• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 451
  • 40
  • 18
  • 7
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 816
  • 816
  • 760
  • 410
  • 227
  • 197
  • 154
  • 115
  • 106
  • 102
  • 101
  • 88
  • 85
  • 85
  • 81
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Pathogen Removal in Natural Wastewater Treatment and Resource Recovery Systems: Solutions for Small Cities in an Urbanizing World

Verbyla, Matthew Eric 17 November 2015 (has links)
Sanitation, renewable energy, and food security are among the most pressing global development needs of the century, especially for small cities with rapid population growth. Currently, 53% of the world’s population either lacks access to improved sanitation or discharges fecal waste to the environment without treatment. Furthermore, 80% of food consumed in developing regions is produced by 500 million small farms, and while many of them are still rain-fed, irrigated agriculture is increasing. The post-2015 Sustainable Development Goals, recently adopted by the United Nations, include targets to address the water-energy-food nexus. Wastewater reuse in agriculture can be an important solution for these goals, if it is done safely. Globally, 18 – 20 million hectares of agricultural land are irrigated with wastewater, but much is untreated, unregulated, or unsanctioned, causing concerns and uncertainty about health risks. There is a need to better understand pathogen removal in natural and non-mechanized wastewater treatment systems, such as waste stabilization ponds (WSPs) and upflow anaerobic sludge blanket (UASB) reactors, which are commonly used in small cities and towns. Riverbank filtration (RBF) is also a natural technique used by farmers in developing countries to treat surface water polluted with untreated sewage, but pathogen removal in these systems has seldom been assessed in developing countries. The focus of this dissertation is on pathogen removal in natural and non-mechanized wastewater treatment and reuse systems, to evaluate the health implications of water reuse for irrigation, with the following three objectives: 1) assess the current understanding of virus removal in WSP systems through a systematic review of the literature; 2) measure the removal of viruses and their association with particles in systems with WSPs, UASB reactors, or both; and 3) assess the fate and transport of pathogens and fecal indicators in wastewater treatment systems with direct and indirect reuse for irrigation to estimate microbial risks. To advance the understanding of virus removal in WSP systems, a comprehensive analysis of virus removal reported in the literature from 71 different WSP systems revealed only a weak to moderate correlation of virus removal with theoretical hydraulic retention time (HRT). For each log10 reduction of viruses a geometric mean of 14.5 days of retention was required, but the 95th percentile of the data analyzed was 54 days. Also, whereas virus-particle association and subsequent sedimentation has been assumed to be an important removal mechanism for viruses in WSPs, the literature review revealed a lack of evidence to confirm the validity of this assumption. The association of human adenovirus (AdV) with wastewater particles was assessed in five full-scale wastewater treatment systems in Bolivia, Brazil, and the United States (two with only WSPs, two with a UASB reactor and WSPs, and one with only UASB reactors). A mesocosm study was also conducted with WSP water from one of the full-scale systems, and some samples were also analyzed for pepper mild mottle virus (PMMoV), F+ coliphage, culturable enterovirus (EV), norovirus (NoV), and rotavirus (RV). Results indicate that WSPs and UASB reactors affect virus-particle associations in different ways, which may differ for different viruses. In UASB reactor effluent, PMMoV was more associated with particles <180 >µm, showed no indication of settling in subsequent ponds, and appeared to degrade in pond sediments after 5 days. In contrast, AdV in UASB reactor effluent was associated with small and large particles, and in subsequent ponds, particle-associated AdV showed evidence of possible settling or more rapid decay at the water surface. AdV and culturable EV were also more volumetrically-concentrated in UASB reactor sludge than they were in untreated sewage, WSP water, UASB effluent, and WSP sediments, indicating that the reactors may cause these viruses to become entrapped and concentrated in granular sludge. Some viruses may be removed in the sludge, but others exit the reactors in solution and attached to particles. The resuspension of pellets from centrifuged UASB reactor sludge samples in an eluant buffer indicated reversible AdV association with granular sludge, but some associations with particles in solution may not be reversible. The fate and transport of pathogens and fecal indicators was assessed in Bolivia for two WSP systems with direct reuse for irrigation, and one on-farm RBF system used to treat surface water polluted by untreated sewage. In the WSP systems, despite HRTs of 10 days, pathogen and fecal indicator removal was generally ≤1-log10, possibly due to overloading and short-circuiting from sludge accumulation. The RBF system provided removals on the order of 2-log10 for protozoan parasites, 3-log10 or more for viruses, and 4-log10 or more for bacteria. The use of RBF also reduced cumulative estimated health burdens associated with irrigated lettuce. Irrigation of lettuce with untreated river water caused an estimated disease burden that represents 37% of the existing burden from acute diarrhea in Bolivia; when RBF was used, this decreased to only 1.1%, which is not epidemiologically-significant, and complies with the World Health Organization guidelines. Ratios of concentrations of microorganisms in irrigation water to their respective concentrations in soil or crops were calculated, to assess transfer from irrigation water to soil or crops. These ratios (with units mL g-1) were generally < 0.1 mL g-1 for coliphage, between 1 and 100 mL g-1 for Giardia and Cryptosporidium, and generally between 100 and 1,000 mL g-1 for helminth eggs. Higher ratios could indicate more efficient transfer from water to soil or crops, longer persistence in soil or on crops, or slower leaching away from soil or crops. The results from this research demonstrate that pathogen removal in full-scale natural wastewater treatment systems happens via complex mechanisms that vary with respect to pathogen type, treatment systems configuration, and other environmental and operational parameters. Future research and innovation efforts should focus on the use of a combination of natural and non-mechanized technologies, surface-flow systems (e.g., WSPs) and subsurface systems (e.g., RBF), applied at both semi-centralized (e.g., wastewater treatment plant) and decentralized levels (e.g., on farms), to evaluate how this affects the efficiency and resiliency of pathogen removal. Also, future research is needed to further elucidate reasons for the observed differences in virus-particle associations in natural wastewater treatment systems.
572

Climatic data trend analysis and modeling for water resource management in Peloponnese, Greece.

Duwal, Sunil January 2011 (has links)
The fresh water resources of the world are stressed due to the increasing population. Theclimate change has also affected the water resource availability due to the occurrence offrequent and uneven extreme events such as drought and flash floods. In the context ofPeloponnese, Greece water resource management is an important issue for tourism developmentas well as the water supply for the people in the peninsula. To assess the potential climatechange and to quantify the water resource availability linear regression trend analysis andhydrological modeling has been done in this study. The hydro-climatic data (Temperature,precipitation, evapotranspiration and precipitation surplus) show a decreasing trend when a longstudy period (1951-2008) is considered; however, all the trends are not statistically significantexcept precipitation, actual evapotranspiration and precipitation surplus. Similarly, the case isquite opposite when IPCC standard period (1961-1990) is considered. In this period,precipitation and precipitation surplus is increasing but not statistically significant, whereastemperature and potential evapotranspiration has decreasing and statistically significant trendand actual evapotranspiration is decreasing but not statistically significant. Hence, it cannot beconcluded that the climate has changed in the peninsula with reference to linear regressionanalysis. On the other hand, it should be noted that the water resource availability will decreasein the peninsula if the current trend in the hydro-climatic data continues. Furthermore, a spatialanalysis shows that water availability is less in the eastern part and the coastal area of thepeninsula due to low precipitation and high evapotranspiration. Hence, these areas need to befocused on for the better water resource management and planning. However, the uncertaintiesrelated to data and model should be accounted for in the water resource management andplanning.
573

Stormwater Infiltration and Groundwater Integrity: An Analysis of BMP Siting Tools and Groundwater Vulnerability

Gallagher, Kristopher Craig 22 March 2017 (has links)
Nonpoint source pollution captured by urban stormwater runoff is the greatest challenge for surface water quality improvements. Computer-based design tools have been developed to help mediate this issue by guiding end users through the implementation of decentralized stormwater management. The majority of these tools focus on treatment via biofiltration, yet concern regarding this treatment regime is rising. Case studies from research past clearly indicate the susceptibility of groundwater to contamination from extensive anthropogenic activity at the surface. Contaminants, such as nitrates and pathogens, are not completely removed before runoff enters the underground watercourse. Additionally, national and state legislation, which explicitly lists where neglect for groundwater quality is permissible—exacerbate concerns. This research analyzes the efficiency the BMP Siting Tool developed by the US Environmental Protection Agency and the Grey-to-Green Decision Support Tool developed by the University of South Florida. The tools were used to obtain cartographic data illustrating suitable sites for bioswales and infiltration basins throughout northern portion of Hillsborough County, Florida. This data was then integrated with the Karst Aquifer Vulnerability Index (KAVI) groundwater vulnerability model. The area of bioswales and infiltration basins that intersected areas of the KAVI model listed as ‘highly vulnerable’ or ‘moderate-to-highly vulnerable’ was calculated. This permitted an assessment of which BMP facility had the greatest sitings atop vulnerable areas, respective of the tool. The BMP Siting Tool sited 2.80% of all bioswales and 27.89% of all infiltration basins above vulnerable areas. Likewise, the Grey-to-Green Decision Support Tool sited 21.66% of all bioswales and 9.62% of all infiltration basins above vulnerable areas. These results prompted the development of a supplemental groundwater vulnerability framework to be incorporated into both tools’ analytical process.
574

A political policy analysis of the integrated water resource management approach in South Africa’s water policy (1998 – 2001)

Mulder, Marthinus Wessel 12 September 2005 (has links)
The aim of the study emanates from the research question: Is the incorporation of the integrated water resource management (IWRM) approach in South Africa’s water policy, from a political point of view, appropriate? The IWRM approach, as applied to developing countries, originated in developed countries with predominantly homogeneous societies where there is a broad commitment to democratic principles, the free market system and individualism. Societies in developing countries do not necessarily share the same characteristics associated with those in developed countries. South Africa, classified as a developing country, has a multicultural society that reflects an income disparity and two major cultures, namely a modernised Western and a traditional African culture. As a result two subsidiary research questions follow: Can the commitment and impartiality of all the stakeholders that partake in the decision-making processes of water institutions at all levels be ensured? Is it possible to establish small, efficient and financially viable bureaucratic structures (water institutions) at the level of water management areas (WMA)? The study uses the public choice theory to assess the IWRM approach in selected developed and developing countries. The applicability of public choice concepts with reference to the differences between Western and African cultures are briefly alluded to. It also defines the IWRM approach and certain IWRM elements that have political implications for society at large. The study describes specific elements of the IWRM approach in France and Australia and the relative successes thereof in terms of the public choice theory. The implementation of the IWRM approach in Indochina and selective developing countries in Sub-Saharan Africa are described to highlight certain institutional problems, inadequate financial resources, the lack of capacity and various cultural aspects that inhibit the efficiency and effectiveness of the IWRM approach. In the analysis of South Africa’s water policy, the study found that the multicultural nature of society, the unequal levels of economic development and the limited level of technological and scientific knowledge, will make it extremely difficult to implement the IWRM approach without contextualising it. According to the public choice theory, the net benefits of a policy for a society must outweigh the costs. If not, the policy needs to be either adjusted or abandoned. Since none of the proposed catchment management agencies (CMA) were established between 1998 and 2001, it is not possible to come to a verifiable conclusion. However, the study indicates that the opportunity costs of the IWRM approach are likely to outweigh the benefits for society. Other aspects that necessitate a re-evaluation of South Africa’s water policy are the holistic element of the IWRM approach and the demarcation of WMAs. The study identifies three options: The first option is to revert back to the riparian principle. The second option is to either revisit the concept of public participation, or to re-delineate the WMAs. The third and most favourable option is to abandon the concept of public participation. It would not only negate the need for CMAs (and indirectly WMAs), but would also greatly simplify the management of water resources. / Dissertation (M (Political and Policy Studies))--University of Pretoria, 2006. / Political Sciences / unrestricted
575

Use of Water Indices Derived from Landsat OLI Imagery and GIS to Estimate the Hydrologic Connectivity of Wetlands in the Tualatin River National Wildlife Refuge

Blackmore, Debra Sue 30 August 2016 (has links)
This study compared two remote sensing water indices: the Normalized Difference Water Index (NDWI) and the Modified NDWI (MNDWI). Both indices were calculated using publically-available data from the Landsat 8 Operational Land Imager (OLI). The research goal was to determine whether the indices are effective in locating open water and measuring surface soil moisture. To demonstrate the application of water indices, analysis was conducted for freshwater wetlands in the Tualatin River Basin in northwestern Oregon to estimate hydrologic connectivity and hydrological permanence between these wetlands and nearby water bodies. Remote sensing techniques have been used to study wetlands in recent decades; however, scientific studies have rarely addressed hydrologic connectivity and hydrologic permanence, in spite of the documented importance of these properties. Research steps were designed to be straightforward for easy repeatability: 1) locate sample sites, 2) predict wetness with water indices, 3) estimate wetness with soil samples from the field, 4) validate the index predictions against the soil samples from the field, and 5) in the demonstration step, estimate hydrologic connectivity and hydrological permanence. Results indicate that both indices predicted the presence of large, open water features with clarity; that dry conditions were predicted by MNDWI with more subtle differentiation; and that NDWI results seem more sensitive to sites with vegetation. Use of this low-cost method to discover patterns of surface moisture in the landscape could directly improve the ability to manage wetland environments.
576

Water Metering in Rural, Piped, Community-Managed Water Systems in the Developing World

Platukyte, Simona 23 March 2016 (has links)
In the early 1990s, the United Nations (UN) recognized water as a finite resource to the entire ecosystem with an economic value that should be developed and managed based on the participatory approach using the Integrated Water Resource Management (IWRM) strategy. Many studies on water management practices have thus emerged in the developing world. Of particular interest to this work is the management of water through metering, price-setting, and rule enforcement in the rural setting in piped, community-owned water systems. There is very little published information regarding metering, enforcement experiments, and experiences in these systems. This is because metering and enforcement mechanisms are not typically included in rural piped community-managed water supply system design and water committee training schemes. Along with an increase in population growth and changing climate patterns, there is a burgeoning interest to manage demand and reduce non-revenue water (NRW) in urban utilities in developing countries. Metering is often the demand management tool considered because it has been reported to increase customer payment rates as well as social equity. Rural, community-managed systems often suffer high failure rates due to the lack of preventative maintenance, which maybe closely linked to customer dissatisfaction and non-payment of tariffs. The inclusion of a metering and enforcement program to such systems may help to address the problem of high rates of premature failure. An inclusion of a metering program for rural community-managed water supply systems is a non-trivial task in terms of cost as well as the system designer’s time, thus there is significant interest in ensuring such a program’s success. Many field workers may have familiarity with water system design but not specifically in the area of water flow metering and currently no beginner-level resources are publicly available. This work is ultimately intended to facilitate the inclusion of metering into rural, piped, community-managed water supply systems through: 1) compilation of technical information regarding metering which would be accessible to field practitioners and relevant to the rural community-managed setting, 2) a proposed decision-making tool to facilitate the selection of the most appropriate meter for the community, 3) proposed installation tips, and 4) suggested strategies for including metering into the community-management model. Objectives 1, 3, and 4 were pursued via review of industry, peer-reviewed, and field literature along with the author’s personal experience. Multiple criteria decision analysis (MCDA) was the method proposed for aiding in the selection of the most appropriate meter type. It was determined that four types of meters are used for residential metering in developed and developing urban utility-managed systems: the nutating disc, oscillating piston, multi-jet, and single-jet. The nutating disc and oscillating piston meters operate through a volumetric or displacement mechanism, while the single- and multi-jet meters function through a velocity or non-displacement mechanism. While a lot of variation between models of meters exists, there are fewer characteristics that can be used to differentiate between mechanisms. After applying the multiple-criteria decision analysis to aid in the selection of the most appropriate meter for a rural, community-managed systems, the nutating disc and oscillating piston types of meters were most preferred under the set of criteria chosen by the author for the purpose of example in this analysis. It is recommended that meter selection be performed on a site-specific basis with local stakeholder involvement for criteria determination. Meter installation is similar for all four types of meters and whichever type of meter is chosen, it should be protected from tampering. Increasing-block pricing is recommended to accompany metering in order to motivate water conservation. The size and price of the initial block of water should be determined according to the system’s operation and maintenance costs as well as users’ willingness to pay information. Field practitioners should prepare the community to take over the metering program by providing basic training to the users and selected meter readers/technicians.
577

Watershed Response to Climate Change and Fire-Burns in the Upper Umatilla River Basin Using the Precipitation Runoff Modeling System

Yazzie, Kimberly Crystal 24 August 2016 (has links)
This study provides an analysis of watershed response to climate change and forest fire impacts, to better understand the hydrologic budget and inform water management decisions for present and future needs. The study site is 2,365 km2, located in the upper Umatilla River Basin (URB) in northeastern Oregon. The Precipitation Runoff Modeling System, a distributed-parameter, physical-process watershed model, was used in this study. Model calibration yielded a Nash Sutcliffe Model Efficiency of 0.73 for both calibration (1995-2010) and validation (2010-2014) of daily streamflow. Ten Global Climate Models using Coupled Model Intercomparison Project Phase 5 experiments with Representative Concentration Pathways 4.5 and 8.5 (RCP), were used to observe hydrologic regime shifts in the 2020s, 2050s, and 2080s. Mean center timing of flow occurs earlier in the year in both pre- and post-fire conditions, where there are increased winter flows and decreased summer flows throughout the 21st century. Change in temperature and percent change in precipitation is more variable in the summer than winter increasing over time, with a slight decrease in winter precipitation in the 2080s in RCP 8.5. Temperature increases 1.6°C in RCP 4.5 and 3.3°C in RCP 8.5 by the end of the 21st century. The ratio of Snow Water Equivalent to Precipitation decreases 96% in the 2080s in RCP 8.5 before forest cover reduction, and decreases 90-99% after forest cover reduction. Potential basin recharge and the base-flow index are both sustained throughout the 21st century with slight declines before forest cover reduction, with an increase in basin recharge and increase in base-flows in the 2080s after fire-burns. However, the simulated sustained base-flows and area-weighted basin recharge in this study, do not take into account the complex geologic structure of the Columbia River Basalt Group (CRBG). A more robust characterization and simulation of URB aquifer recharge would involve coupling the PRMS model with a groundwater model in a future study. Although groundwater recharge in the CRBG in the URB is not well understood, the long-term decline of groundwater storage presents a serious environmental challenge for the Confederated Tribes of the Umatilla Indian Reservation and communities in the URB.
578

Development of a Methodology that Couples Satellite Remote Sensing Measurements to Spatial-Temporal Distribution of Soil Moisture in the Vadose Zone of the Everglades National Park

Perez, Luis G 06 August 2014 (has links)
Spatial-temporal distribution of soil moisture in the vadose zone is an important aspect of the hydrological cycle that plays a fundamental role in water resources management, including modeling of water flow and mass transport. The vadose zone is a critical transfer and storage compartment, which controls the partitioning of energy and mass linked to surface runoff, evapotranspiration and infiltration. This dissertation focuses on integrating hydraulic characterization methods with remote sensing technologies to estimate the soil moisture distribution by modeling the spatial coverage of soil moisture in the horizontal and vertical dimensions with high temporal resolution. The methodology consists of using satellite images with an ultrafine 3-m resolution to estimate soil surface moisture content that is used as a top boundary condition in the hydrologic model, SWAP, to simulate transport of water in the vadose zone. To demonstrate the methodology, herein developed, a number of model simulations were performed to forecast a range of possible moisture distributions in the Everglades National Park (ENP) vadose zone. Intensive field and laboratory experiments were necessary to prepare an area of interest (AOI) and characterize the soils, and a framework was developed on ArcGIS platform for organizing and processing of data applying a simple sequential data approach, in conjunction with SWAP. An error difference of 3.6% was achieved when comparing radar backscatter coefficient (σ0) to surface Volumetric Water Content (VWC); this result was superior to the 6.1% obtained by Piles during a 2009 NASA SPAM campaign. A registration error (RMSE) of 4% was obtained between model and observations. These results confirmed the potential use of SWAP to simulate transport of water in the vadose zone of the ENP. Future work in the ENP must incorporate the use of preferential flow given the great impact of macropore on water and solute transport through the vadose zone. Among other recommendations, there is a need to develop procedures for measuring the ENP peat shrinkage characteristics due to changes in moisture content in support of the enhanced modeling of soil moisture distribution.
579

Potential Effects of Chemical Contamination on South Florida Bonefish Albula vulpes

Beck, Christine P 01 January 2016 (has links)
An ecological risk assessment was conducted on the risk to fish of chemical contaminants detected in the habitat of Albula vulpes in South Florida, to evaluate whether contaminants may be a driver of declines in the recreational bonefish fishery. All available contaminant detection data from Biscayne Bay, Florida Bay, and the Florida Keys were compared to federal and state guidelines for aquatic health to identify Contaminants of Potential Ecological Concern (COPECS). For these COPECs, species sensitivity distributions were constructed and compared with recent detections at the 90th centile of exposure. Copper in Biscayne Bay was identified as the highest risk of acute and chronic effects to fish, followed by a risk of chronic effects from both the recently phased-out pesticide endosulfan in Florida Bay, and the pharmaceutical hormone estrone in the Florida Keys.
580

Analyzing Spatial Variability of Social Preference for the Everglades Restoration in the Face of Climate Change

Sikder, Abu Hena Mustafa Kamal 16 June 2016 (has links)
The South Florida Everglades is a unique ecosystem. Intensive water management in the system has facilitated agricultural, urban, and economic development. The Everglades offers a variety of ecosystem services (ES) to the people living in this region. Nevertheless, the ecosystem is under imminent threat of climate change, which would alter the way water is managed today and ultimately affect the ES offered by the system. On the other hand, substantial restoration is underway that aims to restore the Everglades closer to its historic condition. This research tried to map the public’s preference for Everglades restoration. Using a geocoded discrete-choice survey dataset, the study showed variation in the public’s preference by changing the levels of ES. Additionally, the general public’s attitude toward climate change risk to the Everglades and preference for mitigation were also assessed using the survey data.

Page generated in 0.057 seconds