocidade do vento e precipitação. Os experimentos com os dados topográficos GTOPO e SRTM no modelo WRF/Chem, configurado com as emissões horárias da fonte de Candiota, reproduziram o comportamento dos ventos para transporte de SO2 até as estações de monitoramento conforme os dados observados. Porém foram identificados padrões diferentes na representação das concentrações do poluente entre as duas simulações do modelo, associados aos escoamentos dos ventos representados pelos experimentos. A resolução da topografia afetou na simulação de SO2 devido ao aumento da forçante superficial induzida pelo terreno. Este aumento na forçante, influenciou a advecção da pluma de SO2, resultando em diferentes padrões das concentrações de SO2 no ponto de grade correspondente às estações de monitoramento. Contudo, os resultados das simulações das concentrações de SO2, tanto de forma horária quanto na abordagem das médias diárias, não indicaram uma relação linear entre a utilização de dados em alta resolução e a melhora na representação do SO2 pelo modelo WRF/Chem. / The objective of this work was to analyze the impact of the higher resolution topographic data sets in the simulations of the Sulfur dioxide (SO2) concentrations emitted by a source located Southern Brazil. Two simulations were performed applying the Weather Research and Forecasting model coupled with Chemistry – WRF/Chem, configured with two representations of the terrain with different spatial resolutions. The standard data of the model with the best resolution (approximately 1 km), Global 30 Arc-Second Elevation (GTOPO), and was inserted in the model databases the high-resolution (30 meters) terrain information of the Radar Shuttle Topography Mission (SRTM). For the anthropic emissions of the model, a program was developed capable of inserting the hourly SO2 pollutant volumes expelled by the chimney, according to the emission rates measured directly at the source. The program inserted these emissions into the grid point corresponding to the location and height above the surface of the emission source. The simulations were configured with the following parameterization schemes: for cloud microphysics Goddard Cumulus Ensemble; for the long and short wave radiation treatment it was used the Goddard and the Rapid Radiative Transfer Model for general circulation models; for the cumulus parameterization the scheme it was used the Grell 3D Ensemble Scheme; and for the surface layer and planetary boundary layer schemes, the similarity theory of the Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) and the Yonsey University, respectively. The choice of this combination of schemes was defined from an initial study of the sensitivity of the model to the change of parametrizations. The results of the numerical experiments altering the topography were validated from the monitoring data of the meteorological stations and the air quality belonging to the company responsible for the enterprise associated to the source. It was observed that the simulations with the SRTM data expressed the terrain of the region of study closest to reality, representing the heterogeneous aspect of the terrain, highlighting the peaks and valleys. The results of the meteorological validations using the new topographic data indicated an improvement in the simulations of the meteorological variables: temperature, relative humidity, wind speed and precipitation. The experiments with the GTOPO and SRTM topographic data in WRF/Chem model, configured with the hourly emissions of the Candiota source, reproduced the winds behavior that transported the SO2 to the monitoring stations according to the observed data. However, different patterns were identified in the pollutant concentrations between the two simulations of the model, associated to the wind flows represented by the experiments. The topography resolution affected in the simulation of SO2 due to the increase of the surface forcing induced by the terrain. This increase in the forcing influenced the advection of the SO2 plume, resulting in different patterns of SO2 concentrations at the grid point corresponding to the monitoring stations. However, the results of simulations of SO2 concentrations, both hourly and in the approach of daily averages, did not indicate a linear relationship between the use of high resolution data and the improvement in the representation of SO2 by WRF/Chem model.
18

Estudo numérico do impacto da representação do terreno nas concentrações de SO2 na região de Candiota - RS / Numerical Study of the impact of the terrain representation on SO2 concentrations in the Candiota Region

Mollmann Junior, Ricardo Antonio January 2018 (has links)
O objetivo deste trabalho foi o analisar o impacto da resolução dos conjuntos de dados topográficos nas simulações das concentrações de dióxido de enxofre (SO2) emitido por uma fonte localizada no Sul do Brasil. Para isso foram realizadas duas simulações aplicando o modelo regional Weather Research and Forecasting acoplado com a química (WRF/Chem), configurado com duas representações do terreno de diferentes resoluções espaciais. Foram utilizados os dados padrão do modelo com melhor resolução, Global 30 Arc-Second Elevation (GTOPO), com aproximadamente 1 km, e inserido no bancos de dados do modelo as informações de terreno em alta-resolução do Radar Shuttle Topography Mission (SRTM) (30 metros). Para as emissões antrópicas do modelo foi elaborado um programa capaz inserir os volumes do poluente SO2 de forma horária expelidos pela chaminé, de acordo com as taxas de emissão medidos diretamente na fonte. O programa representou a emissão do poluente no ponto de grade correspondente a localização e a altura acima da superfície da chaminé da fonte. As simulações foram configuradas com os seguintes esquemas de parametrização: para microfísica de nuvens foi utilizado o Goddard Cumulus Ensemble; os esquemas de radiação de onda longa e curta foram o Goddard e o Rapid Radiative Transfer Model para modelos de circulação geral da atmosfera (MCGA); para a parametrização de cumulus o esquema utilizado foi o Grell 3D Ensemble Scheme; e para os esquemas de camada superficial e camada limite planetária foram utilizados os da teoria da similaridade do Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) e o Yonsey University, respectivamente. A escolha desta combinação de esquemas foi definida a partir de um estudo inicial da sensibilidade do modelo à mudança das parametrizações. Os resultados dos experimentos numéricos alterando a topografia foram validados a partir dos dados de monitoramento das estações meteorológica e da qualidade do ar pertencentes à empresa responsável pelo empreendimento associado à fonte. Foi observado que as simulações com os dados SRTM expressaram o terreno da região de estudo mais próximo à realidade, representando o aspecto heterogêneo do relevo, ressaltando os picos e os vales. Os resultados das validações meteorológicas utilizando os dados topográficos indicaram melhoras nas simulações das variáveis meteorológicas: temperatura, umidade relativa, velocidade do vento e precipitação. Os experimentos com os dados topográficos GTOPO e SRTM no modelo WRF/Chem, configurado com as emissões horárias da fonte de Candiota, reproduziram o comportamento dos ventos para transporte de SO2 até as estações de monitoramento conforme os dados observados. Porém foram identificados padrões diferentes na representação das concentrações do poluente entre as duas simulações do modelo, associados aos escoamentos dos ventos representados pelos experimentos. A resolução da topografia afetou na simulação de SO2 devido ao aumento da forçante superficial induzida pelo terreno. Este aumento na forçante, influenciou a advecção da pluma de SO2, resultando em diferentes padrões das concentrações de SO2 no ponto de grade correspondente às estações de monitoramento. Contudo, os resultados das simulações das concentrações de SO2, tanto de forma horária quanto na abordagem das médias diárias, não indicaram uma relação linear entre a utilização de dados em alta resolução e a melhora na representação do SO2 pelo modelo WRF/Chem. / The objective of this work was to analyze the impact of the higher resolution topographic data sets in the simulations of the Sulfur dioxide (SO2) concentrations emitted by a source located Southern Brazil. Two simulations were performed applying the Weather Research and Forecasting model coupled with Chemistry – WRF/Chem, configured with two representations of the terrain with different spatial resolutions. The standard data of the model with the best resolution (approximately 1 km), Global 30 Arc-Second Elevation (GTOPO), and was inserted in the model databases the high-resolution (30 meters) terrain information of the Radar Shuttle Topography Mission (SRTM). For the anthropic emissions of the model, a program was developed capable of inserting the hourly SO2 pollutant volumes expelled by the chimney, according to the emission rates measured directly at the source. The program inserted these emissions into the grid point corresponding to the location and height above the surface of the emission source. The simulations were configured with the following parameterization schemes: for cloud microphysics Goddard Cumulus Ensemble; for the long and short wave radiation treatment it was used the Goddard and the Rapid Radiative Transfer Model for general circulation models; for the cumulus parameterization the scheme it was used the Grell 3D Ensemble Scheme; and for the surface layer and planetary boundary layer schemes, the similarity theory of the Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) and the Yonsey University, respectively. The choice of this combination of schemes was defined from an initial study of the sensitivity of the model to the change of parametrizations. The results of the numerical experiments altering the topography were validated from the monitoring data of the meteorological stations and the air quality belonging to the company responsible for the enterprise associated to the source. It was observed that the simulations with the SRTM data expressed the terrain of the region of study closest to reality, representing the heterogeneous aspect of the terrain, highlighting the peaks and valleys. The results of the meteorological validations using the new topographic data indicated an improvement in the simulations of the meteorological variables: temperature, relative humidity, wind speed and precipitation. The experiments with the GTOPO and SRTM topographic data in WRF/Chem model, configured with the hourly emissions of the Candiota source, reproduced the winds behavior that transported the SO2 to the monitoring stations according to the observed data. However, different patterns were identified in the pollutant concentrations between the two simulations of the model, associated to the wind flows represented by the experiments. The topography resolution affected in the simulation of SO2 due to the increase of the surface forcing induced by the terrain. This increase in the forcing influenced the advection of the SO2 plume, resulting in different patterns of SO2 concentrations at the grid point corresponding to the monitoring stations. However, the results of simulations of SO2 concentrations, both hourly and in the approach of daily averages, did not indicate a linear relationship between the use of high resolution data and the improvement in the representation of SO2 by WRF/Chem model.
19

Evaluation and Improvement of Particle Number/Mass Size Distribution Modelling in WRF-Chem over Europe

CHEN, YING 19 July 2017 (has links)
Atmospheric aerosol particles play an important role in global climate change, via direct and indirect radiative forcing. Elemental carbon (EC) and nitrate are important contributors to anthropogenic aerosol radiative forcing over Europe, since they strongly absorb and/or scatter solar radiation, respectively. However, the evaluation of their climate effects remains highly uncertain. Improvements on the simulation of particle number/mass size distribution (PSD) in modelling will help us to refine model assessments of climate change. The simulations were performed over Europe with a fully online-coupled regional air quality model (WRF-Chem) for the time period of September 10-20th, 2013. Measurements in the HOPE-Melpitz campaign and other datasets in Europe were adopted to evaluate the model uncertainties. The meteorological conditions were well reproduced by the simulations. However, a remarkable overestimation of coarse mode PSD was found in the simulations. The overestimation was mainly contributed by EC, sodium nitrate and sea salt (SSA), stemming from the inadequate emission of EC and SSA. The EC inventory overestimates EC point sources in Germany and the fractions of coarse mode EC emissions in Eastern Europe and Russia. Allocating too much EC emission into the coarse mode could shorten EC lifetime and reduce its long-range transport, thus partly (~20-40%) explaining the underestimation of EC in Germany, when air masses came from eastern direction in previous studies. Furthermore, WRF-Chem overestimated coarse mode SSA mass concentrations by factors of about 8-20 over northwestern and central Europe in this study, due to the shortcoming of its emission scheme. This could facilitate the coarse mode sodium nitrate formation and lead to ~140% overestimation of coarse mode nitrate. Under such circumstances, nitric acid was exhausted, and fine mode ammonium nitrate formation was inhibited. The overestimated SSA shaped the PSD of nitrate towards larger sizes, which might influence the optical properties, lifetime and climate effect of nitrate accordingly. A transport mechanism would broaden the influence of SSA on nitrate PSD to central Europe, where a considerable amount of nitrate precursors and ammonium nitrate is present.:Table of Contents List of Figures List of Tables Abbreviations 1. Introduction 1.1 Particle size distribution 1.2 Elemental carbon particle size distribution simulation 1.3 Chemical pathways for particulate nitrate 1.4 Influence of sea salt on nitrate particle mass size distribution 1.5 Objectives 2. Methodology 2.1. WRF-Chem model 2.1.1. General description 2.1.2. Model configuration 2.1.3 Anthropogenic source emissions 2.1.4 Natural source emissions 2.2 HOPE-Melpitz campaign 2.3 GUAN network over Germany 2.4 Other datasets 3. Results and Discussion 3.1 First publication 3.1.1 Evaluation of the size segregation of elemental carbon (EC) emission in Europe: influence on the simulation of EC long-range transportation 3.1.2 Supporting information 3.2 Second publication 3.2.1 Sea salt emission, transport and influence on size-segregated nitrate simulation: a case study in northwestern Europe by WRF-Chem 3.2.2 Supporting information 4. Summary and Conclusions 5. Outlook Appendix A Bibliography Acknowledgements
20

WRF-Chem vs machine learning approach to predict air quality in urban complex terrains: a comparative study

Kudryashov, Andrey January 2020 (has links)
Air pollution is the main environmental health issues that affects all the regions and causes millions premature deaths every year. In order to take any preventive measures, we need the ability to predict pollution level and air quality. This task is conventionally solved using deterministic models. However, those models fail to capture complex non-linear dependencies in erratic data. Lately machine learning models gained popularity as a very promising alternative to deterministic models. The purpose of this thesis is to conduct a comparative study between ChemicalTransport Model (WRF-Chem) and a Statistical Model built from machine learning algorithms in order to understand which one is advantageous predicting the air quality and the meteorological conditions using data from Cuenca, Ecuador. The study aims to compare the two methods and conclude on which of them is better in forecasting the concentration of fine particulate matter (PM2.5) in an urban complex terrain. I concluded that even though WRF-Chem has the biggest advantage of forecasting all the data of interest for broader time horizon machine learning algorithms provide better accuracy for middle-term period. Machine learning models also require much less computational power but lack ability to predict meteorological conditions along with pollution level.

Page generated in 0.0642 seconds