• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Turnover and localization of the actin-binding protein Drebrin in neurons

Puente, Eugenia Rojas 31 August 2016 (has links)
Die vorliegende Arbeit erforscht die Regulation der Expression von Drebrin; DBN (Developmentally Regulated Brain Protein) in Neuronen. DBN ist ein Protein das Actin bindet und Actin-Filamente bündeln kann. Änderungen der Morphologie der Spines verändern die synaptische Aktivität und Plastizität – wichtigen Prozessen bei der Gedächtnisbildung und Alterung des Gehirns, sowie bei geistigen Störungen bzw. Behinderungen. DBN-Expression im Alter und in einigen neurodegenerativen Krankheiten reduziert ist. Eine schwächere Expression von DBN in Spines geht außerdem mit einem Verlust an synaptischen Verbindungen einher, einem gemeinsamen Merkmal von Alterung und neurologischen Störungen wie der Alzheimer Krankheit. Diese Befunde bildeten die Motivation und Grundlage für meine Erforschung der Produktion und Lokalisierung von DBN. In meinem Projekt, habe ich den Effekt der sequenzspezifischen S647-Phosphorylierung von DBN untersucht. Die Arbeit zeigt, dass diese post-translatorische Modifikation die Stabilität von DBN reguliert. Ich habe FUNCAT-PLA und Puro-PLA für die Visualisierung von de novo synthetisierten Proteinen in situ benutzt. Mittels hochauflösender Fluoreszenz-Hybridisierung konnte ich zeigen, dass DBN nicht nur im Zellkörper sondern auch lokal in den Spines translatiert wird. Meine Resultate bieten eine Grundlage für das Verständnis der Regulierung de DBN-Konzentration in Zellen und ermöglichen die weitere Erforschung der Rolle der S647-Phosphorylierung von DBN für die Morphologie von Spines. Die Arbeit bildet außerdem eine experimentelle Plattform für weitere Studien der Rolle von DBN für Spines, sowohl in Bezug auf Stabilität als auch der synaptischen Funktion und Stabilität. / This thesis studies the abundance of the protein Drebrin; DBN (Developmentally Regulated Brain Protein) in neurons, which is an actin-binding protein capable of bundling actin filaments. Synapses in the mammalian brain are formed on tiny protrusions, called dendritic spines. Changes in spine morphology affect synaptic activity and plasticity, which are processes underlying memory formation. DBN abundance plays an important role in regulating dendritic spine morphology. Cognitive decline and neurodegenerative conditions have been shown to be linked with a decrease in DBN levels. A weakening in the expression of this protein in spines is associated with the loss of synaptic connections, a common feature of ageing and neurological disorders such as Alzheimer''s disease. This evidence was the underlying motivation for studying the localization and turnover of DBN. I studied the effect of the site-specific S647 phosphorylation of DBN and found that such post-translational modification regulates protein stability. For the project, I established several novel techniques in our laboratory, including state-of-the-art methods such as FUNCAT-PLA and Puro-PLA for the visualization of de novo synthesized proteins in situ. My results show that DBN translation occurs not only in somata but also locally in the dendrites and spines. The same observation is true for DBN transcripts, which are present both in the soma and dendrites of neurons. These observations suggest that DBN could play an important role during synaptic plasticity. My results allow the future investigation of the potential role of site-specific phosphorylation of DBN in spine morphology. This PhD thesis represents a contribution to better understanding the regulation of DBN abundance. It also provides an experimental platform for additional investigation about the role of DBN in spine morphology, regarding its stability and its correlation with synaptic maintenance and function.
2

Homeostatic and functional implications of interneuron plasticity

Mackwood, Owen John 14 March 2019 (has links)
Die Erhaltung der Gehirnfunktion trotz Veränderungen im Organismus und dessen Umwelt erfordert homöostatische Mechanismen. Inhibitorische Interneurone spielen eine Schlüsselrolle bei Berechnungen und Homöostase im Gehirn. Es ist jedoch unklar, welcher Mechanismus diese Eigenschaften erzeugen kann. Diese Arbeit hat das Ziel, die homöostatischen Fähigkeiten solcher Interneurone zu bestimmen und die daraus resultierenden funktionellen Konsequenzen mit analytischen und numerischen Techniken zu ergründen. Die zentrale Hypothese dieser Arbeit ist, dass Interneurone ihre Feuerraten modulieren, um langfristig die Aktivität exzitatorischer Neurone bei einem homöostatischen Sollwert zu halten. Wir beginnen mit einem normativen Ansatz und leiten eine Plastizitätsregel her, welche die Aktivität von Interneuronen regelt, um netzwerkweite Abweichungen vom Sollwert zu minimieren. Um die biologische Plausibilität zu erhöhen, liefern wir zwei Approximationen, bei denen jede Interneurone auf die exzitatorische Population reagiert, die sie inhibiert und zeigen, dass alle drei Varianten vergleichbare aber unterschiedliche homöostatische Fähigkeiten haben. Wir kontrastieren den normativen Ansatz mit Regeln, welche die Aktivität einer Interneurone verändern, wenn die Neuronen, die sie treiben, vom Sollwert abweichen. Diese Regeln erzeugen Konkurrenz zwischen Neuronen und führen daher zu zerstreuter Netzwerkaktivität. Im zweiten Teil dieser Arbeit untersuchen wir, wie eine der approximierten Regeln die funktionellen Eigenschaften des sensorischen Kortex beeinflusst. Wir zeigen, dass sie mehrere experimentell Beobachtungen erklären kann, inklusive des Ko-Tunings von exzitatorischen und inhibitorischen Strömen und der Entwicklung von Zellverbänden. Zusammenfassend liefert diese Arbeit neue Erkenntnisse darüber, wie die Regulierung der Interneuron-Aktivität für neuronale Netzwerke homöostatisch sein kann, und zeigt mögliche Auswirkungen auf die Entwicklung und Erhaltung der Gehirnfunktion auf. / Preserving brain function despite ongoing changes inside the organism, and out in the world, necessitates homeostatic mechanisms. Inhibitory interneurons play a key role in both computation and homeostasis within the brain. However, it remains unclear if there is a mechanism that can account for both of these properties. This thesis therefore aims to determine the homeostatic capabilities of such interneurons and elucidate the resulting computational consequences, using analytical and numerical techniques. The central hypothesis of this thesis is that some interneurons slowly modulate their firing rates to maintain the long-term activity of excitatory neurons at a homeostatic set-point. Thus we begin with a normative approach, deriving a plasticity rule that regulates the activity of interneurons to minimise network-wide deviations from that set-point. In the interest of biological plausibility we also provide two approximations, both of which make each interneuron responsive to the excitatory population it inhibits, and show that all three variants exhibit comparable though distinct homeostatic capabilities. We contrast this normative approach by characterising the homeostatic properties of rules which instead alter the activity of an interneuron when the neurons that drive it deviate from the set-point. Those rules induce a competition between neurons, causing network activity to become sparse. In the second part of this thesis, we investigate how one of the approximate rules affects computational properties of sensory cortex. We show that it can account for several experimentally reported results, including co-tuning of excitatory and inhibitory currents, and the development of excitatory-inhibitory cell assemblies. In summation, this thesis provides new insight into how regulating interneuron activity can be homeostatic for neuronal networks, and reveals potential implications for development and preservation of brain function.

Page generated in 0.028 seconds