• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 1
  • Tagged with
  • 39
  • 39
  • 25
  • 19
  • 18
  • 14
  • 12
  • 12
  • 10
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nutritional water productivity of hot chilli (capsicum annuum) under infection with meloidogyne javanica and meloidogyne incognitarace 2

Ramputla, Mogwale Janet January 2019 (has links)
Thesis (M.Sc. Agriculture (Soil Science)) -- University of Limpopo, 2019 / Nutritional water productivity (NWP) is an assessment tool, which describes the amount of water that has been used to produce selected mineral malnutrition (MMN) elements and micronutrient malnutrition (MNMN) substances. Therefore, it links agricultural production to human nutrition. Deficiencies in MMN elements and/or MNMN substances in human nutrition referred to as malnutrition, had been linked with fatal diseases. Agricultural soils could be affected by soil-borne pathogens such as plant-parasitic nematodes, which could limit the availability of MMN elements and MNMN substances. In some communities, vegetable crops, including chilli are regarded as a major source of MMN elements and MNMN substances. Effects of root-knot (Meloidogyne species) nematodes on NWP of chilli (Capsicum annuum L.) have not been documented. The objective of the study was to determine the effects of increasing population densities of M. incognita race 2 and M. javanica on the NWP of hot chilli plants. A microplot trial was conducted at the Green Biotechnologies Research Centre of Excellence (GBRCE), University of Limpopo, South Africa. Pots were filled with 10-L steam-pasteurised (300oC) sandy clay loam soil sourced from GBRCE and Hygromix-T (Hygrotech, Pretoria North) growth medium in the ratio 3:1 (v/v). Thereafter, three-week-old hot chilli cv. 'Serrano' seedlings were transplanted into each pot, with inoculum prepared by extracting eggs and second-stage juveniles (J2) of M. incognita race 2 and M. javanica from roots of grown nematode susceptible tomato cv. 'Floradade' (Solanum lycopersicum L.) in a 1% NaOCl solution. Fourteen days after transplanting, treatments 0, 50, 125, 250, 625, 1250 and 2000 eggs and second-stage juveniles (J2) of M. incognita race 2 and M. javanica were separately inoculated using a 20 ml plastic syringe into 5-cm-deep holes in pots. At 56 days after the initiation of the treatments, Meloidogyne species xiv decreased soil pH and increased organic carbon, contributing 29 and 43% in total treatment variation (TTV) of the respective variables. Treatment effects caused the pH to decrease. NWP variables against increasing nematode numbers exhibited quadratic relations, with coefficients of determination ranging from 59 to 86% for M. incognita race 2 trial and 80 to 98% for M. javanica trial. Meloidogyne species population densities against plant variables did not show any significant relationship, except for root galling and chlorophyll content where treatments contributed 76, 98 and 47% TTV of the respective variables. Generally, root galling increased with increase in Meloidogyne species population densities, whereas chlorophyll content decreased with increasing inoculum levels. Nematode variables against their increasing population exhibited quadratic relationship with the model explained by 44 to 95% for M. incognita race 2 and 28 to 82%, association, respectively for M. javanica. In conclusion, Meloidogyne species interfered with NWP of mineral elements in chilli plant and therefore, nematode management practices should be done to reduce the nematode population densities that would confer quality to agricultural produce for human health benefits.
32

Simulation-Optimization of the Management of Sensor-Based Deficit Irrigation Systems

Kloß, Sebastian 11 January 2016 (has links)
Current research concentrates on ways to investigate and improve water productivity (WP), as agriculture is today’s predominant freshwater consumer, averaging at 70% and reaching up to 93% in some regions. A growing world population will require more food and thus more water for cultivation. Regions that are already affected by physical water scarcity and which depend on irrigation for growing crops will face even greater challenges regarding their water supply. Other problems in such regions are a variable water supply, inefficient irrigation practices, and over-pumping of available groundwater resources with other adverse effects on the ecosystem. To face those challenges, strategies are needed that use the available water resources more efficiently and allow farming in a more sustainable way. This work focused on the management of sensor-based deficit irrigation (DI) systems and improvements of WP through a combined approach of simulation-optimization and irrigation experiments. In order to improve irrigation control, a new sensor called pF-meter was employed, which extended the measurement range of the commonly used tensiometers from pF 2.9 to pF 7. The following research questions were raised: (i) Is this approach a suitable strategy to improve WP; (ii) Is the sensor for irrigation control suitable; (iii) Which crop growth models are suitable to be part of that approach; and (iv) Can the combined application with experiments prove an increase of WP? The stochastic simulation-optimization approach allowed deriving parameter values for an optimal irrigation control for sensor-based full and deficit irrigation strategies. Objective was to achieve high WP with high reliability. Parameters for irrigation control included irrigation thresholds of soil-water potentials because of the working principle behind plant transpiration where pressure gradients are transmitted from the air through the plant and into the root zone. Optimal parameter values for full and deficit irrigation strategies were tested in irrigation experiments in containers in a vegetation hall with drip irrigated maize and compared to schedule-based irrigation strategies with regard to WP and water consumption. Observation data from one of the treatments was used afterwards in a simulation study to systematically investigate the parameters for implementing effective setups of DI systems. The combination of simulation-optimization and irrigation experiments proved to be a suitable approach for investigating and improving WP, as well as for deriving optimal parameter values of different irrigation strategies. This was verified in the irrigation experiment and shown through overall high WP, equally high WP between deficit and full irrigation strategies, and achieved water savings. Irrigation thresholds beyond the measurement range of tensiometers are feasible and applicable. The pF-meter performed satisfactorily and is a promising candidate for irrigation control. Suitable crop models for being part of this approach were found and their properties formulated. Factors that define the behavior of DI systems regarding WP and water consumption were investigated and assessed. This research allowed for drawing the first conclusions about the potential range of operations of sensor-based DI systems for achieving high WP with high reliability through its systematical investigation of such systems. However, this study needs validation and is therefore limited with regard to exact values of derived thresholds.
33

Spatiotemporal Analysis of Variability in Soil Volumetric Water Content and Spatial Statistical Methods for Management Zone Delineation for Variable Rate Irrigation

Larsen, Isak Lars 01 March 2021 (has links)
Irrigated agriculture is the largest user of freshwater in a world experiencing increased water scarcity and water demands. Variable rate irrigation (VRI) aims to use water efficiently in crop production, resulting in good yields and water conservation. With VRI, the grower is able to employ custom irrigation rates for different parts of a field. Adoption of VRI has been limited due to the complexity of matching irrigation to spatiotemporal crop water needs and the cost/benefit economics of VRI equipment. The goal of this study was to quantify spatiotemporal variability of VWC in a field that has uniform soil type and discuss the driving factors that contribute to that variability. Soil samples were acquired at 66 and 87 locations during the 2019 growing season at two study sites. Soil samples from 32 and 48 locations within each study site were selected to be analyzed for soil texture properties. The USGS Web Soil Survey was also referenced. Both, the USGS data and the data collected for this project showed very uniform soils across both fields. The objectives of this study were i) to show variability of VWC within fields that contain uniform soil texture using univariate Local Moran’s I (LMI) and ii) to compare static VRI zones based on spatial patterns of readily available field data that might serve as surrogates for VRI zones created from measured variation of soil volumetric water content (VWC). Management zones created using readily available field data had reasonable correlations with VWC. In both study sites, elevation was found to be the best variable for delineating VRI zones that imitate measured VWC.
34

Cover crops and irrigation impacts on corn and soybean production in the Mid-Southern USA

Russell, Dillon Aaron 13 May 2022 (has links) (PDF)
Reducing groundwater withdrawals from the Mississippi River Valley Alluvial Aquifer is imperative to sustain future irrigated cropping systems in the mid-southern USA. This research was conducted to determine the impacts of cover crops and irrigation sensor thresholds on corn (Zea mays L.) and soybean (Glycine max L.) production, water productivity, irrigation water use efficiency, and soil physical properties in the Mississippi Delta. The cover crop treatments included cereal rye (Secale cereale L.), hairy vetch (Vicia villosa R.), wheat (Triticum aestivum L.)-radish (Raphanus sativus L.)-turnip (Brassica rapa L.) mix, and no cover crop. The irrigation thresholds included -40 kPa, -90 kPa, and no irrigation. In 2020, cover crops and irrigation thresholds showed minimal impacts on most of the measured parameters but showed improvements as the study progressed. After two years, it was determined that long-term evaluations are needed to make a recommendation to producers in the mid-southern USA.
35

Water Resources in the Anthropocene / Assessing the impact of climate change on freshwater supply and the scope for adaptation in the livestock sector

Heinke, Jens 05 March 2021 (has links)
Der hydrologische Kreislauf versorgt die Menschheit mit Wasserressourcen, die für ihr Wohlergehen unabdingbar sind. Ziel dieser Arbeit ist es, das Verständnis über klimabedingte Veränderungen des hydrologischen Kreislaufs zu verbessern, wie diese die Verfügbarkeit von Wasserressourcen in der Zukunft beeinflussen und welche Möglichkeiten bestehen, den Druck auf die verfügbaren Wasserressourcen durch Verringerung des anthropogenen Wasserverbrauchs zu reduzieren. Diese Dissertation zeigt, dass der Klimawandel eine große Bedrohung für die Wasserversorgung der zukünftigen Bevölkerung darstellt. Durch Begrenzung des Anstiegs der globalen Mitteltemperatur auf 2 K oder sogar 1,5 K über das vorindustrielle Niveau können gravierende negative Auswirkungen auf die Wasserverfügbarkeit jedoch weitgehend vermieden werden. Dennoch wären einige Regionen wie der Mittelmeerraum "eher wahrscheinlich" von schwerwiegenden hydrologischen Veränderungen betroffen, und in großen Teilen der Welt könnten negative Auswirkungen auf die Wasserverfügbarkeit aufgrund der großen Unsicherheiten in den Projektionen nicht ausgeschlossen werden. Bei der Untersuchung der Nachfrageseite liegt der Schwerpunkt auf der Wassernutzung in der Tierproduktion. Diese Dissertation schätzt den gegenwärtigen Wasserverbrauch für die Produktion von Tierfutter auf 4666 km3/yr (44 % des gesamten landwirtschaftlichen Wasserverbrauchs). Große Verbesserungen der Wasserproduktivität können bei Schweinen und Geflügel durch Verbesserungen sowohl in der Futtermittelproduktion als auch in der Tierhaltung erzielt werden. Bei Wiederkäuern liegt das größte Potenzial in der Verbesserung der Tierhaltung. Allerdings geht eine effizientere Futterverwertung bei Wiederkäuern, die durch erhöhte Beigabe von Kraftfutter erzielt wird, mit einem erhöhten Wasserbedarf für die Produktion des Futters einher. Dadurch ist die Verbesserung der Wasserproduktivität bei Wiederkäuern begrenzt. / The hydrological cycle provides humanity with water resources that are essential for its well-being. The aim of this thesis is to advance the understanding of climate-related changes in the hydrological cycle, how they will affect the availability of water resources in the future, and what opportunities exist to reduce anthropogenic water use to lower the pressure on water resources. This thesis demonstrates that climate change is a large threat to freshwater supply for future populations. Limiting the increase in global mean temperature to 2 K or even 1.5 K above pre-industrial levels can mitigate most of the severe negative impacts on water resources. However, some regions such as the Mediterranean would still ‘more likely than not’ be affected by severe hydrological change, and in large parts of the world, negative impacts on water availability could not be ruled out due to the large uncertainties in the projections. On the demand side, the focus is on water use in the livestock sector. This thesis estimates that about 4666 km3/yr (44 % of total agricultural water use) are currently used for feed production for the livestock sector. Large improvements in livestock water productivity can be achieved for pigs and poultry by improvements in feed production and livestock rearing alike. For ruminants, the largest potential lies in improving livestock management. However, improving the feed use efficiency of ruminants through increased supplementation with forage crops comes at the cost of increased water requirements to produce the feed. This limits the potential for improving livestock water productivity in ruminant production.
36

Produtividade de cana-de-açúcar irrigada por gotejamento: Interações entre variedades, lâminas e intensidade do déficit hídrico na fase de maturação / Productivity of sugarcane drip irrigated: interactions between varieties, irrigation depth and water deficit intensity during ripening

Barbosa, Fernando da Silva 14 January 2015 (has links)
O setor sucroenergético enfrenta atualmente uma crise industrial e agrícola, carecendo de pesquisas para reverter este quadro, dependendo de matéria-prima a custos competitivos, e isso, passa obrigatoriamente pelo aumento de produtividade no campo. A irrigação é uma das alternativas para o aumento de produtividade, mas exige investimentos consideráveis para se irrigar de forma profissional. Além disso, a crescente demanda por alimentos e a competição por recursos hídricos em todo o mundo são uma realidade que impulsiona o uso mais eficiente da água em todos os setores, principalmente na agricultura. Assim, com a hipótese de que, para cada variedade de cana-de-açúcar, existe uma combinação mais adequada entre a lâmina de irrigação e a intensidade do déficit hídrico na fase de maturação, de modo a maximizar a produtividade, o objetivo deste trabalho foi avaliar o efeito de quatro lâminas de irrigação e quatro intensidades de déficit hídrico na fase de maturação, para oito variedades de cana-deaçúcar irrigadas por gotejamento, analisando as variáveis relacionadas à qualidade e à produtividade por unidade de área, bem como, quantificando a produtividade por unidade de água (evapo)transpirada (produtividade da água). O experimento foi conduzido em estufa na Escola Superior de Agricultura \"Luiz de Queiroz\" (USP), em Piracicaba-SP. Os tratamentos foram distribuídos em esquema fatorial (4x4x8) com parcelas sub-subdivididas com 3 repetições, totalizando-se 128 tratamentos e 384 parcelas experimentais, sendo as parcelas experimentais compostas de um vaso com aproximadamente 330 litros de solo contendo duas plantas. As lâminas avaliadas (L50, L75 L100 e L125) foram variações na fração aplicada ao longo do tempo tomando como referência o tratamento L100, em que se manteve a umidade do solo próxima à capacidade de campo (θcc) ao longo de todo experimento. Cada variedade testada teve sua própria referência L100. As intensidades do déficit hídrico para maturação avaliadas foram M1 (déficit hídrico moderado de longa duração), M2 (déficit hídrico intensivo de longa duração), M3 (sem déficit hídrico) e M4 (déficit hídrico severo de curta duração). A produtividade de colmos (TCH) foi favorecida pela combinação L100 e M3, independente da variedade estudada, com valor médio estimado de 232,2 t ha-1. Entre as variedades, a V4 apresentou a maior TCH, com média de 250,4 t ha-1 para L100. O rendimento bruto de açúcar (RBA) está diretamente ligado à produtividade de colmos, sendo igualmente favorecido pela combinação de L100 e M3, com valor médio de 23,4 t ha-1. As variedades V1, V2, V4 e V6, na lâmina L100, não diferiram significativamente entre si para RBA e tiveram a maior média, 23,9 t ha-1. A produtividade da água em açúcar e biomassa foi diferenciada em 4 e 2 grupos de variedades, respectivamente, e foi independente da lâmina de irrigação e do manejo para maturação adotados. Este resultado para a produtividade da água é característico da irrigação por gotejamento, onde as perdas por evaporação são minimizadas e a retenção de água nas folhas inexiste. Desta maneira, recomenda-se a irrigação plena de cana-de-açúcar caso a opção econômica seja pelo sistema de gotejamento. / The sugarcane industry is currently facing an industrial and agricultural crisis, lacking research to reverse this situation, depending on the raw material at competitive costs, and this inevitably entails the increase in productivity in the field. The use of irrigation systems is imposed as an alternative, but requires considerable investments to irrigate professionally. In addition, the growing demand for food and competition for water resources worldwide, are a reality that drives the more efficient water use in all sectors, especially in agriculture. Thus, with the hypothesis that there is for each variety of sugar sugarcane, a more appropriate mix between irrigation depth and intensity water deficit during ripening, in order to maximize productivity, the aim of this work was to evaluate the effect of four irrigation depths and four levels of water stress during ripening, for eight drip irrigated sugarcane varieties, analyzing the variables related to quality and productivity per area unit, as well as quantifying productivity per unit of evapotranspired water (water productivity). The experiment was conducted in a greenhouse at the \"Luiz de Queiroz\" College of Agriculture (USP) in Piracicaba-SP. Treatments were arranged in a factorial design (4x4x8) with split-split-plot with three replicates, totaling 128 treatments and 384 plots, and the plots consist of a box with about 330 liters of soil containing two plants. The evaluated irrigation depths (L50, L75 and L100 L125) were variations in the fraction applied over time, relative to the treatment L100, where soil moisture remained close to field capacity (θcc) throughout the experiment. Each tested variety had its own reference L100. The intensities of water deficit during maturation were evaluated for M1 (moderate water deficit of long duration), M2 (intensive water deficit of long duration), M3 (no water deficit) and M4 (severe water deficit of short duration). The sugarcane yield (TCH) was favored by the combination L100 and M3, regardless of the studied variety, with an estimated average value of 232.2 t ha-1. Among the varieties, V4 had the highest TCH, with average of averaging 250.4 t ha-1 for L100. Sugar yield (RBA) is directly linked to sugarcane yield and is also favored by the combination of L100 and M3, with an average value of 23.4 t ha-1. The V1, V2, V4 and V6 varieties, for irrigation depth L100, did not differ significantly for RBA and had the highest average, 23.9 t ha-1. The water productivity in sugar and biomass differed in 4 and 2 variety groups, respectively, and was independent of the adopted irrigation depth and maturation management. The result for water productivity is characteristic of drip irrigation, where losses by evaporation are minimized and water retention in the leaves does not exist. Thus, one should consider the possibility of full drip irrigation, instead of the deficit one, for sugarcane.
37

Produtividade de cana-de-açúcar irrigada por gotejamento: Interações entre variedades, lâminas e intensidade do déficit hídrico na fase de maturação / Productivity of sugarcane drip irrigated: interactions between varieties, irrigation depth and water deficit intensity during ripening

Fernando da Silva Barbosa 14 January 2015 (has links)
O setor sucroenergético enfrenta atualmente uma crise industrial e agrícola, carecendo de pesquisas para reverter este quadro, dependendo de matéria-prima a custos competitivos, e isso, passa obrigatoriamente pelo aumento de produtividade no campo. A irrigação é uma das alternativas para o aumento de produtividade, mas exige investimentos consideráveis para se irrigar de forma profissional. Além disso, a crescente demanda por alimentos e a competição por recursos hídricos em todo o mundo são uma realidade que impulsiona o uso mais eficiente da água em todos os setores, principalmente na agricultura. Assim, com a hipótese de que, para cada variedade de cana-de-açúcar, existe uma combinação mais adequada entre a lâmina de irrigação e a intensidade do déficit hídrico na fase de maturação, de modo a maximizar a produtividade, o objetivo deste trabalho foi avaliar o efeito de quatro lâminas de irrigação e quatro intensidades de déficit hídrico na fase de maturação, para oito variedades de cana-deaçúcar irrigadas por gotejamento, analisando as variáveis relacionadas à qualidade e à produtividade por unidade de área, bem como, quantificando a produtividade por unidade de água (evapo)transpirada (produtividade da água). O experimento foi conduzido em estufa na Escola Superior de Agricultura \"Luiz de Queiroz\" (USP), em Piracicaba-SP. Os tratamentos foram distribuídos em esquema fatorial (4x4x8) com parcelas sub-subdivididas com 3 repetições, totalizando-se 128 tratamentos e 384 parcelas experimentais, sendo as parcelas experimentais compostas de um vaso com aproximadamente 330 litros de solo contendo duas plantas. As lâminas avaliadas (L50, L75 L100 e L125) foram variações na fração aplicada ao longo do tempo tomando como referência o tratamento L100, em que se manteve a umidade do solo próxima à capacidade de campo (θcc) ao longo de todo experimento. Cada variedade testada teve sua própria referência L100. As intensidades do déficit hídrico para maturação avaliadas foram M1 (déficit hídrico moderado de longa duração), M2 (déficit hídrico intensivo de longa duração), M3 (sem déficit hídrico) e M4 (déficit hídrico severo de curta duração). A produtividade de colmos (TCH) foi favorecida pela combinação L100 e M3, independente da variedade estudada, com valor médio estimado de 232,2 t ha-1. Entre as variedades, a V4 apresentou a maior TCH, com média de 250,4 t ha-1 para L100. O rendimento bruto de açúcar (RBA) está diretamente ligado à produtividade de colmos, sendo igualmente favorecido pela combinação de L100 e M3, com valor médio de 23,4 t ha-1. As variedades V1, V2, V4 e V6, na lâmina L100, não diferiram significativamente entre si para RBA e tiveram a maior média, 23,9 t ha-1. A produtividade da água em açúcar e biomassa foi diferenciada em 4 e 2 grupos de variedades, respectivamente, e foi independente da lâmina de irrigação e do manejo para maturação adotados. Este resultado para a produtividade da água é característico da irrigação por gotejamento, onde as perdas por evaporação são minimizadas e a retenção de água nas folhas inexiste. Desta maneira, recomenda-se a irrigação plena de cana-de-açúcar caso a opção econômica seja pelo sistema de gotejamento. / The sugarcane industry is currently facing an industrial and agricultural crisis, lacking research to reverse this situation, depending on the raw material at competitive costs, and this inevitably entails the increase in productivity in the field. The use of irrigation systems is imposed as an alternative, but requires considerable investments to irrigate professionally. In addition, the growing demand for food and competition for water resources worldwide, are a reality that drives the more efficient water use in all sectors, especially in agriculture. Thus, with the hypothesis that there is for each variety of sugar sugarcane, a more appropriate mix between irrigation depth and intensity water deficit during ripening, in order to maximize productivity, the aim of this work was to evaluate the effect of four irrigation depths and four levels of water stress during ripening, for eight drip irrigated sugarcane varieties, analyzing the variables related to quality and productivity per area unit, as well as quantifying productivity per unit of evapotranspired water (water productivity). The experiment was conducted in a greenhouse at the \"Luiz de Queiroz\" College of Agriculture (USP) in Piracicaba-SP. Treatments were arranged in a factorial design (4x4x8) with split-split-plot with three replicates, totaling 128 treatments and 384 plots, and the plots consist of a box with about 330 liters of soil containing two plants. The evaluated irrigation depths (L50, L75 and L100 L125) were variations in the fraction applied over time, relative to the treatment L100, where soil moisture remained close to field capacity (θcc) throughout the experiment. Each tested variety had its own reference L100. The intensities of water deficit during maturation were evaluated for M1 (moderate water deficit of long duration), M2 (intensive water deficit of long duration), M3 (no water deficit) and M4 (severe water deficit of short duration). The sugarcane yield (TCH) was favored by the combination L100 and M3, regardless of the studied variety, with an estimated average value of 232.2 t ha-1. Among the varieties, V4 had the highest TCH, with average of averaging 250.4 t ha-1 for L100. Sugar yield (RBA) is directly linked to sugarcane yield and is also favored by the combination of L100 and M3, with an average value of 23.4 t ha-1. The V1, V2, V4 and V6 varieties, for irrigation depth L100, did not differ significantly for RBA and had the highest average, 23.9 t ha-1. The water productivity in sugar and biomass differed in 4 and 2 variety groups, respectively, and was independent of the adopted irrigation depth and maturation management. The result for water productivity is characteristic of drip irrigation, where losses by evaporation are minimized and water retention in the leaves does not exist. Thus, one should consider the possibility of full drip irrigation, instead of the deficit one, for sugarcane.
38

Evaluation of Crop Water Use and Rice Yield Using Remote Sensing and AquaCrop Model for Three Irrigation Schemes in Sri Lanka

Widengren, Veronika January 2022 (has links)
With a changing climate and an increased competition over water resources for agricultural irrigation, the need to improve crop water productivity using time and cost-efficient methodologies have become critically important. The Malwathu Oya river basin in Sri Lanka is struggling with water scarcity, which threatens food security and the income of farmers. In this study, freely available remote sensed land- and water productivity data from FAO’s WaPOR database was evaluated. The evaluation consisted of a comparison of the WaPOR data and primary collected field data using the crop water model, AquaCrop, for three irrigation schemes in the Malwathu Oya river basin. Additionally, the spatio-temporal variability in crop water use within and across these three irrigation schemes was assessed using indicators derived from the WaPOR portal. The evaluation was conducted for the main cultivation season, called Maha, between 2010 and 2021.  The WaPOR and AquaCrop actual evapotranspiration (ETa) values were found to be in relatively good agreement (312–537 and 400–465 mm respectively). WaPOR yield values (2.5–2.9 ton/ha) were however lower compared to the AquaCrop simulated yield values and historical yield data (4.6–5.7 and 4.4–5.6 ton/ha respectively). Difference in calculation methodology, possible sources of error in WaPOR conversion calculations and limitations in accuracy caused by cloud coverage when collecting satellite data could be explanations for this. Prior knowledge and accurate allocation of the crop type and parameters used in conversion calculations in WaPOR is therefore of significant influence. From the spatio-temporal variation assessment with WaPOR indicators, a fair uniformity of the water distribution within the irrigation schemes was shown (CV 11–19 %). The beneficial water use (BWU) in the irrigation schemes showed lower values (50–90 % allocated to T) for years when the available water amount was higher, which could be explained by the higher rate of water lost through soil evaporation. Crop water productivity (CWP) values showed higher values (about 0.70 kgDM/m3) when the available water amount was higher, indicating that yield production is sensitive to water-scarce environments. Applying a yield boundary function, representing the best attainable yield in relation to water resource, showed that there is potential to achieve the same yield with less amount of water. There are thus possibilities for improved water productivity in the three irrigation schemes investigated. For future research it is recommended to perform a sensitivity analysis for WaPOR and ground truth with yield data to obtain a better understanding of potential limitations. To obtain more precise site descriptions it is also recommended to ground truth AquaCrop with yield and soil data.
39

The Influence of Management Strategies on the Water Productivity in Dairy Farming and Broiler Production

Krauß, Michael 21 November 2017 (has links)
Die Wasserproduktivität in der Tierhaltung ist von vielen Faktoren abhängig. Die Futterproduktion hat den größten Anteil am Wasserbedarf von tierischen Produkten. Weitere Einflussfaktoren sind die Leistung, die Reproduktion und der Gesundheitsstatus der Tiere, das Management und die Haltungsbedingungen. In dieser Arbeit sollte untersucht werden, wie sich diese Faktoren auf die Wasserproduktivität von Milch und Geflügelfleisch in Nord-Ost-Deutschland auswirken. Zehn unterschiedliche Futtermittel wurden hinsichtlich ihres Wasserbedarfes untersucht. Aus diesen Futtermitteln wurden die Rationen für die Tiere erstellt. Die Milchleistung der Kühe wurde zwischen 4.000 und 12.000 kg Milch pro Kuh und Jahr in 2.000 kg Schritten variiert. Für jedes Leistungsniveau wurden zwölf verschiedene Fütterungsstrategien untersucht, welche auf der Erhöhung einzelner Bestandteile der Ration basieren. Der Wasserbedarf von Leitungswasser im Stall wurde mit 38 Wasserzählern ermittelt. Für die Wasserproduktivität des Geflügelfleisches wurden vier verschieden intensive Mastverfahren untersucht. Die Wasserproduktivität steigt mit steigender Milchleistung der Kühe. Das Maximum wird bei 10.000 kg Milch pro Kuh und Jahr und Rationen mit einem hohem Gras- bzw. Maissilageanteil erreicht. Die Kühe, die im automatischen Melksystem gemolken wurden, nahmen mehr Tränkwasser zu sich, als die Kühe im Fischgrätenmelkstand. Dies ist durch die höhere Milchleistung bedingt. Im automatischen Melksystem wurden im Mittel 28,6 Liter Reinigungswasser pro Kuh und Tag benötigt. Für die Reinigung des Fischgrätenmelkstandes wurden 33,8 Liter pro Kuh und Tag genutzt. Die untersuchten Broilermastverfahren zeigten keine Unterschiede hinsichtlich der Wasserproduktivität. Die intensivere Aufzucht und bessere Futterverwertung wurde durch eine niedrigere Wasserproduktivität des Futters kompensiert. Der Anteil des technischen Wassers macht in der Milchkuh- und Broilerhaltung nur einen kleinen Teil am Gesamtwasserbedarf aus. / Livestock production is the main user of water resources in agricultural production. Water is used in animal production for producing feed, watering the animals, and cleaning and disinfecting barns and equipment. The objective of this dissertation was to quantify the effects of management strategies, such as feeding, intensity of production and the replacement process on the water productivity of milk and poultry meat in Germany. Water productivity in milk and broiler production systems was calculated based on the methodology of Prochnow et al. (2012). Own measurements of the drinking and cleaning water demand in milk production were conducted in a dairy cow barn. The study was based on site conditions of North-East Germany with common variations in farm operations. The feed production is the main contributor to water input in dairy and poultry production. The water productivity of milk increased with an increasing milk yield. The most beneficial conditions related to water productivity in dairy farming were found to be with a milk yield of approximately 10,000 kg fat corrected milk and a grass silage and maize silage based feeding. The total technical water use in the barn makes only a minor contribution to water use. Former regression functions of the drinking water intake of the cows were reviewed and a new regression function based on the ambient temperature and the milk yield was developed. In broiler production the intensification of the fattening systems did not increase water productivity. An increase of water productivity in animal production can be achieved with various management strategies with their specific influence on the production process. The feed management should be a focus of the strategies.

Page generated in 0.1328 seconds