• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 14
  • 14
  • 14
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isochoric heating of copper to Warm Dense Matter state using protons produced through laser solid-laser interactions

Feldman, Samuel Henry 24 July 2013 (has links)
This thesis examines the equation of state of copper at Warm Dense Matter states, between 1-100 eV and .1-10 times solid density. Protons accelerated off a thin metal foil irradiated with a high intensity laser beam flash heat solid density copper to between 5-10 eV before significant expansion occurs. The measured temperature and expansion are compared against simulations using various equations of states. The production and characterization of the laser system and proton beam used to heat the matter is also presented. / text
2

Investigations of high pressure phase diagrams of MgO-SiO2 systems with laser shock compression / Etude des diagrammes de phase des systèmes MgO-SiO2 à hautes pressions générées par chocs laser

Bolis, Riccardo Maria 12 October 2017 (has links)
La découverte récente d’un grand nombre d’exoplanètes et en particulier des planètes potentiellement habitables suscite une grande fascination. Pour modéliser les intérieurs de ces planètes, il est crucial de connaître avec précision les propriétés physiques et les équations d’état des composants planétaires. Ces matériaux se trouvent à des conditions de pressions et températures extrêmes ( 1-100 Mbar, 10^3-10^4 K), correspondantes à celles de la matière dense et tiède ou Warm Dense Matter (WDM). La description théorique de cette matière a progressé grâce aux calculs ab initio, mais reste complexe. Les données expérimentales sont fondamentales dans ce contexte.Ce projet de thèse porte sur l’étude expérimentale de trois matériaux importants pour la géophysique, le MgO, MgSiO3 et Mg2SiO4 dans le domaine ≈ 0.5-10 Mbar. Ces trois matériaux en fait sont les pôles purs magnésiens du (Fe, Mg)SiO3 and (Fe, Mg)2SiO4 qui sont parmi les composantes plus abondantes du manteau terrestre et très probablement des manteaux du Super-Terres et des noyaux des planètes géantes. Pour amener ces matériaux aux conditions typiques des intérieurs planétaires on a utilisé la technique de chocs laser. En particulier, nous avons réalisé trois campagnes expérimentales sur des grandes installations: LULI2000 (Ecole Polytechnique, France), GEKKOXII (Osaka University, Japan), MEC à LCLS (SLAC, USA). Pour chaque campagne, on a utilisé une technique différente. Sur LULI2000 et GEKKOXII nous avons étudié les propriétés de MgO, MgSiO3 et Mg2SiO4 liquide et la fusion avec des chocs décroissants couplés avec des diagnostiques optiques. Sur LULI2000 on a étudié les propriétés électroniques et structurelles du MgO liquide avec la spectroscopie XANES. Sur MEC, on a conduit une expérience de diffraction X pour déterminer les changements structuraux induits par des chocs stationnaires dans le régime solide sur le MgSiO3 et le Mg2SiO4. Dans leur ensemble, les résultats de ces expériences impliquent une révision des diagrammes de phase des matériaux étudiés. En particulier, on a déterminé un nouveau point de fusion pour le MgO (à 470 ± 40 GPa et 9860 ± 810 K), on a résolu une controverse sur la présence d’une transformation liquide-liquide dans le diagramme de phase du MgSiO3 (qui concernait une région autour de ~ 400 GPa sur la Hugoniot) et on a obtenu pour la première fois des évidences de la amorphisation de la Forsterite (Mg2SiO4 cristal) sous choc (à ~ 50 GPa sur la Hugoniot). En plus on a obtenu des informations sur la réflectivité (liée à la conductivité) pour le trois matériaux, et les données de spectroscopie XANES ont permis de comprendre le mécanisme de fermeture du gap (métallisation) du MgO sous effet de la température. / Two decades of exoplanet discoveries brought the physics of planetary interiors among the topics of broad and current interests. To advance in this field, one of the key ingredient is the knowledge of the equation of states and physical properties of planetary constituents. At the extreme conditions of planetary interiors ( 1-100 Mbar, 10^3-10^4 K), matter lies in the Warm Dense Matter (WDM) regime and theoretical descriptions are not trivial. Important progress have been done with ab-initio calculations based on differential functional theories, but such calculations need to be validated by experiments.In this thesis, we experimentally characterized phase diagrams and physical properties of MgO, MgSiO3 and Mg2SiO4 at conditions relevant for planetary science (0.5-10 Mbar). The studied compounds are the Mg end members of (Fe, Mg)SiO3 and (Fe, Mg)2SiO4 that are among the most abundant components of Earth’s mantle and are also thought to be abundant in Super-Earth’s mantle and giant planet cores. To bring these materials to planetary interior conditions we performed laser shock compression experiments at three high power laser facilities: LULI2000 (France), GEKKOXII (Japan), MEC at LCLS(USA). At LULI2000 and GEKKOXII we investigated the liquid properties and melting of MgO, MgSiO3 and Mg2SiO4 using decaying shocks coupled to visible diagnostics. At LULI2000 we studied with XANES spectroscopy MgO in the WDM regime highlighting its metallisation mechanism and structural properties in the liquid phase. Finally, at the MEC end station of LCLS, we used X-ray diffraction to measure shock induced structural changes on MgSiO3 and Mg2SiO4 in the solid region of their phase diagrams. Altogether these works, obtained with different diagnostics, imply a revision of the phase diagrams of the studied compounds. In particular we determined a new experimental melting point for MgO (at 470 ± 40 GPa and 9860 ± 810 K), we ruled out the occurrence of an MgSiO3 liquid-liquid transition (supposed to occur at ~ 400 GPa along the Hugoniot) and we evidenced for the first time the occurrence of an amorphous phase along the Forsterite (Mg2SiO4 crystal) Hugoniot (at ~50 GPa).
3

Study of high energy density matter through quantum molecular dynamics and time resolved X-ray scattering

White, Thomas G. January 2014 (has links)
The warm dense matter regime (WDM), defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of matter where multi-body particle correlations and quantum effects play an important role in determining the overall structure and equation of state. The study of WDM states represents the laboratory analogue of the astrophysical environments found in the cores of planets and in the crusts of old stars, but also has practical applications for controlled thermonuclear fusion. Time resolved X-ray diffraction is used to study the temporal evolution of a sample from solid state towards WDM, either after irradiation with an intense proton/electron beam, in carbon samples, or direct laser illumination, in thin gold nanofoils. The electron-ion equilibration time is extracted through the use of the two-temperature model and in highly excited carbon shown to be longer than previously thought, this is attributed to strong ion-ion coupling screening the interaction (coupled mode theory). Calculation of the dynamic ion-ion structure factor is performed using orbital-free density functional theory (OF-DFT) and shown to compare well with Kohn-Sham DFT in both the static and dynamic cases. Experimental verification of these results is vital and measurement of the microscopic dynamics of warm dense aluminium have been successfully demonstrated through inelastic X-ray scattering. Using the self-seeded beam at the linear coherent light source (LCLS) scattering at a small momentum exchange allowed the first direct measurement of ion acoustic waves in WDM. This data provides the basis for a direct experimental test of many dense plasma theories through direct comparison with the ion-ion dynamic structure factor.
4

Chocs laser sur le diamant, l hélium et l hydrogène: une etude experimentale de la ''Warm Dense Matter.

Brygoo, Stéphanie 20 November 2006 (has links) (PDF)
La connaissance de l'équation d'état de systèmes d'hélium, d'hydrogène et de diamant dans le domaine des hautes pressions et températures est un problème ouvert, très controversé et présentant des applications astrophysiques importantes. Les approches théoriques pour cet état de la matière à l'interface de la physique de la matière condensée et de la physique des plasmas, appelé dans la littérature Warm Dense Matter, ne sont pas encore entièrement satisfaisantes. Une des raisons est qu'il n'existe pratiquement pas de données expérimentales pour valider les approximations dans ce domaine du diagramme de phase. En effet les approches statiques ou dynamiques seules ne peuvent atteindre ces états. En 2002, une première démonstration de la possibilité du couplage des compressions statiques et dynamiques, par génération de chocs laser dans des presses à enclumes de diamant, a ouvert la voie de l'étude de l'équation d'état de la matière très dense et chaude. Dans ce travail de thèse, nous avons optimisé les cibles et développé une nouvelle métrologie basée sur le quartz comme système de référence dans le but de réduire au maximum les barres d'erreur. Des mesures précises de la pression, la température, la densité et la réflectivité peuvent ainsi être obtenues. Cette méthode a ensuite été appliquée à différents systèmes. De nombreux résultats ont alors été obtenus sur le diamant (existence d'un maximum sur le courbe de fusion), sur l'hélium (va! lidation du modèle de Saumon-Chabrier), sur l'hydrogène (passage continue entre un état isolant et un état conducteur) et sur les mélanges hydrogène/hélium (pas de signe évident de séparation de phase).
5

Measurement of equation of state of compressed hydrogen and deuterium

Falk, Katerina January 2011 (has links)
Detailed understanding of the equation of state of light elements such as the hydrogen isotopes in the warm dense matter (WDM) regime is essential for the modeling of the inner structure of many astrophysical objects, in particular Jovian planets as well as inertial confinement fusion (ICF) research. In these systems quantum degeneracy and strong inter-particle forces play an important role making its theoretical description extremely challenging. The Omega laser was used to drive a planar shock wave in cryogenically cooled deuterium creating WDM conditions. We used a set of independent diagnostics to measure the thermodynamic conditions of WDM including velocity interferometry (VISAR), streaked optical pyrometry (SOP) and x-ray Thomson scattering (XRTS). With a narrow-band x-ray backlighter probe at backscattering geometry the spectrally resolved XRTS accessed the boundary of collective and non-collective regimes making our measurement sensitive to both electron temperature and density. This work presents a full set of measurements of the thermodynamic properties for different laser intensity drives creating warm dense deuterium at various degrees of degeneracy and coupling. The measured electron densities and temperatures ranged between 0.2 and 2.15x10<sup>23</sup> cm<sup>−3</sup> and 0.6 − 20 eV respectively. The scattering measurement confirmed the findings from the VISAR and SOP data and together densityfunctional molecular dynamics (DFT-MD) simulations provides a novel self-consistent approach for an accurate characterization of the microscopic structure of WDM. Complementary to the laser compression work, findings from project employing static compression hydrogen with the use of diamond anvil cells is also be presented. The first direct measurement of the local field correction to the Coulomb interactions in degenerate plasma was obtained from inelastic scattering (20 keV probe) at the Diamond Light Source synchrotron facility.
6

Ab Initio Simulation of Warm Dense Matter: Combining Density Functional Theory and Linear Response Methods

Ramakrishna, Kushal 29 August 2023 (has links)
Warm dense matter (WDM) is an extreme state of matter induced by extreme conditions and characterized as an intermediary state between (high-pressure) condensed matter and plasma. It has sparked a lot of attention in recent years as a result of current innovations in experiments and theoretical methods for modeling such complex systems. Such conditions naturally occur in astrophysical objects such as the interiors of the planets, and in white and brown dwarfs. WDM can be created in the laboratory via various methods such as laser compression, Z-pinches and heated diamond anvil cells. This thesis describes the results obtained for many such systems across a range of conditions modeled using ab-initio simulation methods. The first testbed concerns the electronic structure and linear response of the carbon phases under high-pressure and warm dense matter conditions. The focus is on modeling inelastic x-ray scattering spectra across a range of conditions useful for the analysis and interpretation of x-ray Thomson scattering (XRTS) experiments. Another major goal is to improve the existing models to compute static properties such as the equation of state, density of states with the inclusion of highly accurate data from quantum Monte Carlo (QMC) simulations relevant at finite-temperatures. This approach improves the accuracy and is also computationally inexpensive compared to path integral Monte Carlo (PIMC) methods. Lastly, improvements in linear response theory relevant for XRTS are incorporated with the inclusion of local field corrections (LFC) and finite-temperature local field corrections (T-LFC) using data from QMC simulations.
7

Interaction d'un rayonnement X-XUV intense avec la matière : cinétique atomique associée / Interaction of an intense X/XUV-ray with matter : associated atomic physics

Deschaud, Basil 21 December 2015 (has links)
Ce travail de thèse suit l'apparition récente de ces nouvelles sources intenses et courtes de rayonnement dans la gamme X/XUV que sont les lasers X/XUV à électrons libres (XFEL). Contrairement aux sources optiques qui déposent principalement leur énergie via les électrons libres, les photons X/XUV déposent leur énergie dans la matière par la photoionisation de couches internes avec éjection de photo-électrons, suivie par l'éjection d'électrons Auger et d'électrons de recombinaison à trois corps dans la distribution d'électrons libres. Le chauffage se fait donc par l'intermédiaire de la structure atomique. La forte intensité des XFELs permet de faire jusqu'à un trou par atome dans un solide produisant ainsi, sur une échelle femtoseconde, un état exotique fortement hors-équilibre appelé solide creux. Cet état exotique instable se désexcite via un ensemble de processus atomiques élémentaires. Nous nous sommes intéressés dans cette thèse au développement d'outils permettant de calculer la cinétique des populations atomiques, couplée à la cinétique des électrons libres, pendant la transition à densité ionique constante, de solide à plasma dense en passant par l'état de solide creux, induit par le rayonnement XFEL irradiant une cible solide. Tout le défi ici a été de calculer cette cinétique couplée hors-équilibre entre ces états de la matière de nature très différente. Pour répondre a ce défi nous avons développé deux modèles cinétiques d'interaction XFELsolide, pour lesquels la description d'un solide comme un plasma froid dégénéré nous a permis d'utiliser une même approche plasma pendant l'ensemble de la transition du solide au plasma. L'ensemble de la physique atomique HETL d'intérêt ayant lieu à densité du solide, bien avant la détente de la matière, nous avons développé deux codes associés à ces modèles pour une utilisation à densité ionique constante. Pour aborder l'étude nous nous sommes d'abord concentrés sur la cinétique des électrons liés en supposant une distribution d'électrons libres à l'équilibre (ce qui suppose une thermalisation instantanée des électrons libres). Dans le cadre de l'approche de plasma dense étendue jusqu'au solide, nous avons développé un modèle collisionnel-radiatif généralisé. Cette généralisation passe par l'identification d'un lien entre état solide et plasma au niveau des processus atomiques élémentaires. Le code développé à partir de ce modèle nous a permis d'étudier des résultats expérimentaux et ainsi d'améliorer notre description des effets de densités dans les plasmas denses. Dans une seconde partie nous avons ajouté à l'étude la cinétique des électrons libres en considérant une distribution d'électrons libres hors-équilibre. Le code associé, basé sur la discrétisation de cette distribution et son couplage avec les états liés, nous a permis d'étudier le rôle des processus atomiques élémentaires dans la thermalisation de la distribution d'électrons libres. / This work follows the recent development of the free electron lasers in the X-ray and XUV-ray range (XFEL). Unlike optical sources that deposit their energy via the free electrons, the X/XUV photons deposit their energy directly via photoionization of inner shell electrons with the ejection of photo-electrons, followed by the ejection of Auger electrons and three body recombination electrons in the free electron distribution. The matter is thus heated via the atomic structure. The high XFEL intensity allows one to make up to one hole per atom in a solid, thus producing, on a femtosecond time scale, an exotic state, highly out of equilibrium, called hollow cristal. This unstable exotic state deexcite via a set of elementary atomic processes. In this work we were interested in the development of tools to calculate the atomic population kinetics, coupled to the free electron kinetics, during the transition at constant ionic density, from solid to dense plasma, induced by an XFEL irradiating a solid target. The goal here was to calculate this out of equilibrium coupled kinetics between states of matter having a very different nature. To address this problem we have developed two kinetics models of XFEL interaction with solids. In both these models the description of the solid as a cold degenerated plasma allowed us to use the same plasma approach during all the solid-plasma transition. Considering the fact that all the atomic physics takes place at solid density, way before the matter relaxation, we have developed two codes, associated with these two models, for a use at constant ionic density. To approach this study, we first focused on the bound electron kinetics assuming a free electron distribution at equilibrium (i.e. hypothesis of instantaneous thermalization of the free electrons). In the framework of the dense plasma approach extended up to the solid state, we have developed a generalized collisional radiative model. This generalization goes through the identification of a link between the solid state and the plasma state for the elementary atomic processes. The code associated with this model allowed us to study experimental results and to improve our description of the density effects in dense plasmas. In a second part the free electron kinetics is included in the model with a free electron distribution out of thermodynamic equilibrium. The associated code, based on the discretization of this distribution and its coupling with bound atomic states allowed us to study the role of the atomic elementary processes in the free electron distribution thermalization.
8

Nouveaux diagnostiques pour l'étude de la matière dense et chaude : application aux cibles comprimées par choc laser.

Ravasio, Alessandra 01 March 2007 (has links) (PDF)
Le travail de ma these est dedie au developpement de nouvelles techniques d'investigation de la matiere dense et chaude, aussi connue sous l'acronyme WDM (pour Warm Dense Matter en anglais). Ce regime se situe a la frontiere entre la physique de la matiere condense et la physique des plasmas. Il est characterise par des densites comprises entre 0.1 et 100 fois la densite du solide et des temperatures dans l'intervalle 0.1-100 eV. Notre connaissance du comportement de la matiere dans ce regime est peu precise bien que sa comprehension soit indispensable dans differents domaines de la physique. En particulier, la connaissance de la relation entre la pression, la densite et la temperature, qui definit l'equation d'etat (EOS) est un point clef dans des domaines aussi importants que la fusion par confinement inertiel (FCI), lgeophysique, l'astrophysique, et la planetologie.
9

Etude expérimentale et théorique de la structure électronique de l'aluminium en conditions extrêmes par spectroscopie d'absorption X

Festa, Floriane 05 April 2013 (has links) (PDF)
La matière en conditions extrêmes appartient au régime de la Warm Dense Matter qui se situe à la frontière entre le régime plasma dense et le régime de la matière condensée. Son comportement est encore mal connu et mal décrit. En effet, sa description théorique est très complexe et il est difficile de générer cet état de matière en laboratoire pour obtenir des données expérimentales pouvant valider les modèles. Ce travail de thèse a pour objectif d'étudier la structure électronique de l'aluminium en conditions extrêmes par le diagnostic de la spectroscopie d'absorption X. Expérimentalement l'aluminium a été porté dans des conditions de fortes densités et fortes températures jusque-là inexplorées. Par ailleurs, une source X capable de sonder l'aluminium sous choc a été générée. Deux spectromètres X ont permis l'acquisition des spectres d'absorption de l'aluminium dans ces conditions et des diagnostics optiques ont permis de déduire les conditions de densité et de température de l'aluminium de façon indépendante. En parallèle, des calculs ab initio ont été réalisés pour obtenir des spectres d'absorption dans les mêmes conditions afin de les comparer aux spectres expérimentaux. Du point de vue théorique, l'objectif était de valider les méthodes de calcul des spectres d'absorption X dans ce régime de fortes densités et fortes températures en analysant les modifications du flanc d'absorption. Le diagnostic de l'absorption X a également été utilisé pour étudier le phénomène physique de la transition métal-non métal qui a lieu à basse densité (densité < densité du solide). Cette transition peut alors être étudiée par les changements de la structure électronique du système étudié.
10

Self-consistent dielectric formalism scheme for the paramagnetic electron gas under warm dense matter conditions

Kalkavouras, Fotios January 2022 (has links)
The present thesis aims to further a somewhat unexplored area of Warm Dense Matter (WDM) physics through the use of tools developed within the dielectric formalism. WDM is an exotic form of matter with densities close to the solid state and temperatures of several eV. The accurate description of WDM is important for the understanding of the physics of dense astrophysical objects (gas giants, brown dwarfs, neutron stars) and of the initial phase of inertial confinement fusion. This necessitates an accurate knowledge of the exchange-correlation free energy functional for weakly non-ideal Quantum One-Component plasmas (qOCP). The later has been recently obtained by modern Quantum Monte Carlo (QMC) simulation techniques that alleviate the notorious fermion sign problem. Currently, pure theoretical schemes of the qOCP under WDM conditions significantly lag behind QMC simulations and this will be the main issue addressed in this thesis. In this project, we will investigate a dielectric formalism scheme tailor made for weak correlations that treats quantum mechanical effects on the random phase approximation level and satisfies the compressibility sum rule exactly by construction. More precisely, it is a self-consistent dielectric scheme for the finite temperature qOCP that is based on the Vashishta-Singwi (VS) closure of the classical BBGKY hierarchy. / Denna avhandling fokuserar på ett något outforskat område av Warm Dense Matter (WDM) fysik med hjälp av verktyg utvecklade inom den dielektriska formalismen. WDM är en exotisk form av materia med densiteter nära det solida tillståndet och en temperatur på några eV. En noggrann beskrivning av WDM är viktig för att förstå fysiken bakom kompakta astrofysikaliska objekt (t.ex. gasjättar, bruna dvärgar och neutronstjärnor) och den inledande fasen av tröghetsinnesluten fusion. Detta nödvändiggör en exakt förståelse av utbyte-korrelationsfunktionen för fri energi för svaga Quantum One-Component plasmas (qOCP). Det sistnämnda har nyligen erhållits av moderna Quantum Monte Carlo (QMC) simulationstekniker som underlättar det ökända fermion teckenproblemet. För närvarande, rent teoretiska beräkningar av qOCP med WDM-villkor är betydligt efter QMC simulationer och detta är det största problemet som kommer tas upp i denna avhandling. Vi kommer att undersöka dielektriska formalismberäkningar skräddarsydda för svaga korrelationer som behandlar kvantmekaniska effekter på slumpmässiga fasapproximationsnivåer och dessutom uppfyller komprimerbarhets summeringsregeln exakt efter konstruktion. Närmare bestämt, det är en självständig dielektrisk beräkning för begränsad temperatur-qOCP som är baserade på ”Vashishta-Singwi (VS) closure” av det klassiska BBGKY hierarkin.

Page generated in 0.1187 seconds