• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 289
  • 178
  • 106
  • 32
  • 32
  • 32
  • 32
  • 32
  • 32
  • 16
  • 14
  • 9
  • 6
  • 4
  • 3
  • Tagged with
  • 802
  • 264
  • 130
  • 119
  • 117
  • 115
  • 115
  • 109
  • 105
  • 99
  • 95
  • 82
  • 73
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Characterization of protoporphyrinogen oxidase (PPO) herbicide resistance in tall waterhemp (Amaranthus tuberculatus)

Brent Coy Mansfield (10782717) 03 August 2021 (has links)
<p>Tall waterhemp management in agronomic crops continues to be an increasing problem due to widespread resistance to herbicides, including protoporphyrinogen oxidase (PPO)-inhibitors. With limited effective postemergence herbicides, especially in soybeans, research to further understand the selection of PPO-resistant (PPO-R) tall waterhemp and identification of new herbicide resistance mechanisms is crucial for improving weed management decisions in order to slow selection for herbicide resistance and prolong the effectiveness of PPO-inhibiting herbicides.</p> <p> Previous research has shown that soil-applied applications of PPO-inhibiting herbicides can increase the frequency of the PPO resistance trait (∆G210) in surviving tall waterhemp plants, even when applied in combination at the same ratio with the very long chain fatty acid inhibitor (VLCFA), <i>s-</i>metolachlor. Field experiments were conducted to determine if selection for tall waterhemp resistant individuals to PPO-inhibitors could be reduced when the soil residual activity of <i>s</i>-metolachlor persisted longer than the PPO-inhibitor herbicide. The frequency of ∆G210 in surviving individual plants increased as the fomesafen rate increased, but was independent of the rate of <i>s</i>-metolachlor. Additionally, heterozygosity of ∆G210 in surviving individuals did not change with any rate or combination of fomesafen and <i>s</i>-metolachlor. However, saflufenacil, standard PPO-inhibitor with relatively short soil residual activity, applied alone increased the number of homozygous PPO-R tall waterhemp by 15% compared to the high rate of <i>s</i>-metolachlor and the combination of saflufenacil and <i>s</i>-metolachlor. Furthermore, this research demonstrated that end of season control of tall waterhemp plays a more vital role in delaying a large-scale shift towards herbicide resistance through reduced seed production. This can be achieved through the combination of multiple effective herbicide sites of action, including soil residual PPO-inhibitors. Tall waterhemp control and density were greatest with the high rates of fomesafen plus <i>s</i>-metolachlor, which resulted in the lowest number of PPO-R tall waterhemp that survived herbicide treatment at the end of season.</p> <p> Prior to the research conducted in this thesis, the only known resistance mechanism to PPO-inhibiting herbicides in tall waterhemp has been the ∆G210 target site mutation. A previously developed TaqMan assay used to determine the presence or absence of the ∆G210 mutation has allowed accurate, high throughput screening of this mutation. However, suspected PPO-R tall waterhemp do not always receive positive confirmation indicating the presence of an alternative resistance mechanism. Identification of additional resistance mechanisms can provide valuable insight in regards to resistance to PPO-inhibiting herbicides as well as cross resistance to other herbicide modes of action, which can lead to improved tall waterhemp management decisions. Of 148 tall waterhemp populations collected across the Midwestern U.S., 84% of the populations sampled contained at least one PPO-R biotype with the ∆G210 mutation, although several individual plants across the Midwest U.S. exhibited phenotypic resistance to fomesafen that could not be explained by ∆G210. The percentage of PPO-R tall waterhemp without ∆G210 was 19, 5, 2, 1, and 2% for Iowa, Illinois, Indiana, Minnesota, and Missouri, respectively. Following the initial greenhouse screening, subsequent tall waterhemp populations were selected that exhibited low-, mid-, and high-level resistance to fomesafen that resulted in resistance ratios from 0.6 to 17X in response to fomesafen. This research documents the variability in fomesafen response to multiple tall waterhemp populations in addition to revealing the presence of additional resistance mechanism(s), other than the previously known ∆G210 mutation that has been the benchmark for resistance to PPO-inhibiting herbicides in tall waterhemp.</p> <p> Lastly, greenhouse and lab experiments were conducted to investigate the role of antioxidant enzymes with PPO-R tall waterhemp via ∆G210. The objectives of this research were to determine if the variability in resistance ratios for PPO-R tall waterhemp documented in greenhouse and field scenarios could be due to an enhanced antioxidant enzyme pathway. Basal levels of antioxidant enzymes in PPO-S populations were not different from PPO-R populations when pooled together by respective phenotype. However, enzyme activity of tall waterhemp populations varied at the individual level, but independent of the ∆G210 mutation. This indicates that an inherent enhanced antioxidant enzyme pathway does not cause the variability in fomesafen response in tall waterhemp. With the exception of glutathione reductase, antioxidant enzyme activity following fomesafen application was generally the same for PPO-R and PPO-S populations by increasing, decreasing, or remaining unchanged. Glutathione reductase activity in PPO-S populations decreased compared to PPO-R populations from 9 to 36 HAT. By 36 HAT, all antioxidant enzyme activity for PPO-S populations was lower compared to PPO-R populations most likely a consequence of more lipid peroxidation. This research shows that antioxidant enzyme activity correlated with fomesafen application and documents the variability observed within tall waterhemp populations with and without the ∆G210 mutation. </p>
562

Nichos de sobrevivência e disseminação de Xanthomonas campestris pv. campestris, agente causal da podridão negra das brássicas /

Silva, João César da January 2020 (has links)
Orientador: Antonio Carlos Maringoni / Resumo: A podridão negra, causada por Xanthomonas campestris pv. campestris (Xcc), é considerada a doença bacteriana mais importante das brássicas no mundo. Apesar dos esforços para o manejo, sua ocorrência é comum em cultivos de brássicas. O conhecimento dos nichos de sobrevivência e mecanismos de disseminação de Xcc são de extrema importância para o manejo eficiente da podridão negra. Este trabalho avaliou a sobrevivência de Xcc em nichos ecológicos, assim como o potencial de disseminação da bactéria por insetos. Para identificar as plantas daninhas que podem favorecer a sobrevivência epifítica de Xcc, assim como novas hospedeiras sintomáticas da bactéria, coletas foram realizadas em seis campos de cultivo de brássicas do estado de São Paulo, em 2017 e 2018. A capacidade endofítica do isolado 3098C de Xcc, resistente a rifampicina, foi avaliada em quatro experimentos em casa de vegetação, entre 2017 e 2019, utilizando-se 23 espécies de plantas daninhas e dois métodos de inoculação. Em campo, quatro experimentos foram instalados entre 2017 e 2019 para avaliar a sobrevivência de Xcc na filosfera e rizosfera de 20 espécies de plantas cultivadas. A sobrevivência do isolado 3098C na rizosfera do repolho cultivado em seis tipos de solos também foi avaliada, em quatro experimentos. Além da sobrevivência, a disseminação de Xcc por Bemisia tabaci e Myzus persicae foi avaliada em experimentos em condições controladas. Como resultados, 30 espécies de plantas daninhas de 14 famílias botânicas ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is considered the most important bacterial disease of brassica worldwide. Despite management efforts, its occurrence is common in brassica crops. Knowledge of survival niches and Xcc dissemination mechanisms are extremely important for the efficient management of black rot. This study evaluated Xcc survival in ecological niches, as well as the potential for the bacterium dissemination by insects. To identify the weeds that may favor Xcc epiphytic survival, as well as new symptomatic hosts of the bacterium, collections were carried out in six brassica crop fields in São Paulo State, in 2017 and 2018. The endophytic capacity of Xcc 3098C strain, resistant to rifampicin, was evaluated in four greenhouse experiments between 2017 and 2019, using 23 weed species and two inoculation methods. In the field, four experiments were conducted between 2017 and 2019 to assess Xcc survival in the phyllosphere and rhizosphere of 20 crop species. The survival of 3098C strain in cabbage rhizosphere, grown in six soils types, was also evaluated in four experiments. In addition to survival, Xcc dissemination by Bemisia tabaci and Myzus persicae was evaluated in experiments under controlled conditions. As a result, 30 weed species from 14 botanical families were collected from the six brassica crop fields, and Xcc was recovered from the phyllosphere of 25 species. In symptomatic plants, the bacterium was isolated from Bidens pilosa ... (Complete abstract click electronic access below) / Doutor
563

Die Samtpappel: Neue Unkräuter in Sachsen

Viehweger, Gernot, Meinlschmidt, Ewa, Dittrich, Ralf January 2002 (has links)
Das Faltblatt beschreibt die Biologie und die Verbreitung der Samtpappel Abutilon theophrasti in Sachsen und zeigt Abbildungen aller Entwicklungsstadien vom Keimling bis zur ausgewachsenen Pflanze. Die erstmals im Jahr 2000 vom amtlichen Pflanzenschutzdienst in Sachsen als Ackerunkraut registrierte Samtpappel wurde bereits im Jahr 2004 an 41 Standorten in Sachsen vorgefunden. In Zuckerrüben wurde die höchste Verbreitung auf Grund einer Wirkungslücke der eingesetzten Herbizide festgestellt. In Mais und Getreide zeigen viele Herbizide eine gute Wirkung. Die Samen der Samtpappel können von importiertem Saatgut oder von Importfuttermitteln auf die Äcker gelangen.
564

Developing attractants and deterrents for a push-pull striped cucumber beetle management system

Christie N Shee (12635509) 25 May 2022 (has links)
<p>In insect pest management, the plant volatiles and pheromones associated with host-plant location can be used to manipulate insect pest behavior by attracting or “pulling” insects from a valuable resource. Conversely, deterrents can be used to prevent behaviors or “push” insects away from a resource. If combined, attractants and deterrents can have powerful synergistic effects that promote greater response than the individual components. This dissertation explores the use of attractants and deterrents of the specialist herbivore and challenging agricultural pest, the striped cucumber beetle, <em>Acalymma vittatum</em>, to ultimately develop a push-pull management system. </p> <p><br></p> <p>In first chapter, we examine the combination of two striped cucumber beetle attractants in attract-and-kill mass trapping: live striped cucumber beetles as a proxy for aggregation pheromone, and cucurbit floral volatiles. In the second chapter, we examine natural products—essential oils, pawpaw extract, squash bugs, and kaolin clay—as a means for repelling or deterring beetles from cucurbit crops. Lastly, we combine the findings of previous chapters as way of using both attractive and deterrents to further modify striped cucumber beetle behavior and to observe potential synergies in removing these pests from cucurbit crops. In this, we use the aggregation pheromone and floral lures in attract-and-kill trapping with the deterrent kaolin. </p> <p><br></p> <p>We found that while aggregation pheromones and floral lures were useful in trapping striped cucumber beetles, floral lures may potentially distract pollinators. Striped cucumber beetle response to floral lures varied across the season and were most attractive in the late growing season, when plants were in bloom. The tested natural products did not successfully prevent beetles from colonizing plants, but instead deterred the specialist herbivore from feeding. While the attractant and deterrent did not have a synergistic effect, they remained complementary in that aggregation pheromones were useful in reducing pest populations, while kaolin clay deterred feeding. Thus, pest management systems should be flexible in timing and type of management used, and should look toward other metrics, such as feeding damage, rather than population density thresholds to measure management success. </p>
565

Buckhorn plantain (Plantago lanceolata) biology and 2,4-D resistance in turf

Quincy D Law (10723935) 29 April 2021 (has links)
<p>Herbicide resistance poses a threat to sustainable vegetation management. Recently, the first report of 2,4-D resistance in buckhorn plantain (<i>Plantago lanceolata</i> L.) as well as the first report of 2,4-D resistance in turf was published. Additional 2,4-D resistant buckhorn plantain ecotypes have been reported in Indiana, Ohio, Pennsylvania, Georgia, and Virginia in the short time since. Thus, the aims of this research were to investigate the mechanism(s) of 2,4-D resistance in a resistant ecotype of buckhorn plantain, screen other potentially resistant ecotypes and measure them for fitness penalties, and identify effective turfgrass cultural control practices for managing buckhorn plantain. </p><p><br></p><p>A radiolabeled 2,4-D experiment was conducted to investigate absorption and translocation, and a 2,4-D dose-response experiment was conducted using malathion as a cytochrome P450 inhibitor to assess the potential mechanism of 2,4-D resistance in buckhorn plantain. The clearest difference between the resistant (IN-GW) and susceptible ecotype (IN-WL) was the interaction between ecotype and harvest period for [<sup>14</sup>C]2,4-D in the non-treated shoots. After 192 hr, the susceptible ecotype had a higher amount of [<sup>14</sup>C]2,4-D in the non-treated shoots (16.1%) than the resistant ecotype at any of the harvest periods (5.5-7.3%); the amount of [<sup>14</sup>C]2,4-D in the non-treated shoots was similar across all three harvest periods for the resistant ecotype. Thus, reduced translocation plays an apparent role in 2,4-D resistance in buckhorn plantain. Malathion pre-treatment did not fully revert the resistant ecotype back to susceptible. Thus, if cytochrome P450 metabolism is part of the 2,4-D resistance mechanism of this buckhorn plantain ecotype, it is likely a contributor and not the sole mechanism of resistance. </p><p><br></p><p>In total, this research identified four 2,4-D resistant buckhorn plantain ecotypes from Indiana and one from Ohio. Only one report of a failure to control buckhorn plantain was confirmed to be a susceptible ecotype. When compared to susceptible ecotypes in a garden study, no major fitness penalties were identified in resistant ecotypes. </p><p><br></p><p>Given that no specific cultural or biological control methods of buckhorn plantain have been recognized to date, two field trials were conducted to investigate the influence of 1) mowing height and nitrogen rate on buckhorn plantain coverage and 2) mowing frequency on buckhorn plantain coverage and seed production. Nitrogen fertilization and low mowing reduced buckhorn plantain coverage after 3 yr, but low mowing also increased crabgrass and dandelion as well as reduced turf quality. Frequent mowing reduced viable seed production, but that did not translate into a reduction in buckhorn plantain coverage after 2 yr. </p><p><br></p><p>This research demonstrates the complex mechanism of action of 2,4-D, as the resistance mechanism for buckhorn plantain was not fully elucidated. It also highlights the importance of utilizing best management practices for managing weeds in turf, including rotating herbicide chemistries, high and frequent mowing, and nitrogen fertilization.</p>
566

HYPERSPECTRAL PHENOTYPING OF CROP FUNCIONAL TRAITS OVER VARIATION IN THE ENVIRONMENTAL, ABIOTIC AND BIOTIC STRESS, AND GENETICS

Raquel Peron (12469530) 27 April 2022 (has links)
<p>  </p> <p>Modern agriculture must address the massive challenge of providing food for the increasing population. The challenge lies in increasing crop yield and reducing losses caused by abiotic and biotic stresses. In fact, for some crops, such as wheat and maize, over 40% of the production is lost due to environmental conditions (abiotic stresses) or pests and pathogens (biotic stresses). Specialists in the area are suggesting a need for a second green revolution to meet the increasing demand in food production. While in the first green revolution was focused on breeding and genetics to produce crops' genetic lines with a higher yield. The second green revolution will utilize cutting-edge technologies to increase yield and reduce crop losses. The development of remote sensing technologies and their applications is the main driving force of modern agricultural practices. Currently, farmers are relying more on automation, data collection, and data analysis to manage farming operations. The reliance on remote sensor technologies is a game-changer for traditional agricultural practices, and it is contributing tremendously to increasing production and avoiding yield losses. Hyperspectral phenotyping is an emerging remote sensing technology that utilizes the light's reflectance to provide insightful information about plant traits. For several years, research groups have been applying hyperspectral phenotyping techniques to detect plant traits information, such as nitrogen content, photosynthesis rates, pests infestation, and abiotic stress detection. Although this is not a novel approach to plant traits detection, this technology application is not mature yet. Several challenges are associated with using hyperspectral information for phenotyping, such as model transferability, data collection scalability, and the heritability of plant traits retrieved using hyperspectral data. In my thesis dissertation, I addressed some of those challenges contributing to advances in hyperspectral phenotyping. My results demonstrate that using full-range hyperspectral reflectance data (400-2400nm) to retrieve nitrogen in winter wheat increases the model transferability across years and genotypes. Predicting nitrogen content using hyperspectral data can be used as a surrogate to calculate nitrogen use efficiency traits. My research highlights the hurdles associated with spectral detection of stresses interaction, such as drought stress, which can mask western corn rootworm detection in maize. Finally, I explored the correlation among spectral, functional, and field traits in a soybean NAM (Nested Association Mapping) population to understand the relationship among those traits' variability and how that information can be used for soybean breeding programs. The outcomes of my thesis dissertation advance the knowledge in the hyperspectral phenotyping field and its application to modern agriculture. Consequently, my study also contributes to food security programs by providing insightful information about the hyperspectral assessment of plant health status, which is essential to increase yield production and reduce crop losses. </p>
567

INTEGRATING COVER CROPS AND HERBICIDES FOR HORSEWEED [<em>Conyza canadensis</em> (L.) Cronq.] MANAGEMENT PRIOR TO SOYBEAN [<em>Glycine max</em> (L.) Merr.]

Sherman, Austin 01 January 2019 (has links)
Horseweed (Conyza canadensis (L.) Cronq.) is prevalent in Kentucky and can be difficult to control. Research has shown multiple weed control methods to be more sustainable than relying on chemical control alone, so the use of multiple methods for horseweed management was examined in this study. The main objective was to determine best practice(s) to reduce horseweed prior to soybean [Glycine max (L.) Merr.]. Treatments included: fall-planted cover crop [CC; cereal rye (Secale cereale L.) or none], fall-applied herbicide (saflufenacil or none), and spring-applied herbicides (dicamba, 2,4-D ester, or none). We hypothesized horseweed densities would be reduced the most where all factors were combined. Saflufenacil suppressed horseweed densities from application through March, when densities increased due to a lack of competition from other winter weeds. Spring herbicides decreased horseweed densities until soybeans reached V1 in 2017, but in 2018 lost efficacy after CC termination. CC alone resulted in the longest horseweed suppression. The combination of spring herbicides and CC usually reduced horseweed densities to near zero between the CC termination and soybean planting. However, some low densities seen soon after soybean planting could be problematic. Further research must be conducted to determine the best integrated horseweed management system until soybean canopy closure.
568

Solarization as a means to eliminate invasive plant species and target the seedbank

Reed, Garret W. 01 January 2009 (has links)
The Calaveras River is a unique riparian habitat in San Joaquin County, influenced by both tidal water from the San Francisco Bay and impounded rainwater from the New Hogan Dam. The Calaveras River is one of the few river systems in California that does not benefit from snowpack melt. This dynamic system has changed dramatically in both its species composition and hydrodynamic regime due to years of human influences. What was once a thriving population of native plant species has become an environment dominated almost completely by aggressive exotic invasive species. The goal of this project was to remove the nonnative plant habitat by the most cost effective and least labor intensive means. The study area was along a section of river that bisects the University of Pacific campus in Stockton, California. From years of invasive species presence a deep seedbank has developed within the soil which acts to reduce the effectiveness of native plant reintroductions. A technique known as "solarization" was used to eliminate the seedbank and to facilitate the survival of native plants. Tarps were used to eradicate existing plants followed by disturbance of the soil and watering to induce germination of subsoil weed seeds. As the new plant seedlings emerge, tarps are reapplied to eliminate that generation of seedbank plants. After four time series of tarping and watering, a significant difference was found between control plots and treatments utilizing the solarization technique. Treatment 2, which consisted of tarping without weight, was determined to best target the seedbank after four repetitions and resulted in reducing invasive species in the seed bank.
569

Biological control of Echinochloa species with pathogenic fungi

Zhang, Wenming January 1996 (has links)
No description available.
570

In vitro mass rearing of the knapweed nematode, Subanguina dicridis and its use as a bioherbicide

Ou, Xiu January 1991 (has links)
No description available.

Page generated in 0.0531 seconds