Spelling suggestions: "subject:"water quality - managemement"" "subject:"water quality - managementment""
341 |
The assessment of groundwater quality in rural communities : two case studies from KwaZulu-Natal.Sherman, Heidi Michelle. January 1998 (has links)
The health and life expectancy of populations in developing countries is
largely determined by the availability of good quality drinking water.
Boreholes and springs generally provide water of better microbiological and
physical quality than surface water sources, however, they may cause health
and aesthetic problems due to chemical constituents dissolved out of the host
rock.
As part of a pilot study to assess the health-related quality of community
water supplies, samples were taken from two Quaternary catchment areas in
KwaZulu-Natal. The Umkomazi catchment area is located inland from
Amanzimtoti, while the Umfolozi catchment area is located north-east of
Ulundi. The geology in these areas is significantly different. The Umkomazi
area is predominantly underlain by basement rocks of the Natal Structural
and Metamorphic Province, while the Umfolozi area is underlain by
sedimentary rocks of the Karoo Supergroup.
Geographical information systems (GIS) were used to examine the influence
of lithology, rainfall and landuse activities on groundwater quality. Major ion
analysis of groundwater samples from the Umkomazi area revealed a linear
relationship between borehole and spring concentrations. Dwyka Tillite was
found to produce water with the highest concentrations of major ions, while
Karoo dolerite produced water with the lowest concentrations of major ions.
Samples from basement rocks and Natal Group contained intermediate
concentrations of major ions. In the Umfolozi area Karoo dolerite samples
showed the lowest concentrations of major ions, while the Vryheid Formation
and Dwyka Tillite produced the highest borehole and spring concentrations,
respectively. High salinity levels in sedimentary rocks may be due to marine
influence during deposition. Piper diagrams show relative enrichment of
major cations and anions and Stiff diagrams showed characteristic patterns.
Fluoride is associated with siliceous basement rocks and related to calcium
concentrations through the solubility of calcium fluoride. The trace metals,
manganese, iron and zinc were found to cause significant aesthetic problems
and possibly health problems in sensitive individuals. These constituents are
derived from weathering of bedrock and possibly from the corrosion of metal
pipes.
There is an inverse relationship between mean annual rainfall (MAR) and
electrical conductivity (EC), except near the coast where windblown salinity
increases with rainfall. Nitrate, ammonium and E. Coli contamination are
linked to landuse activities such as occurrence of human and animal excreta
near the water source and the proximity of pit latrines. It is recommended
that rural communities be educated about the nature and importance of
groundwater quality. / Thesis (M.Sc.)-University of Natal, Durban, 1998.
|
342 |
Best management practices to attain zero effluent discharge in South African industries / C.G.F. WilsonWilson, Christiaan Georg Frederick January 2008 (has links)
Wastewater treatment is traditionally considered a separate part of an industrial activity, hardly connected to the production units themselves. It is nowadays essential to ensure that the quality of water is not degraded and that water that has been polluted is purified to acceptable levels, especially in a country with scarce water resources such as South Africa. Where water quality is concerned, Zero Effluent Discharge (ZED) is the ultimate goal, in order to avoid any releases of contaminants to the water environment. The push towards ZED in South Africa is also promoted further by the South African Government’s plan to reduce freshwater usage and the pollution of water sources due to the water scarcity in a semi-arid South Africa. Future legislation will see a marked increase in the cost of freshwater usage and/or a possible limitation of the quantity of freshwater available. There is a need in the South African Industry for a framework of Best Management Practices (BMPs) in order to provide interested stakeholders, which include not only industry, but also academia, environmental interest groups and members of the public, with a procedure to meet the ZED statutory requirements.
This dissertation explores the regulatory requirements and current environmental management practices implemented. A framework of BMPs to successfully attain ZED status in South African industries is developed from the literature study and the researcher’s own experience. The BMP framework embodies practices for one integrated strategy within three dimensions. The three dimensions of the BMP framework were selected to differentiate between BMPs for management (Governance BMPs), the project management team responsible for ZED projects (Project Management BMPs) and the implementation of preventative and operational measures to obtain and sustain ZED compliance for South African industries. The BMP framework was validated against the practices applied by Mittal Steel. The Mittal Steel plant in Vanderbijlpark implemented various projects, reduced the intake of water and eliminated the discharge of effluent and by doing this successfully realised their ZED status. The BMP framework will enable South African industries to develop their own BMPs Manual which should be specific to their operational and environmental requirements. The implementation of these BMPs should be tailored and used accordingly to demonstrate compliance to ZED requirements in South African industries. / Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2009.
|
343 |
Best management practices to attain zero effluent discharge in South African industries / C.G.F. WilsonWilson, Christiaan Georg Frederick January 2008 (has links)
Wastewater treatment is traditionally considered a separate part of an industrial activity, hardly connected to the production units themselves. It is nowadays essential to ensure that the quality of water is not degraded and that water that has been polluted is purified to acceptable levels, especially in a country with scarce water resources such as South Africa. Where water quality is concerned, Zero Effluent Discharge (ZED) is the ultimate goal, in order to avoid any releases of contaminants to the water environment. The push towards ZED in South Africa is also promoted further by the South African Government’s plan to reduce freshwater usage and the pollution of water sources due to the water scarcity in a semi-arid South Africa. Future legislation will see a marked increase in the cost of freshwater usage and/or a possible limitation of the quantity of freshwater available. There is a need in the South African Industry for a framework of Best Management Practices (BMPs) in order to provide interested stakeholders, which include not only industry, but also academia, environmental interest groups and members of the public, with a procedure to meet the ZED statutory requirements.
This dissertation explores the regulatory requirements and current environmental management practices implemented. A framework of BMPs to successfully attain ZED status in South African industries is developed from the literature study and the researcher’s own experience. The BMP framework embodies practices for one integrated strategy within three dimensions. The three dimensions of the BMP framework were selected to differentiate between BMPs for management (Governance BMPs), the project management team responsible for ZED projects (Project Management BMPs) and the implementation of preventative and operational measures to obtain and sustain ZED compliance for South African industries. The BMP framework was validated against the practices applied by Mittal Steel. The Mittal Steel plant in Vanderbijlpark implemented various projects, reduced the intake of water and eliminated the discharge of effluent and by doing this successfully realised their ZED status. The BMP framework will enable South African industries to develop their own BMPs Manual which should be specific to their operational and environmental requirements. The implementation of these BMPs should be tailored and used accordingly to demonstrate compliance to ZED requirements in South African industries. / Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2009.
|
344 |
Nutrient sources and dynamics in the Parafield stormwater harvesting facility and implication to water quality control.Kim, Young-Kil. January 2010 (has links)
The quantity of stormwater runoff from the city of Adelaide almost matches the demand for drinking water. It therefore becomes increasingly important as an alternative source for water supply. This research focused at the Parafield Stormwater Harvesting Facility near Adelaide in order to better understand: (1) nutrient dynamics between the water column, sediments and plant community, (2) allochthonous and autochthonous sources of nutrients and (3) nutrient retention capacity of the reed bed. A weekly monitoring programme for the physical and chemical parameters of the water column, sediment and plant community was carried out over three years for specific locations within the reed bed. Ordination and clustering of the time series data revealed distinctive seasonal and spatial nutrient patterns. The concentrations for total nitrogen (TN) showed high concentrations for the summer period (1.04 to 1.86 mg/L) and low concentration for the winter season (0.25 to 0.46 mg/L). For the other nitrogen fractions in form of nitrate (NO₃⁻) and ammonium (NH₄⁺) the seasonal patterns were different to that of TN. In NO₃⁻ the concentrations were high during the summer and winter seasons and NH₄⁺ showed high concentration during the spring. The seasonality for total phosphorus (TP) showed high concentration for the spring period (0.049 to 0.163 mg/L) and low concentration for the other seasons (0.01 to 0.019 mg/L). A similar pattern has been observed for phosphate (PO₄³ ⁻) as well. The dissolved organic carbon (DOC) concentrations showed high concentrations during the summer period (21.36 to 31.64 mg/L) and low concentration during the winter seasons (5.48 to 7.14 mg/L). The seasonal pattern for the nutrient contents of the plant community showed highest concentrations during summer (5.5 to 34.2 gTN/kg) and lowest concentrations in winter (0.2 to 7.7 gTN/kg). Nutrient concentrations in the sediments were highest during the non-growing seasons (autumn and winter). This result indicated that the function of sediments changes seasonally from being a sink during the non-growing season by accumulating both allochthonous and autochthonous nutrients in the rainy season, and becoming a source during the growing seasons due to nutrient release from anaerobic sediments supporting the growth of the macrophyte community. Overall the function of sediment in reed bed pond of the Stormwater Harvesting Facility was to be a source of nutrients and therefore no accumulation of nutrients occurred during the study period. The research has demonstrated that the reed bed currently performs as a reasonable nutrient retention system with following nutrient removal rates: 0.85 mg TN /m²/day, 0.79 mg NO₃⁻ /m²/day, 0.28 mg NH₄⁺/m²/day, 0.05 mg TP /m²/day, 0.04 mg PO₄³ ⁻ /m²/day, and 5.75 mg DOC /m²/day. Seasonal difference in the water retention time showed that the for most of the nutrients the removal performance was most effective during autumn and winter with the exception of the removal performance of P forms, which most effective during spring and summer. For TN, NO₃⁻ and DOC the RE was most efficient at a residence time > 15days, for TP and PO₄³ ⁻ it is 5-10 days and for NH₄⁺ it is <;5days. Time–series modelling of the monitoring data resulted in rule-based prediction models for the different nutrients. Sensitivity analyses of the models revealed key driving variables for the nutrient dynamics of the reed bed. The prediction results revealed that the DO was the key driving variable influencing the nutrient concentrations in the water column and therefore to improve the water quality of the treatment water DO levels have to maintained above the threshold of 4 mg/L. Beside DO other key driving variables were turbidity, ORP and the nutrient levels from the previous site. Therefore the control of these parameters would be the start to develop a management plan for best-practice management in terms of water quality at the Parafield Stormwater Harvesting Facility. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1458926 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Science, 2010
|
345 |
Institutions and decentralised urban water managementLivingston, Daniel John, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Physically decentralised water management systems may contribute to improving the sustainability of urban water management. Any shift toward decentralised systems needs to consider not just physical system design but also social values, knowledge frames, and organisations, and their interconnections to the physical technology. Four cases of recent Australian urban water management improvement projects were researched using qualitative methods. Three cases were of decentralised water management innovation. The other was of a centralised system, although decentralised options had been considered. These cases were studied to identify institutional barriers and enablers for the uptake of decentralised systems, and to better understand how emerging environmental engineering knowledge might be applied to overcome an implementation gap for decentralised urban water technologies. Analysis of each case focused on the institutional elements of urban water management, namely: the values, knowledge frames and organisational structures. These elements were identified through in-depth interviews, document review, and an on-line survey. The alignment of these elements was identified as being a significant contributor to the stability of centralised systems, or to change toward decentralised systems. A new organisational home for innovative knowledge was found to be common to each case where decentralised innovation occurred. ??Institutional entrepreneurs??, strong stakeholder engagement, and inter-organisational networks were all found to be linked to the creation of shared meaning and legitimacy for organisational and technological change. Existing planning frameworks focus on expert justification for change rather than institutional support for change. Institutional factors include shared understandings, values and organisational frameworks, and the alignment of each factor. Principles for, and examples of, appropriate organisational design for enabling and managing decentralised technological innovation for urban water management are proposed. This research contributes to the understanding of the institutional basis and dynamics of urban water management, particularly in relation to physical centralisation and decentralisation of urban water management technologies and, to a lesser extent, in relation to user involvement in urban water management. Understanding of factors that contribute to enabling and constraining decentralised technologies is extended to include institutional and organisational factors. New and practical pathways for change for the implementation of decentralised urban water systems are provided.
|
346 |
The role of disturbance in the ecology of biofilms in the River Murray, South Australia / by Adrienne Burns.Burns, Adrienne, 1971- January 1997 (has links)
Copy of author's previously published article inserted. / Bibliography: leaves 198-217. / 249 leaves : ill., maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This thesis explores the impact of sustained disturbances on the ecology of algal dominated biofilms in the Lower River Murray, South Australia. It focuses on the physical effects of regulation through changes to the light environment and water level regime, and the local effects of grazing. The nutritional signficance of biofilms for the abundant populations of prawns and shrimps in the Lower Murray is also examined. / Thesis (Ph.D.)--University of Adelaide, Dept. of Zoology, 1997?
|
347 |
Development and application of ultrasound technology for treatment of organic pollutantsThangavadivel, Kandasamy January 2010 (has links)
The necessity of cost effective, environmentally friendly technology has become increasingly important to remediate persistent organic pollutants in the environment. The emerging greener ultrasound technology has the potential to serve the remediation industry. In this study, the use of low power, high frequency (HF) ultrasound (1.6 MHz, 145 W/L) has been shown to effectively remediate DDT (90% of 8 mg/L) in water and sand slurries. Addition of iron powder accelerated DDT degradation in the sand slurry under ultrasonication. The potential of HF ultrasound (1.6 MHz, 160 W/L) in degradation of the non-volatile, polar model compound methylene blue (MB) was studied in MB spiked demineralised water and wastewater. A 70 % of 0.4 mg/L of MB was degraded in demineralised water whereas only 54% of MB degraded in MB spiked wastewater. There was a decrease in MB degradation rate with an increase in MB concentration. High power, low frequency (LF) ultrasound (20 kHz, 932 W/L) was used to desorb 400 mg/L of DDT added to three different natural soil slurries at 5, 10, 15 and 20 wt. % each. Each soil slurry was prepared in 0.1% v/v SDS surfactant solution, soaked for 30 min. and heated for another 30 min. at 40 oC before sonication. For the neutral pH soil slurry with higher dissolved organic carbon, the desorption efficiency achieved was over 80% in 30 s sonication. Alkaline soil with higher surface area than neutral soil indicated 60% desorption efficiency while the acidic soil, with the highest surface area and a higher amount of non-soluble organic matter, yielded 30% desorption efficiency under similar desorption conditions. Coconut fibre, used to biosorb the desorbed DDT in the decanted solution, was found to have over 25 g/kg of biosorption capacity for DDT. The surfactant SDS and associated DDT were completely separated from decanted liquid of the desorbed slurry with alum using adsorptive micellar flocculation in 60 min. settling. Acidic pH and molar concentration ratio of Al3+/SDS = 0.5 was used to completely remove the DDT. Using 20 kHz, 1125 W/L of sonication in an 80 mL reactor with air saturated 50 mg/L DDT at 20oC, the DDT removal efficiency achieved was 80% in 20 min. With zero valent iron addition, DDT removal efficiency in 15 min. is 100% with 15 and 22 mg/L of initial DDT concentrations. The settled DDT slurrywas remediated using 20 kHz at 240 W/L achieving DDT removal efficiency of 87% in 15 min. Also LF ultrasound was found to be effective in remediating chloroform (8 mg/L in 60 min) from spiked demineralised water and contaminated groundwater in both batch (120 W/L) and flow cell (6000 W/L) modes. Modeling and simulation of the ultrasonic reactor under 20 kHz ultrasonication was performed for various shape reactors using commercially available software. For almost all reactors, the highest ultrasonic intensity was observed near the transducer???s vibrating area. It was found that the highest acoustic pressure distribution, which is critical to the performance of the reactor, occurred in the conical reactor and flow cell configuration. / Thesis (PhD)--University of South Australia, 2010
|
348 |
Cumulative Effects Assessment (CEA) in spatially unconstrained area using geographical information systems (GIS) and water quality modelling : thesis submitted for the degree of Doctor of Philosophy / Yagus WijayantoWijayanto, Yagus January 2002 (has links)
Includes bibliographical references (leaves [268]-285) / xiv, 285, [85] leaves : ill. (some folded), maps (col., folded) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geographical and Environmental Studies, 2002
|
349 |
Development and application of ultrasound technology for treatment of organic pollutantsThangavadivel, Kandasamy January 2010 (has links)
The necessity of cost effective, environmentally friendly technology has become increasingly important to remediate persistent organic pollutants in the environment. The emerging greener ultrasound technology has the potential to serve the remediation industry. In this study, the use of low power, high frequency (HF) ultrasound (1.6 MHz, 145 W/L) has been shown to effectively remediate DDT (90% of 8 mg/L) in water and sand slurries. Addition of iron powder accelerated DDT degradation in the sand slurry under ultrasonication. The potential of HF ultrasound (1.6 MHz, 160 W/L) in degradation of the non-volatile, polar model compound methylene blue (MB) was studied in MB spiked demineralised water and wastewater. A 70 % of 0.4 mg/L of MB was degraded in demineralised water whereas only 54% of MB degraded in MB spiked wastewater. There was a decrease in MB degradation rate with an increase in MB concentration. High power, low frequency (LF) ultrasound (20 kHz, 932 W/L) was used to desorb 400 mg/L of DDT added to three different natural soil slurries at 5, 10, 15 and 20 wt. % each. Each soil slurry was prepared in 0.1% v/v SDS surfactant solution, soaked for 30 min. and heated for another 30 min. at 40 oC before sonication. For the neutral pH soil slurry with higher dissolved organic carbon, the desorption efficiency achieved was over 80% in 30 s sonication. Alkaline soil with higher surface area than neutral soil indicated 60% desorption efficiency while the acidic soil, with the highest surface area and a higher amount of non-soluble organic matter, yielded 30% desorption efficiency under similar desorption conditions. Coconut fibre, used to biosorb the desorbed DDT in the decanted solution, was found to have over 25 g/kg of biosorption capacity for DDT. The surfactant SDS and associated DDT were completely separated from decanted liquid of the desorbed slurry with alum using adsorptive micellar flocculation in 60 min. settling. Acidic pH and molar concentration ratio of Al3+/SDS = 0.5 was used to completely remove the DDT. Using 20 kHz, 1125 W/L of sonication in an 80 mL reactor with air saturated 50 mg/L DDT at 20oC, the DDT removal efficiency achieved was 80% in 20 min. With zero valent iron addition, DDT removal efficiency in 15 min. is 100% with 15 and 22 mg/L of initial DDT concentrations. The settled DDT slurrywas remediated using 20 kHz at 240 W/L achieving DDT removal efficiency of 87% in 15 min. Also LF ultrasound was found to be effective in remediating chloroform (8 mg/L in 60 min) from spiked demineralised water and contaminated groundwater in both batch (120 W/L) and flow cell (6000 W/L) modes. Modeling and simulation of the ultrasonic reactor under 20 kHz ultrasonication was performed for various shape reactors using commercially available software. For almost all reactors, the highest ultrasonic intensity was observed near the transducer???s vibrating area. It was found that the highest acoustic pressure distribution, which is critical to the performance of the reactor, occurred in the conical reactor and flow cell configuration. / Thesis (PhD)--University of South Australia, 2010
|
350 |
The use of inverse methods in the study of reservoir dynamics and water qualityAnohin, Vadim V January 2006 (has links)
[Truncated abstract] The process of selective withdrawal has, over many years, been used as an effective tool for extraction of water of particular quality from stratifed reservoirs. While the formation and steady-state theory of selective withdrawal in a stratifed fluid at rest has been extensively studied, little is known how vertical displacements of stratifcation due to long internal waves affect the water quality of the outflows. The first part of this study investigates the effect of basin-scale internal waves on the water quality parameters in Lake Burragorang, a large water supply reservoir for the city of Sydney, Australia. It is shown from field observations how the steady-state formulation of selective withdrawal can be used to predict the outflow water quality in reservoirs where internal waves are present, with a temperature prediction accuracy within 0.2 oC. . . In order to explain fluctuations in water quality parameters of the outflows, such as turbidity, it is important to know not only the stratifcation conditions in front to the offtake, but also to understand the dynamics of suspended particles in the upper reaches of the reservoir. In the third part of this study, transport and settling of suspended particles was investigated in the Wollondilly arm of Lake Burragorang by combination of direct and inverse methods. The inverse method was modifed to enable the separation of advective and diffusive transport of suspended particles from Stokes settling controlled by gravity, yielding twodimensional fields of particle velocities and settling fluxes in the upper reaches of the reservoir. These estimates are compared to the direct measurements of sedimentation fluxes made by the sediment traps and LISST-100.
|
Page generated in 0.1195 seconds