Spelling suggestions: "subject:"water quality - managemement"" "subject:"water quality - managementment""
321 |
An investigation into the effect of climate change on eutrophication and surface water quality of Voelvlei Dam with an emphasis on algal growthAlly, Sayed Hanief 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The study of climate change and its effect on the eutrophication of surface waters is a current and critically important study for the well-being of the entire planet. Within the same emission scenario various probable climate change models outcomes are possible that affect the water quality of a body of water. Voëlvlei is an off-channel dam that supplies water to the city of Cape Town in the Western Cape Province of South Africa. Historically, it is a eutrophic dam and with climate change, its water quality is expected to worsen. Four statistically downscaled climate models are used to produce meteorological outputs that drive the hydrodynamic and water quality model. The times simulated were the present day (1971-1990), the intermediate future (2046-2065) and the distant future (2081-2100). The operating procedure was not expected to change for the dam and inflows and withdrawals were kept the same for each of the simulation periods. The water quality model CE-QUAL-W2 version 3.6 was used. The bathymetry was validated with measured data. The model was calibrated for temperature, phosphorus loading, ammonium, nitrite-nitrates and chlorophyll-a concentration. The model was used to predict a present day situation in the dam, which was the basis from which future changes would be assessed. The main driver for algal growth other than nutrients and light was water temperature, which was linked to air temperature. With climate change, the air temperature will raise and enhance algal growth. The limiting nutrient was phosphorus during the winter and the rest of the year nitrogen limits algal growth. In the present day, the dominant algal group was the green algae.
With climate change an increase in the surface water temperature will increase evaporation and cause a decrease in the yield of the dam and further concentrates the algal nutrients. The surface phosphates concentration show increases in all months but especially in autumn. The total algal growth was increased annually and especially during autumn, signalling a seasonal shift and lengthening of the bloom season. The dominant algae however are still the green algae. There will be an increase in the annual concentration of diatoms. The green algae are present in the highest concentrations when compared to diatoms and cyanobacteria. The increase in its nutrients throughout the year as well as the increased water temperature allowed for unabated growth the entire year with peaks earlier in the year during autumn. Cyanobacteria are present at the surface for the entire year at significant concentrations but with intermediate and future climate change their concentrations does not change significantly. The result for cyanobacteria was inconclusive as the inter-variability between the climate models has the greatest variability for cyanobacteria, with 2 models showing an increased concentration and 2 a decreased concentration for intermediate and future time-period. For climate change, the water quality worsens especially during winter. With climate change water quality will worsen earlier in the year confirming a seasonal shift. The modelling of dissolved oxygen proved daunting as the results indicated supersaturation. The concentration of dissolved oxygen does not vary much as would be expected due to the warmer waters. / AFRIKAANSE OPSOMMING: Die studie van klimaatsverandering en die uitwerking daarvan op die eutrofiseering van die oppervlaktewater is 'n huidige en krities belangrike studie vir die welsyn van die hele planeet. Binne dieselfde emissie scenario, is verskeie moontlike uitkomste van klimaat modelle moontlik en die invloed op die kwaliteit van die oppervlakwater. Voëlvlei is 'n buite-bedding dam wat water verskaf aan die stad van Kaapstad in die Westelike Provinsie van Suid-Afrika. Histories is dit is 'n eutrofiese dam en met die verandering van die klimaat sal die kwaliteit van die water na verwagting verswak. Vier statisties afgeskaal klimaat modelle word gebruik om meterologiese toesttande te skep en hiedie word dan gebruik as invoer vir die hidrologiese and water kwaliteits model vir die huidige situasie (1971-1990), die intermediêre toekoms (2046-2065) en die verre toekoms (2081-2100). Die bedruifs-proses vir die dam was nie verwag om te verander nie en die invloei en onttrekkings was dieselfde gehou vir elk van die simulasie periodes. Die watergehalte model CE-QUAL-W2 3.6 was gebruik. Die bathymetrie was bevestig met gemete data. Die model was gekalibreer vir temperatuur, fosfor, ammonium, nitriet-nitrate en chlorofil-a konsentrasie. Die model was gebruik om 'n huidige situasie in die dam te simuleer, wat die basis vir klimaatsveranderinge sou wees. Die vernaamste aandrywer vir die alge groei anders as voedingstowwe en lig, was water temperatuur, wat met lugtemperatuur gekoppel was. Met klimaatsverandering word die lugtemperatuur verhoog en alge groei. Die beperkende voedingstof was fosfor gedurende die winter en die res van die jaar was die dam stikstof beperk. Die dominante alge-groep in die huidige situasie was die groen alge.
Met klimaatsverandering stuig die temperatuur van die oppervlakwater, verhoog verdamping, veroorsaak afname in die vlak van die dam en verhoog die konsentrasie van die alge voedingstowwe. Die oppervlak fosfate konsentrasie verhoog in al die maande veral in die herfs. Die totale alge groei jaarliks en veral gedurende die herfs, 'n teken van 'n seisoenale verskuiwing en verlenging van die blom seisoen. Die dominante alge was nog steeds groen alge. Daar sal 'n toename in die jaarlikse konsentrasie van diatome wees. Die groen alge is in die hoogste konsentrasies vergelyk met diatome en sianobakterieë. Die toename in die voedingstowwe deur die loop van die jaar, sowel as die verhoogde watertemperatuur kan vir 'n onverpoos groei vir die hele jaar, veral in die herfs. Sianobakterieë is teenwoordig vir die hele jaar op beduidende konsentrasies, maar met intermediêre en toekomstige klimaat verander die konsentrasies nie veel nie. Die resultaat vir sianobakterieë was onoortuigend as gevolg van die inter-veranderlikheid tussen die klimaats modelle, met 2 modelle wat 'n toename in konsentrasie voorspel en 2 'n afname in konsentrasie voorspel. Vir klimaatsverandering, die kwaliteit van die water vererger veral in die winter. Met klimaatsverandering skyf hierdie verswakking van water kwaliteit na vroeër in die jaar, wat bevestig 'n seisoenale skui vir verergering. Die modellering van opgeloste suurstof was uitdagende en die resultate was super-versadig. Die konsentrasie van opgeloste suurstof wissel nie veel as wat verwag sou word as gevolg van die warmer water.
|
322 |
Bacterial indicators for beach water qualityYau, Yick-yee, Joyce., 丘奕怡. January 1999 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
323 |
A policy review of cross boundary water resources management between Hong Kong and the Pearl River Delta鍾婉婷, Chung, Yuen-ting, Vanessa. January 2003 (has links)
published_or_final_version / abstract / toc / China Area Studies / Master / Master of Arts
|
324 |
Stream water quality corridor assessment and management using spatial analysis techniques: Introduction, evaluation, and implementation of the WQCM model.English, April R. 08 1900 (has links)
The rapid development of once-rural landscapes often produces detrimental effects on surface water quality entering local reservoirs through vulnerable stream channels. This study presents a methodology that incorporates geographic information systems (GIS) and remote sensing techniques for the creation of a stream corridor evaluation mechanism, coined the water quality corridor management (WQCM) model. Specifically, the study focuses on determining the viability of the WQCM model in assessing the stream corridor conditions within a northern Denton County pilot study region. These results will aid in the prediction and evaluation of the quality of stream water entering reservoirs that serve as the primary drinking water source for local municipalities.
|
325 |
Assessing the sustainability of direct potable water re-use the Beaufort West Reclamation PlantNaroth, Nadine January 2016 (has links)
A Research Report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering
University of Witwatersrand
Johannesburg, February 2016 / A growing population, rapid urbanisation, and climate change are increasing the pressure on water supplies. The chances of finding new freshwater sources for urban areas are becoming nearly impossible, implying that existing water supplies must go further to satisfy the basic need of potable water.
Water reclamation involves the treatment of wastewater to meet defined water quality standards so that it may be reused. Direct potable reuse refers to the introduction of wastewater, which has been treated to meet specified standards, directly into the potable water supply distribution system. Water reuse has become an attractive alternative since wastewater is constantly being produced by populations, which can be treated for reuse.
This study examines the sustainability of water reclamation for potable purposes, through an assessment of the Beaufort West Water Reclamation Plant, which includes interviews with the plant manager and process controllers, as well as a review of the relevant documentation. The study employs the use of economic, environmental and societal indicators as a tool in determining the sustainability of water reclamation.
The results of the research show that direct potable reuse may be a sustainable solution to reducing the stress on water resources, although certain aspects of the reclamation process require further development in order to progress toward sustainability. In order to provide a long term solution, water reclamation will have to be implemented in conjunction with other water conservation strategies. / MT2017
|
326 |
Citizen science for water quality monitoring and management in KwaZulu-NatalCele, Hlengiwe 10 August 2016 (has links)
A research report submitted to the faculty of Commerce, Law and Management,
University of the Witwatersrand, in partial fulfilment of the requirements for the
degree of Master of Management (in the field of Public and Development
Management)
March 2015 / The citizen science approach has a role to play in the restoration of river
health in catchments affected by pollution. Everyone can become
involved in monitoring the health of a river, dam, estuary or wetland
closest to them. In KwaZulu-Natal, uMngeni and Msunduzi Catchments,
voluntary participation in river health initiatives has been adopted by
schools, conservancies, NGOs and catchment management forums.
The purpose of the study was to explore the perceptions and
experiences of the use of miniSASS, a simplified South African Scoring
System (SASS) tool for monitoring river health in uMngeni and Msunduzi
Catchments over the past 15 years. A qualitative exploratory and
descriptive study was undertaken through semi-structured interviews and
documentary analysis. The researcher managed to purposively select a
sample of ten participants, mainly the active users of the miniSASS
citizen science tool in the identified catchments.
The finding of the study is that miniSASS is perceived and experienced
as a valuable community-based educational tool in Msunduzi and
uMngeni catchment which has led to local government authorities to
respond faster in solving incidents of industrial pollution; address poorly
maintained water infrastructure and fix the leaking sewers contaminating
freshwater. The study recommends that a further investigation be made
on the economic value of citizen science contribution in KwaZulu-Natal
since there were indications that it has already benefited some of the
accommodation businesses who appreciated the change in the nearby
streams.
|
327 |
A spatial model to determine the location and extent of sodic sites in the Shingwedzi and Ripape river catchments of the Kruger National Park using remote sensing classification techniques and satellite imageryKleyn, Linda Gail 01 February 2012 (has links)
MSc., Faculty of Science, University of the Witwatersrand, 2011 / Sodic soils are salt-affected soils which are high in sodium in relation to magnesium and calcium. Commonly called sodic sites in the Kruger National Park (KNP), these patches exhibit unique functional characteristics due to the high levels of sodium which cause surface crusting, cracking and the dispersion of clay particles. The aim of this study is to use satellite imagery to map sodic sites in the KNP at different spatial and spectral scales, giving the best option for a repeatable, semi-automated classification. The resultant map of sodic sites for the KNP will be used as a management tool and for future research projects.
A field test for sodicity was necessary to collect sufficient ground truth samples for robust accuracy assessment of the image classification. Sodic soils are identified by measuring EC, pH and SAR which are highly variable within site and between testing methods, and therefore not useful for rapid ground truth classification of sodic soils in the field. The sodium level at which clay particle dispersion takes place varies between soils, but is measurable in the field using the Emerson dispersion test. Laboratory tested sodic soil sites from previous research re-tested in this study showed positive results for dispersion of clay particles in water. The physical properties of sodic sites described in the literature and observed in the field were applied to classify sodic sites in the KNP in the field using a decision tree, together with results from the dispersion test and the observed presence of the grass species Sporobolus iocladus.
Landsat 7 and SPOT 5 imagery cover the whole park, with ASTER, CAO hyperspectral, LiDAR and black and white orthophotos available for selected areas. The topography elements of crest and footslope were derived from the STRM 90m digital elevation model (DEM). Image preprocessing to top of atmosphere reflectance was performed where necessary and visual
enhancement techniques and transformations were applied to derive the normalised difference vegetation index (NDVI) and other indices. Spectral signatures were checked against spectral signature libraries, and the class separation was tested using the cluster analysis of spectral signatures. MODIS NDVI averages placed the imagery in phenological context.
Object-based image analysis using eCognition was applied to classify the sodic sites of the Shingwedzi and Ripape River catchments. The input imagery was segmented into ecologically meaningful patches and classification accuracy was assessed using the field samples collected using the decision tree to identify four classes: sodic sites (bare and woody), river sand, riverine vegetation and savanna areas. Comparison of the accuracy assessments for the Shingwedzi study site showed that the Landsat 7 and SPOT 5 classification algorithms gave an overall kappa index accuracy of 89% and 78% respectively, and a sodic site kappa index of 90% and 89%. Validation results using the ground truth samples gave an overall kappa index accuracy of 61% for Landsat 7 and 52% for SPOT 5, with a sodic site kappa index of 49% and 39% respectively. The classification algorithms were applied to the Ripape study site for Landsat 7 and SPOT 5 with repeatable results for the SPOT 5 imagery of 88% overall kappa index and 81-93% kappa index for sodic sites using similar seasonal imagery in the wet to early dry season. The Landsat 7 classification algorithm was applied to the entire KNP based on the repeatability results of 56% overall kappa index and 60% sodic site kappa index for the Ripape site. The quest for a repeatable algorithm to classify sodic sites from satellite imagery has been met by the SPOT 5 imagery using scenes acquired at similar seasonal stages. The late wet season or early dry season imagery was used to apply the classification algorithm with the best success. Changes in size or shape of sodic sites over time requires very high resolution imagery and further studies to understand where the edge of sodic sites are detected from imagery, and how the phenology of the vegetation growing on these sites affects detecting any change in size of the sodic site.
|
328 |
The Impact of Water Pollution Abatement Costs on Financing of Municipal Services in North Central TexasRucks, Andrew C. 05 1900 (has links)
The purpose of this study is to determine the effects of water pollution control on financing municipal water pollution control facilities in selected cities in North Central Texas. This objective is accomplished by addressing the following topics: (1) the cost to municipalities of meeting federally mandated water pollution control, (2) the sources of funds for financing sewage treatment, and (3) the financial implications of employing these financing tools to satisfy water quality regulations. The study makes the following conclusions regarding the impact of water pollution control costs on municipalities in the North Central Texas Region: 1) The financing of the wastewater treatment requirements of the Water Pollution Control Act Amendments of 1972 will cause many municipalities to report operating deficits for their Water and Sewer Fund. 2) A federal grant program funded at the rate of 75 per cent of waste treatment needs will prevent operating deficits in the majority of cities in which 1990 waste treatment needs constitute 20 per cent or more of the expected Water and Sewer Fund capital structure. 3) A federal grant program funded at the average rate of 35 per cent of needs will benefit only a small number of cities. 4) The federal grant program does not improve the operating position of cities in which needs are less than 20 per cent of the total expected capital structure. 5) The state grant program shows the greatest incidence of producing municipal Water and Sewer Fund operating deficits. 6) In order to eliminate operating deficits, cities will need to increase Water and Sewer Fund income in amounts ranging from 0.3 per cent to 571.6 per cent.
|
329 |
Assessing Hydrologic and Water Quality Sensitivities to Precipitation Changes, Urban Growth and Land Management Using SWATPsaris, Alexander Michael 05 May 2014 (has links)
Precipitation changes and urban growth are two factors altering the state of water quality. Changes in precipitation will alter the amount and timing of flows, and the corresponding sediment and nutrient dynamics. Meanwhile, densification associated with urban growth will create more impervious surfaces which will alter sediment and nutrient loadings. Land and water managers often rely on models to develop possible future scenarios and devise management responses to these projected changes. We use the Soil and Water Assessment Tool (SWAT) to assess the sensitivities of stream flow, sediment, and nutrient loads in two urbanizing watersheds in Northwest Oregon, USA to various climate and urbanization scenarios. We evaluate the spatial patterns climate change and urban growth will have on water, sediment and nutrient yields. We also identify critical source areas (CSAs) and investigate how implementation of vegetative filter strips (VFS) could ameliorate the effects of these changes. Our findings suggest that: 1) Water yield is tightly coupled to precipitation. 2) Large increases in winter and spring precipitation provide enough sub-surface storage to increase summertime water yields despite a moderate decrease in summer precipitation. 3) Expansion of urban areas increases surface runoff and has mixed effects on sediment and nutrients. 4) Implementation of VFS reduces pollutant loads helping overall watershed health. This research demonstrates the usefulness of SWAT in facilitating informed land and water management decisions.
|
330 |
Urban stormwater management in VietnamLe Phu Vo. January 2000 (has links) (PDF)
Bibliography: leaves 84-91. Examines the current status of urban stormwater and water resources management in Vietnam
|
Page generated in 0.108 seconds