• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 219
  • 31
  • 12
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 303
  • 303
  • 76
  • 55
  • 52
  • 49
  • 45
  • 40
  • 40
  • 35
  • 32
  • 29
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

A comparison of design techniques for gradient-index thin film optical filters

08 August 2012 (has links)
M.Ing. / This work comprises the implementation and comparison of five design techniques for the design of gradient-index thin film optical filters: classical rugate, inverse Fourier transform, a wavelet-based design procedure, as well as the flip-flop and the genetic optimization techniques. Designs for a high-reflectance filter, a beamsplitter, a discrete level filter, a distributed filter, and an anti-reflection coating were used to compare the various filter synthesis techniques. The optical thickness of the various examples was maintained below 30 and the refractive index excursion limits were between 1.5 and 3.2. The overall performance of a specific design was evaluated by a weighted merit function. The classical rugate filter uses a sinusoidal refractive index modulation that produces a single reflection band. More complex filters are realized by linear superposition of these elementary profiles. Sidelobe and ripple suppression are obtained by applying quintic windowing functions to the refractive index profile and adding matching layers at the edges of the filter. This filter design procedure has the best figure of merit of 3.73 for the discrete level filter, and the second best of 3.09 for the high-reflectance filter. The inverse Fourier transform links the refractive index profile and reflection spectrum of an optical filter by an approximate relation. It is self-correcting and iterative in nature. It produces filters with the highest optical density. The procedure excels in the design of the distributed filter with a figure of merit of 4.17. Mortlett's wavelet is used as the basis of the wavelet design technique. A single wavelet yields a single reflection band, similar to the classical rugate filter. Sidelobe suppression is an inherent property of the method, but matching layers are needed for passband ripple suppression. The optical density of the high reflection filter is larger for a filter designed with this method than for the equivalent classical rugate filter. The figure of merit of 1.75 for the high-reflectance filter is the best for any of the designs. Flip-flop refinement is a brute force approach to filter design. The layers of a starting design are flipped between two values of refractive index, the change in figure of merit evaluated and the best case saved. This process is repeated for a fixed number of iterations. It is computationally intensive and lacks ripple suppression characteristics. The flip-flop method does not compare well with any of the other techniques. It yields filters with the worst figures of merit for most of the design examples. However, it was applied successfully to the anti-reflection coating. The peak ripple for the anti-reflection filter in the 400 nm to 1100 nm wavelength band is 9.62 % compared to the inverse Fourier transform's 57.30 %. The genetic algorithm operates on the principle of "survival of the fittest". It is a stochastic procedure and yields quasi-random refractive index profiles. It excels with the antireflection coating. The peak ripple in the passband of the anti-reflection coating is 3.29%. The figure of merit for the anti-reflection coating designed with the genetic algorithm is 2.09.
202

Enhancement in Low-Dose Computed Tomography through Image Denoising Techniques: Wavelets and Deep Learning

Unknown Date (has links)
Reducing the amount of radiation in X-ray computed tomography has been an active area of research in the recent years. The reduction of radiation has the downside of degrading the quality of the CT scans by increasing the ratio of the noise. Therefore, some techniques must be utilized to enhance the quality of images. In this research, we approach the denoising problem using two class of algorithms and we reduce the noise in CT scans that have been acquired with 75% less dose to the patient compared to the normal dose scans. Initially, we implemented wavelet denoising to successfully reduce the noise in low-dose X-ray computed tomography (CT) images. The denoising was improved by finding the optimal threshold value instead of a non-optimal selected value. The mean structural similarity (MSSIM) index was used as the objective function for the optimization. The denoising performance of combinations of wavelet families, wavelet orders, decomposition levels, and thresholding methods were investigated. Results of this study have revealed the best combinations of wavelet orders and decomposition levels for low dose CT denoising. In addition, a new shrinkage function is proposed that provides better denoising results compared to the traditional ones without requiring a selected parameter. Alternatively, convolutional neural networks were employed using different architectures to resolve the same denoising problem. This new approach improved denoising even more in comparison to the wavelet denoising. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
203

Characterizing the Magnetic Signature of Internal Waves

Unknown Date (has links)
This study is performed in tandem with numerous experiments performed by the U.S. Navy to characterize the ocean environment in the South Florida region. The research performed in this study includes signal processing steps for isolating ocean phenomena, such as internal waves, in the magnetic field. Raw magnetometer signals, one on shore and one underwater, are processed and removed of common distortions. They are then run through a series of filtering techniques, including frequency domain cancellation (FDC). The results of the filtered magnetic residual are compared to similarly processed Acoustic Doppler Current Profiler (ADCP) data to correlate whether a magnetic signature is caused by ocean phenomena. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
204

Detecção da condição de rubbing em maquinas rotativas atraves da transformada Wavelet / Detection of rubbing condition on rotating machinery by wavelet transform

Aquino, Marcelo Braz de 22 February 2008 (has links)
Orientador: Robson Pederiva / Tese (doutorado) - Universidade Estadual de Campinas. Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-09-11T21:11:47Z (GMT). No. of bitstreams: 1 Aquino_MarceloBrazde_D.pdf: 2578383 bytes, checksum: cfe62d4a785e2dd17a987600f5ef2e7c (MD5) Previous issue date: 2008 / Resumo: Este trabalho apresenta um procedimento de detecção do fenômeno de rubbing e seus efeitos em máquinas rotativas, aplicável para o regime estacionário e não-estacionário, utilizando como ferramenta de análise a Transformada de Wavelet. Primeiramente, aplica-se a Transformada de Wavelet Contínua (CWT) para sinais estacionários com o uso da wavelet Morlet Complexa como wavelet mãe, para extração de características intrínsecas da falha estudada. Aplica-se esta técnica para este regime de operação, pois, a análise multi-resolução é capaz de evidenciar possíveis transientes, mesmo no regime estacionário. Posteriormente, aplicou-se a Transformada de Wavelet Packet (WPT) visando-se analisar a variação da distribuição das energias contidas em bandas de freqüências específicas para o regime nãoestacionário. Diante da grande quantidade de informações contidas no sinal de partida e passagem pelas velocidades críticas do sistema, esta segunda técnica foi escolhida considerandose sua habilidade de compactação de dados, viabilizando o uso de outras técnicas e também o monitoramento on-line de máquinas. Todas as análises em questão, CWT no regime estacionário e a WPT no não-estacionário, são através de simulações computacionais com auxílio do Método dos Elementos Finitos e para sinais reais proveniente de uma bancada experimental de testes / Abstract: This work presents a detection procedure of the rubbing phenomenon and its effects in rotating machinery, applicable on the stationary and non-stationary regimes, using the Wavelet Transform as analysis tool. Firstly, the Continuous Wavelet Transform (CWT) is applied for stationary signals using the Complex Morlet wavelet as mother wavelet, for extracting of intrinsic features of the studied fault. The use of this technique and regime of operation is suitable, because, this multi-resolution analysis is able to evidence possible transients, even in the stationary regime. Afterward, the Wavelet Packet Transform (WPT) is applied for analyzing the variation of the energy distribution contained in bands of specific frequencies for the nonstationary regime. Related to the amount of information contained on the signal of run-up and while passing through the critical speeds of the system, this second technique was chosen by its ability of data compression that makes possible the use of another techniques as well as the online monitoring of machines. Both analyses, CWT in the stationary regime and WPT in the nonstationary one, are studied through computational simulations by the use of Finite Element Method and also through real signals got from the experimental test rig / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica
205

Parental finite state vector quantizer and vector wavelet transform-linear predictive coding.

January 1998 (has links)
by Lam Chi Wah. / Thesis submitted in: December 1997. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 89-91). / Abstract also in Chinese. / Chapter Chapter 1 --- Introduction to Data Compression and Image Coding --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Fundamental Principle of Data Compression --- p.2 / Chapter 1.3 --- Some Data Compression Algorithms --- p.3 / Chapter 1.4 --- Image Coding Overview --- p.4 / Chapter 1.5 --- Image Transformation --- p.5 / Chapter 1.6 --- Quantization --- p.7 / Chapter 1.7 --- Lossless Coding --- p.8 / Chapter Chapter 2 --- Subband Coding and Wavelet Transform --- p.9 / Chapter 2.1 --- Subband Coding Principle --- p.9 / Chapter 2.2 --- Perfect Reconstruction --- p.11 / Chapter 2.3 --- Multi-Channel System --- p.13 / Chapter 2.4 --- Discrete Wavelet Transform --- p.13 / Chapter Chapter 3 --- Vector Quantization (VQ) --- p.16 / Chapter 3.1 --- Introduction --- p.16 / Chapter 3.2 --- Basic Vector Quantization Procedure --- p.17 / Chapter 3.3 --- Codebook Searching and the LBG Algorithm --- p.18 / Chapter 3.3.1 --- Codebook --- p.18 / Chapter 3.3.2 --- LBG Algorithm --- p.19 / Chapter 3.4 --- Problem of VQ and Variations of VQ --- p.21 / Chapter 3.4.1 --- Classified VQ (CVQ) --- p.22 / Chapter 3.4.2 --- Finite State VQ (FSVQ) --- p.23 / Chapter 3.5 --- Vector Quantization on Wavelet Coefficients --- p.24 / Chapter Chapter 4 --- Vector Wavelet Transform-Linear Predictor Coding --- p.26 / Chapter 4.1 --- Image Coding Using Wavelet Transform with Vector Quantization --- p.26 / Chapter 4.1.1 --- Future Standard --- p.26 / Chapter 4.1.2 --- Drawback of DCT --- p.27 / Chapter 4.1.3 --- "Wavelet Coding and VQ, the Future Trend" --- p.28 / Chapter 4.2 --- Mismatch between Scalar Transformation and VQ --- p.29 / Chapter 4.3 --- Vector Wavelet Transform (VWT) --- p.30 / Chapter 4.4 --- Example of Vector Wavelet Transform --- p.34 / Chapter 4.5 --- Vector Wavelet Transform - Linear Predictive Coding (VWT-LPC) --- p.36 / Chapter 4.6 --- An Example of VWT-LPC --- p.38 / Chapter Chapter 5 --- Vector Quantizaton with Inter-band Bit Allocation (IBBA) --- p.40 / Chapter 5.1 --- Bit Allocation Problem --- p.40 / Chapter 5.2 --- Bit Allocation for Wavelet Subband Vector Quantizer --- p.42 / Chapter 5.2.1 --- Multiple Codebooks --- p.42 / Chapter 5.2.2 --- Inter-band Bit Allocation (IBBA) --- p.42 / Chapter Chapter 6 --- Parental Finite State Vector Quantizers (PFSVQ) --- p.45 / Chapter 6.1 --- Introduction --- p.45 / Chapter 6.2 --- Parent-Child Relationship Between Subbands --- p.46 / Chapter 6.3 --- Wavelet Subband Vector Structures for VQ --- p.48 / Chapter 6.3.1 --- VQ on Separate Bands --- p.48 / Chapter 6.3.2 --- InterBand Information for Intraband Vectors --- p.49 / Chapter 6.3.3 --- Cross band Vector Methods --- p.50 / Chapter 6.4 --- Parental Finite State Vector Quantization Algorithms --- p.52 / Chapter 6.4.1 --- Scheme I: Parental Finite State VQ with Parent Index Equals Child Class Number --- p.52 / Chapter 6.4.2 --- Scheme II: Parental Finite State VQ with Parent Index Larger than Child Class Number --- p.55 / Chapter Chapter 7 --- Simulation Result --- p.58 / Chapter 7.1 --- Introduction --- p.58 / Chapter 7.2 --- Simulation Result of Vector Wavelet Transform (VWT) --- p.59 / Chapter 7.3 --- Simulation Result of Vector Wavelet Transform - Linear Predictive Coding (VWT-LPC) --- p.61 / Chapter 7.3.1 --- First Test --- p.61 / Chapter 7.3.2 --- Second Test --- p.61 / Chapter 7.3.3 --- Third Test --- p.61 / Chapter 7.4 --- Simulation Result of Vector Quantization Using Inter-band Bit Allocation (IBBA) --- p.62 / Chapter 7.5 --- Simulation Result of Parental Finite State Vector Quantizers (PFSVQ) --- p.63 / Chapter Chapter 8 --- Conclusion --- p.86 / REFERENCE --- p.89
206

Non-expansive symmetrically extended wavelet transform for arbitrarily shaped video object plane.

January 1998 (has links)
by Lai Chun Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 68-70). / Abstract also in Chinese. / ACKNOWLEDGMENTS --- p.IV / ABSTRACT --- p.v / Chapter Chapter 1 --- Traditional Image and Video Coding --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Fundamental Principle of Compression --- p.1 / Chapter 1.3 --- Entropy - Value of Information --- p.2 / Chapter 1.4 --- Performance Measure --- p.3 / Chapter 1.5 --- Image Coding Overview --- p.4 / Chapter 1.5.1 --- Digital Image Formation --- p.4 / Chapter 1.5.2 --- Needs of Image Compression --- p.4 / Chapter 1.5.3 --- Classification of Image Compression --- p.5 / Chapter 1.5.4 --- Transform Coding --- p.6 / Chapter 1.6 --- Video Coding Overview --- p.8 / Chapter Chapter 2 --- Discrete Wavelets Transform (DWT) and Subband Coding --- p.11 / Chapter 2.1 --- Subband Coding --- p.11 / Chapter 2.1.1 --- Introduction --- p.11 / Chapter 2.1.2 --- Quadrature Mirror Filters (QMFs) --- p.12 / Chapter 2.1.3 --- Subband Coding for Image --- p.13 / Chapter 2.2 --- Discrete Wavelets Transformation (DWT) --- p.15 / Chapter 2.2.1 --- Introduction --- p.15 / Chapter 2.2.2 --- Wavelet Theory --- p.15 / Chapter 2.2.3 --- Comparison Between Fourier Transform and Wavelet Transform --- p.16 / Chapter Chapter 3 --- Non-expansive Symmetric Extension --- p.19 / Chapter 3.1 --- Introduction --- p.19 / Chapter 3.2 --- Types of extension scheme --- p.19 / Chapter 3.3 --- Non-expansive Symmetric Extension and Symmetric Sub-sampling --- p.21 / Chapter Chapter 4 --- Content-based Video Coding in MPEG-4 Purposed Standard --- p.24 / Chapter 4.1 --- Introduction --- p.24 / Chapter 4.2 --- Motivation of the new MPEG-4 standard --- p.25 / Chapter 4.2.1 --- Changes in the production of audio-visual material --- p.25 / Chapter 4.2.2 --- Changes in the consumption of multimedia information --- p.25 / Chapter 4.2.3 --- Reuse of audio-visual material --- p.26 / Chapter 4.2.4 --- Changes in mode of implementation --- p.26 / Chapter 4.3 --- Objective of MPEG-4 standard --- p.27 / Chapter 4.4 --- Technical Description of MPEG-4 --- p.28 / Chapter 4.4.1 --- Overview of MPEG-4 coding system --- p.28 / Chapter 4.4.2 --- Shape Coding --- p.29 / Chapter 4.4.3 --- Shape Adaptive Texture Coding --- p.33 / Chapter 4.4.4 --- Motion Estimation and Compensation (ME/MC) --- p.35 / Chapter Chapter 5 --- Shape Adaptive Wavelet Transformation Coding Scheme (SA WT) --- p.36 / Chapter 5.1 --- Shape Adaptive Wavelet Transformation --- p.36 / Chapter 5.1.1 --- Introduction --- p.36 / Chapter 5.1.2 --- Description of Transformation Scheme --- p.37 / Chapter 5.2 --- Quantization --- p.40 / Chapter 5.3 --- Entropy Coding --- p.42 / Chapter 5.3.1 --- Introduction --- p.42 / Chapter 5.3.2 --- Stack Run Algorithm --- p.42 / Chapter 5.3.3 --- ZeroTree Entropy (ZTE) Coding Algorithm --- p.45 / Chapter 5.4 --- Binary Shape Coding --- p.49 / Chapter Chapter 6 --- Simulation --- p.51 / Chapter 6.1 --- Introduction --- p.51 / Chapter 6.2 --- SSAWT-Stack Run --- p.52 / Chapter 6.3 --- SSAWT-ZTR --- p.53 / Chapter 6.4 --- Simulation Results --- p.55 / Chapter 6.4.1 --- SSAWT - STACK --- p.55 / Chapter 6.4.2 --- SSAWT ´ؤ ZTE --- p.56 / Chapter 6.4.3 --- Comparison Result - Cjpeg and Wave03. --- p.57 / Chapter 6.5 --- Shape Coding Result --- p.61 / Chapter 6.6 --- Analysis --- p.63 / Chapter Chapter 7 --- Conclusion --- p.64 / Appendix A: Image Segmentation --- p.65 / Reference --- p.68
207

Ubiquitous Scalable Graphics: An End-to-End Framework using Wavelets

Wu, Fan 19 November 2008 (has links)
"Advances in ubiquitous displays and wireless communications have fueled the emergence of exciting mobile graphics applications including 3D virtual product catalogs, 3D maps, security monitoring systems and mobile games. Current trends that use cameras to capture geometry, material reflectance and other graphics elements means that very high resolution inputs is accessible to render extremely photorealistic scenes. However, captured graphics content can be many gigabytes in size, and must be simplified before they can be used on small mobile devices, which have limited resources, such as memory, screen size and battery energy. Scaling and converting graphics content to a suitable rendering format involves running several software tools, and selecting the best resolution for target mobile device is often done by trial and error, which all takes time. Wireless errors can also affect transmitted content and aggressive compression is needed for low-bandwidth wireless networks. Most rendering algorithms are currently optimized for visual realism and speed, but are not resource or energy efficient on mobile device. This dissertation focuses on the improvement of rendering performance by reducing the impacts of these problems with UbiWave, an end-to-end Framework to enable real time mobile access to high resolution graphics using wavelets. The framework tackles the issues including simplification, transmission, and resource efficient rendering of graphics content on mobile device based on wavelets by utilizing 1) a Perceptual Error Metric (PoI) for automatically computing the best resolution of graphics content for a given mobile display to eliminate guesswork and save resources, 2) Unequal Error Protection (UEP) to improve the resilience to wireless errors, 3) an Energy-efficient Adaptive Real-time Rendering (EARR) heuristic to balance energy consumption, rendering speed and image quality and 4) an Energy-efficient Streaming Technique. The results facilitate a new class of mobile graphics application which can gracefully adapt the lowest acceptable rendering resolution to the wireless network conditions and the availability of resources and battery energy on mobile device adaptively."
208

Identifying the Location of a Sudden Damage in Composite Laminates Using Wavelet Approach

Salehian, Armaghan 11 July 2003 (has links)
"This study presents a general approach for an inverse problem to locate a sudden structural damage in a plate. The sudden damage is modeled as an impulse load and response data are collected at various sensor locations. In this simulation study the response data were generated by the commercial finite element code ANSYS for three square plates: one is an isotropic plate and made of aluminum and the others are two different composite plates made of graphite-epoxy. All plates are simply supported along all their edges. The responses of these plates to both narrow band and wide band loading were analyzed by a wavelet transform. The wavelet coefficient maps for each type of signal was utilized to estimate the shortest path arrival times of flexural waves resulted from the damage by locating the wavelet coefficient peak values of the response data. Using the dispersion relations of wave propagation based on the Mindlin’s plate theory, a set of nonlinear equations were derived to solve this inverse problem and the location of the applied load, which models a structural damage, was determined. The estimated locations for all different types of plates have shown an excellent agreement with the actual location of the impact loads applied. "
209

Object-based scalable wavelet image and video coding. / CUHK electronic theses & dissertations collection

January 2008 (has links)
The first part of this thesis studies advanced wavelet transform techniques for scalable still image object coding. In order to adapt to the content of a given signal and obtain more flexible adaptive representation, two advanced wavelet transform techniques, wavelet packet transform and directional wavelet transform, are developed for object-based image coding. Extensive experiments demonstrate that the new wavelet image coding systems perform comparable to or better than state-of-the-art in image compression while possessing some attractive features such as object-based coding functionality and high coding scalability. / The objective of this thesis is to develop an object-based coding framework built upon a family of wavelet coding techniques for a variety of arbitrarily shaped visual object scalable coding applications. Two kinds of arbitrarily shaped visual object scalable coding techniques are investigated in this thesis. One is object-based scalable wavelet still image coding; another is object-based scalable wavelet video coding. / The second part of this thesis investigates various components of object-based scalable wavelet video coding. A generalized 3-D object-based directional threading, which unifies the concepts of temporal motion threading and spatial directional threading, is seamlessly incorporated into 3-D shape-adaptive directional wavelet transform to exploit the spatio-temporal correlation inside the 3-D video object. To improve the computational efficiency of multi-resolution motion estimation (MRME) in shift-invariant wavelet domain, two fast MRME algorithms are proposed for wavelet-based scalable video coding. As demonstrated in the experiments, the proposed 3-D object-based wavelet video coding techniques consistently outperform MPEG-4 and other wavelet-based schemes for coding arbitrarily shaped video object, while providing full spatio-temporal-quality scalability with non-redundant 3-D subband decomposition. / Liu, Yu. / Adviser: King Ngi Ngan. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3693. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 166-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
210

Stochastic dynamics and wavelets techniques for system response analysis and diagnostics: Diverse applications in structural and biomedical engineering

dos Santos, Ketson Roberto Maximiano January 2019 (has links)
In the first part of the dissertation, a novel stochastic averaging technique based on a Hilbert transform definition of the oscillator response displacement amplitude is developed. In comparison to standard stochastic averaging, the requirement of “a priori” determination of an equivalent natural frequency is bypassed, yielding flexibility in the ensuing analysis and potentially higher accuracy. Further, the herein proposed Hilbert transform based stochastic averaging is adapted for determining the time-dependent survival probability and first-passage time probability density function of stochastically excited nonlinear oscillators, even endowed with fractional derivative terms. To this aim, a Galerkin scheme is utilized to solve approximately the backward Kolmogorov partial differential equation governing the survival probability of the oscillator response. Next, the potential of the stochastic averaging technique to be used in conjunction with performance-based engineering design applications is demonstrated by proposing a stochastic version of the widely used incremental dynamic analysis (IDA). Specifically, modeling the excitation as a non-stationary stochastic process possessing an evolutionary power spectrum (EPS), an approximate closed-form expression is derived for the parameterized oscillator response amplitude probability density function (PDF). In this regard, IDA surfaces are determined providing the conditional PDF of the engineering demand parameter (EDP) for a given intensity measure (IM) value. In contrast to the computationally expensive Monte Carlo simulation, the methodology developed herein determines the IDA surfaces at minimal computational cost. In the second part of the dissertation, a novel multiple-input/single-output (MISO) system identification technique is developed for parameter identification of nonlinear and time-variant oscillators with fractional derivative terms subject to incomplete non-stationary data. The technique utilizes a representation of the nonlinear restoring forces as a set of parallel linear sub-systems. Next, a recently developed L1-norm minimization procedure based on compressive sensing theory is applied for determining the wavelet coefficients of the available incomplete non-stationary input-output (excitation-response) data. Several numerical examples are considered for assessing the reliability of the technique, even in the presence of incomplete and corrupted data. These include a 2-DOF time-variant Duffing oscillator endowed with fractional derivative terms, as well as a 2-DOF system subject to flow-induced forces where the non-stationary sea state possesses a recently proposed evolutionary version of the JONSWAP spectrum. In the third part of this dissertation, a joint time-frequency analysis technique based on generalized harmonic wavelets (GHWs) is developed for dynamic cerebral autoregulation (DCA) performance quantification. DCA is the continuous counter-regulation of the cerebral blood flow by the active response of cerebral blood vessels to the spontaneous or induced blood pressure fluctuations. Specifically, various metrics of the phase shift and magnitude of appropriately defined GHW-based transfer functions are determined based on data points over the joint time-frequency domain. The potential of these metrics to be used as a diagnostics tool for indicating healthy versus impaired DCA function is assessed by considering both healthy individuals and patients with unilateral carotid artery stenosis. Next, another application in biomedical engineering is pursued related to the Pulse Wave Imaging (PWI) technique. This relies on ultrasonic signals for capturing the propagation of pressure pulses along the carotid artery, and eventually for prognosis of focal vascular diseases (e.g., atherosclerosis and abdominal aortic aneurysm). However, to obtain a high spatio-temporal resolution the data are acquired at a high rate, in the order of kilohertz, yielding large datasets. To address this challenge, an efficient data compression technique is developed based on the multiresolution wavelet decomposition scheme, which exploits the high correlation of adjacent RF-frames generated by the PWI technique. Further, a sparse matrix decomposition is proposed as an efficient way to identify the boundaries of the arterial wall in the PWI technique.

Page generated in 0.0572 seconds