• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of an active landslide in the Swainswick Valley, north of Bath

Anson, Richard January 1996 (has links)
No description available.
2

Relationship between Land Use and Surface Water Quality in a Rapidly Developing Watershed in Southeast Louisiana

Bourgeois-Calvin, Andrea 07 August 2008 (has links)
The Tangipahoa River and Natalbany River watersheds (Tangipahoa Parish/County) in the Lake Pontchartrain Basin (southeastern Louisiana) are experiencing rapid urbanization, particularly in the wake of the 2005 hurricane season. To document the impact of land use on water quality, thirty sites were monitored for surface water physiochemical, geochemical, and bacteriological parameters. Water quality data was compared to land use within four sub-watersheds of the Tangipahoa Watershed and three sub-watersheds of the Natalbany Watershed. Urbanization had the most profound impact on water quality of all land uses. In watersheds with little urban land cover (< 7% with the sub-watershed) waterbodies had low dissolved salt, nutrient, and fecal coliform concentrations and high dissolved oxygen levels. Waterbodies within the urban region (> 28% urban land cover within the sub-watershed) of the parish had significantly greater dissolved salt, nutrient, and fecal coliform concentrations and decreased dissolved oxygen concentrations. Specifically, nutrient and fecal coliform concentrations increased as streams flowed through urban areas. The specific conductance, fecal coliform counts, concentrations of sulfate, HCO3-C, sodium, and nutrients (NO3-N, NO2-N, NH4-N, and PO4-P), and the ratios of Na:Cl, Cl:Br, and SO4:Cl were shown to be the parameters most indicative of urban impacts. Many of the geochemical parameters correlated significantly with each other, particularly within the urban streams (the streams with the greatest concentrations). While fecal coliform counts were high within the urban streams, programs to address malfunctioning wastewater treatment plants (WWTP) appear to be working, with fecal coliform counts declining and dissolved oxygen levels rising during the course of the data collection. In contrast, sites undergoing rapid development showed an increase in turbidity levels and a decrease on dissolved oxygen levels (both going from healthy to unhealthy levels) during the 18-month course of the data collection. By understanding the impacts of urbanization on streams of the Gulf Coast, local and regional municipalities may be able to reduce the impacts in already urbanized areas or mitigate the impacts at the outset of development.
3

Apport du radon et des isotopes du radium à la caractérisation des circulations souterraines en domaine karstique : application à l'aquifère du Lez (Hérault, France) / Contribution of radon and radium isotopes in the characterization of groundwater circulation in a karstique system : application to the aquifer of Lez (Hérault, France)

Molina Porras, Arnold 24 November 2017 (has links)
La compréhension des processus de recharge et de l’hydrodynamique des systèmes aquifères karstiques est indispensable pour estimer la vulnérabilité et la disponibilité des réserves en eau souterraine. Afin d’améliorer cette compréhension, de nombreuses études ont utilisé l’information issue du comportement de plusieurs éléments chimiques et des isotopes naturels dans les eaux souterraines. Parmi eux, les quatre isotopes du radium (223Ra, 224Ra, 226Ra et 228Ra) et le radon (222Rn), tous radioactifs, sont de plus en plus utilisés. Ces traceurs naturels permettent d’identifier l’origine des différentes masses d’eau et leurs processus de transport et de mélange dans plusieurs types de systèmes aquifères. Cependant, leur application aux systèmes karstiques est principalement développée dans les systèmes côtiers ou thermaux, dont les eaux sont souvent riches en Ra. Très peu de travaux ont été menés dans les aquifères karstiques continentaux, probablement en raison de la faible activité de ces radionucléides, qui les rend difficiles à quantifier et nécessitant le prélèvement de plusieurs litres d’eau. La première partie de ce travail a donc consisté au développement d’un nouveau dispositif de prélèvement capable de concentrer in-situ le radium contenu dans plusieurs dizaines de litres d’eau (20-300 L) à l’aide de de fibre acrylique imprégnée de MnO2 et d’améliorer la mesure des activités par spectrométrie gamma. Grâce à cette méthode, nous avons été capables de mesurer, pour la première fois, les faibles activités des quatre isotopes de Ra (0,4 à < 7,0 mBq/L pour 226Ra, 228Ra et 224Ra et de 0,05 à 0,3 mBq/L pour 223Ra) dans les eaux de deux hydrosystèmes karstiques continentaux Méditerranéens, les systèmes du Haut Vidourle et du Lez (Sud de la France). La méthode de quantification de 222Rn a également été optimisée. L’étude du comportement des isotopes de Ra et de Rn dans la zone d’étude a mis en évidence les diverses applications avérées ou potentielles de la mesure de ces radionucléides dans les aquifères karstiques. En général, les valeurs des activités de 226Ra et du rapport (228Ra/226Ra) des eaux sont cohérentes avec le type de lithologie dans lesquelles elles circulent ou sont stockées. Nous avons pu ainsi mieux préciser l’influence des eaux du Vidourle à la recharge allogénique de l’aquifère de Sauve. Nous avons montré que parfois, les activités des isotopes de Ra correspondent plutôt à des valeurs typiques des différents compartiments aquifères qu’à celles de la roche encaissante. Ces résultats nous ont permis de déterminer les proportions de mélange des trois différents pôles géochimiques composant le flux d’eau qui s’écoule à la source du Lez suivant les conditions hydrodynamiques. Les isotopes à longue période (226Ra et 228Ra) combinés aux isotopes à courte période (224Ra et 223Ra), permettent potentiellement de déterminer, en même temps, les taux de mélange et le temps de transfert des eaux. De plus, l’excès des isotopes à courte période traduirait l’arrivée d’eaux souterraines en surface, 223Ra et 224Ra devenant de meilleurs traceurs des échanges superficiels que Rn car ils ne subissent pas de processus de dégazage vers l’atmosphère. Par contre, l’étude de l’évolution temporelle du radon à la source du Lez a mis en évidence que ce gaz radioactif naturel est un très bon traceur des processus de recharge diffuse des aquifères karstiques. Les relations entre 223Ra et 222Rn, ainsi qu’entre 210Pb et 222Rn, peuvent fournir des informations sur le temps de transfert des eaux souterraines. Cependant, des études complémentaires et à plus long terme sont nécessaires. / Understanding recharge processes and hydrodynamics of karstic systems is an essential rule to assess their vulnerability and their groundwater resource availability. Numerous studies use the behavior of natural geochemical elements and isotopes in groundwaters to improve this understanding. The radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and the radon (222Rn), natural radioactive elements, have been commonly applied for studies devoted to the identification of water mass origins and to their mixing and transfer processes in different type of aquifers. Nevertheless, the applications to karstic systems are mainly concerned to coastal and thermal systems, because of their uncommon Ra enrichment. Just a few works have been undertaken in continental karstic aquifers, probably because of these radionuclide low activities in such environments. This statement makes their quantification not easy and requires large water sampling. The first part of our research work has been devoted to the development of a new sampling system able to pre-concentrate in situ the radium present in several tens of liters of water (20-300 L) with MnO2-fibers and to improve the determination of Ra quartet activities by means of gamma spectrometry. This method gave us the ability of measuring, for the first time, the very low activities of the four radium isotopes (0.4 to < 7.0 mBq/L for 226Ra, 228Ra et 224Ra and from 0.05 to 0.3 mBq/L for 223Ra) in the waters of two Mediterranean karstic hydrosystems, the Haut Vidourle and the Lez systems (both located in South of France). The radon measuring method has also been optimized and improved. The study of the Ra isotope and Rn behavior over the survey area put in evidence the multiple applications of measuring these radionuclides in karstic aquifers. 226Ra activities and (228Ra/ 226Ra) ratios in water are in agreement with the existing lithologies into which the waters flow or are stored. The effective participation of Vidourle river water to the allogenic recharge of the Sauve aquifer has been specified. We showed that sometimes, the Ra isotope activities correspond to characteristic values of the aquifer compartments instead of the bedrock. These data also allow us to estimate the mixing proportions of the three geochemical endmembers composing the waters flowing at the Lez karstic spring in relation with hydrodynamic conditions. Coupling the long-lived radium isotopes (226Ra and 228Ra) together with the short life isotopes (223Ra and 224Ra) potentially led us, at the same time, to determine the mixing rates and the transfer time of the groundwaters. Moreover, the short life isotope excess would express groundwater venues at surface, 223Ra and 224Ra becoming more reliable tracers of superficial exchanges than radon because insensitive to degassing processes towards the atmosphere. On the other end, the study of the radon time evolution at the Lez spring confirmed that this natural radioactive gas is a good tracer of the diffuse recharge processes of karstic aquifers. The relations between 223Ra and 222Rn as well as between 210Pb and 222Rn, could give access to the transfer time of groundwater. However, more exhaustive researches are needed.
4

Physical and Chemical Controls on Natural and Anthropogenic Remediation of Two Streams Impacted by Acid Mine Drainage in the Raccoon Creek Watershed, Ohio

DeRose, Lisa M., L 26 July 2011 (has links)
No description available.
5

Anomalias antrópicas de gadolínio e distribuição dos elementos terras raras nas águas do Rio Atibaia e Ribeirão Anhumas (SP) / Anthropogenic gadolinium anomalies and distribution of rare earth elements in Atibaia river and Anhumas creek waters (São Paulo, Brazil)

Campos, Francisco Ferreira de, 1990- 25 August 2018 (has links)
Orientador: Jacinta Enzweiler / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociências / Made available in DSpace on 2018-08-25T06:48:42Z (GMT). No. of bitstreams: 1 Campos_FranciscoFerreirade_M.pdf: 4411120 bytes, checksum: 0ec78e552f133054bf849333f9d8386f (MD5) Previous issue date: 2014 / Resumo: A composição de águas naturais, que inclui íons principais e muitos constituintes traço, resulta da interação da água com a litosfera, atmosfera e biosfera. Dentre os elementos-traço presentes encontram-se os elementos terras raras (ETR). Na sociedade contemporânea, os ETR possuem uma ampla gama de usos, dentre eles o gadolínio (Gd) em reagentes de contraste usados em exames de imagem de ressonância magnética, e diversos ETR em produtos eletrônicos, dentre outras aplicações. Consequentemente, os ETR vem sendo introduzidos no ambiente sem que se conheça a sua distribuição natural e a sua toxicidade. O objetivo deste trabalho foi caracterizar a distribuição natural e a presença de anomalias antrópicas de ETR dissolvidos nas águas superficiais do Rio Atibaia, Ribeirão Anhumas e alguns tributários, localizados no estado de São Paulo. Esses cursos d¿água atravessam áreas com elevada densidade populacional e a região abriga importantes complexos médico-hospitalares e industriais, em especial do ramo petroquímico. O trabalho consistiu de duas etapas: testes laboratoriais de procedimentos descritos de pré-concentração, e trabalho de campo e analítico, onde as águas superficiais da área de estudo foram amostradas e analisadas e determinadas as concentrações de ETR (fração dissolvida e material particulado). Três métodos de pré-concentração de ETR foram testados sob condições variáveis: co-precipitação com Fe(OH)3, extração em fase sólida com resina Ln-Spec e extração em fase sólida com éster de fosfato adsorvido em cartucho com C18. Com base nos resultados obtidos, a extração em fase sólida com éster de fosfato foi utilizada na análise das amostras de água. Além do Rio Atibaia, do Ribeirão Anhumas e alguns tributários, a amostragem compreendeu os efluentes de duas estações de tratamento de efluentes (ETE) e uma amostra do Rio Jaguari, totalizando 28 amostras. A análise das amostras de água foram realizadas por cromatografia de íons (constituintes maiores), titulação acidimétrica (alcalinidade) e ICP-MS (ETR e outros elementos-traço). O material particulado retido nas membranas usadas na filtração das amostras foi digerido e analisado por ICP-MS. Os resultados obtidos para os ETR foram normalizados pelo PAAS (Folhelho Australiano Pós-Arqueano) e a presença de anomalias de Gd antrópico nos padrões das águas foi constatada nos diagramas e pela extrapolação do Gd background (Gd*) usando elementos vizinhos, com razões Gd/Gd* chegando a 87. O Gd antrópico só ocorre na fase dissolvida, e foi mostrado que as amostras com anomalias também podem ser identificadas através do diagramas de correlação entre o Gd e os demais ETR, sem necessidade de normalização. A fonte do Gd antrópico foi atribuída aos efluentes lançados nos rios, principalmente os das ETEs, que contêm quelatos de Gd utilizados em exames médicos. Constatou-se que a distribuição dos ETR nas amostras filtradas está significativamente associada com partículas de tamanho coloidal o que resulta num enriquecimento em ETR leves. A normalização dos resultados de ETR obtidos na água filtrada pelos valores de ETR obtidos no material particulado de cada amostra é proposto como artifício para superar a influência das partículas coloidais na distribuição dos ETR da fração verdadeiramente dissolvida / Abstract: The composition of natural water includes majors ions and many trace constituents and results from the interaction of water with the lithosphere, atmosphere, and biosphere. The rare earth elements (REE) are part of the trace elements. In modern society, REE have a wide spectrum of uses, as gadolinium (Gd) in contrast agents used in magnetic resonance imaging, and many REE in electronic products. Due to their use, the REE are being released to the environment before their natural distribution and toxicity are known. The objective of this work was to characterize the natural distribution and anthropogenic anomalies of dissolved REE in the surface waters of Atibaia River, Anhumas Creek and some tributaries, located in the state of São Paulo (Brazil). These water courses flow through areas of high population density and the region has important medical and industrial facilities, including petrochemical units. The work was done in two steps: the laboratorial tests of described REE pre-concentration procedures, and the field and analytical work, where the surface waters of the study area were sampled and analyzed and the REE concentrations determined (in the dissolved fraction and particulate matter). Three REE pre-concentration methods were tested under variable conditions: co-precipitation with Fe(OH)3, solid phase extraction with Ln-Spec resin, and solid phase extraction with phosphate ester adsorbed on C18 cartridge. Based on the obtained results the solid phase extraction with phosphate ester was used to determine the REE in the water samples. Besides Atibaia River, Anhumas Creek, and some tributaries, the sampling comprised the effluents of two wastewater treatment plants (WWTP) and one sample of Jaguari River, in a total of 28 samples. The water samples analysis was accomplished by ion chromatography (major constituents), acidimetric titration (alkalinity), and ICP-MS (REE and other trace elements). The particulate matter retained in the membranes during filtration of water samples was digested and analyzed by ICP-MS. The results obtained for the REE were normalized to PAAS (Post-Archean Australian Shale) and the presence of anthropogenic Gd anomalies in the patterns of the waters was observed in the plots and by extrapolation of background Gd (Gd*) by neighboring elements, with Gd/Gd* ratios reaching 87. The anthropogenic Gd only occurs in the dissolved phase, and it was shown that samples with anomalies can also be identified by correlation plots of Gd and the other REE, without the need of normalization. The source of anthropogenic Gd was attributed to the discharge of effluents in the rivers, mainly from the WWTP, which contains Gd chelates used in medical exams. It was observed that REE distribution in the filtered samples are significantly associated with particles of colloidal size that results in a light REE enrichment. The normalization of the REE results obtained in the filtered water by the REE values obtained for the particulate matter of each sample is proposed as a way to overcome the influence of the colloidal particles in the distribution of the REE in the truly dissolved fraction / Mestrado / Geologia e Recursos Naturais / Mestre em Geociências
6

Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique

Mazot, Agnès 20 December 2005 (has links)
Surface manifestations of hydrothermal fluids such as fumaroles and hot springs provide valuable information about the level of activity of a volcano during quiescent period. Geochemical study of gas and spring waters is useful to elaborate geochemical model for magmatic-hydrothermal system. Furthermore, temporal geochemical monitoring of these fluids with time provides a better understanding in processes occurring inside the volcano and can be useful to detect any changes in the activity of the magmatic-hydrothermal system. This thesis investigates two hydrothermal systems at Kelud and Papandayan volcanoes that are located at Java Island in Indonesia. Kelud is considered as one of the most dangerous volcanoes of Java because of its frequent eruptions. After the last eruption that occurred in 1990, a new lake rapidly filled the crater of Kelud volcano. Water samples collected since 1993 are near neutral Na-K chloride fluids and are typical of aged hydrothermal system where the acidity has been completely neutralized by fluid-rock interaction and where the emission of acid magmatic gases has stopped. Two sudden increases in lake temperature in 1996 and 2001 were accompanied by rapid changes in lake water compositions and suggest the existence of two hydrothermal systems feeding the lake: a shallow hydrothermal system dominated by Ca-Mg sulfate waters and a deepest aquifer with neutral alkali chloride waters. From 2001 to 2005, measurements of CO2 emitted by the surface of the lake were performed by using the accumulation chamber method modified in order to work at the surface of a crater lake. Two statistical methods were used to process data: the graphical statistical and stochastic simulation methods. The results of graphical statistical approach showed that two different degassing processes are acting at the lake surface: one corresponding to CO2 fluxes resulting from rising bubbles and the other corresponding to equilibrium diffusion of dissolved CO2 at the water-air surface. Total CO2 emission rate estimated by stochastic simulation ranges from 105 t/day for 2001 to 32 t/day for 2005. Thermal energy released by the lake was also estimated by using an energy balance model with a new constraint using the CO2 flux. The thermal flux decreased from 200 MW (2001) to 100 MW (2002) and then remained stable. Correlation between the chemical data of waters, the fluxes of CO2 and energy show that a constant decrease in the level of activity of the volcano since 1993 occurred although the lake temperature has been stable since 2003. Since the last magmatic eruption that occurred in 1772, phreatic eruptions occur on Papandayan volcano with the last one in 2002. The volcanic material ejected during this eruption is essentially made of altered rocks from within the hydrothermal system. The interaction of acid waters with the host rocks corresponds to an advanced argilic alteration. The chemical compositions of waters from Papandayan volcano and Kelud lake waters are contrasting. Indeed, the spring waters sampled since 1994 are acid sulfate-chloride waters and acid sulfate waters. The chemical and isotopic analyses of gases and waters suggest a significant magmatic contribution in SO2, HCl and HF to the hydrothermal system. The chemical composition of waters sampled after the 2002 eruption have provided information about origin of this eruption. Decrease in chloride concentration and in delta 34S of dissolved sulfates showed that the magmatic contribution in these fluids are less important and that the waters are likely to be formed by the condensation of steam (H2O, H2S) rising from a boiling aquifer.
7

Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique

Mazot, Agnès 20 December 2005 (has links)
Surface manifestations of hydrothermal fluids such as fumaroles and hot springs provide valuable information about the level of activity of a volcano during quiescent period. Geochemical study of gas and spring waters is useful to elaborate geochemical model for magmatic-hydrothermal system. Furthermore, temporal geochemical monitoring of these fluids with time provides a better understanding in processes occurring inside the volcano and can be useful to detect any changes in the activity of the magmatic-hydrothermal system. This thesis investigates two hydrothermal systems at Kelud and Papandayan volcanoes that are located at Java Island in Indonesia. Kelud is considered as one of the most dangerous volcanoes of Java because of its frequent eruptions. After the last eruption that occurred in 1990, a new lake rapidly filled the crater of Kelud volcano. Water samples collected since 1993 are near neutral Na-K chloride fluids and are typical of aged hydrothermal system where the acidity has been completely neutralized by fluid-rock interaction and where the emission of acid magmatic gases has stopped. Two sudden increases in lake temperature in 1996 and 2001 were accompanied by rapid changes in lake water compositions and suggest the existence of two hydrothermal systems feeding the lake: a shallow hydrothermal system dominated by Ca-Mg sulfate waters and a deepest aquifer with neutral alkali chloride waters. From 2001 to 2005, measurements of CO2 emitted by the surface of the lake were performed by using the accumulation chamber method modified in order to work at the surface of a crater lake. Two statistical methods were used to process data: the graphical statistical and stochastic simulation methods. The results of graphical statistical approach showed that two different degassing processes are acting at the lake surface: one corresponding to CO2 fluxes resulting from rising bubbles and the other corresponding to equilibrium diffusion of dissolved CO2 at the water-air surface. Total CO2 emission rate estimated by stochastic simulation ranges from 105 t/day for 2001 to 32 t/day for 2005. Thermal energy released by the lake was also estimated by using an energy balance model with a new constraint using the CO2 flux. The thermal flux decreased from 200 MW (2001) to 100 MW (2002) and then remained stable. Correlation between the chemical data of waters, the fluxes of CO2 and energy show that a constant decrease in the level of activity of the volcano since 1993 occurred although the lake temperature has been stable since 2003. Since the last magmatic eruption that occurred in 1772, phreatic eruptions occur on Papandayan volcano with the last one in 2002. The volcanic material ejected during this eruption is essentially made of altered rocks from within the hydrothermal system. The interaction of acid waters with the host rocks corresponds to an advanced argilic alteration. The chemical compositions of waters from Papandayan volcano and Kelud lake waters are contrasting. Indeed, the spring waters sampled since 1994 are acid sulfate-chloride waters and acid sulfate waters. The chemical and isotopic analyses of gases and waters suggest a significant magmatic contribution in SO2, HCl and HF to the hydrothermal system. The chemical composition of waters sampled after the 2002 eruption have provided information about origin of this eruption. Decrease in chloride concentration and in delta 34S of dissolved sulfates showed that the magmatic contribution in these fluids are less important and that the waters are likely to be formed by the condensation of steam (H2O, H2S) rising from a boiling aquifer.<p><p> / Doctorat en sciences, Spécialisation géologie / info:eu-repo/semantics/nonPublished

Page generated in 0.1107 seconds