Spelling suggestions: "subject:"heighted regression"" "subject:"eighted regression""
51 |
以部分法修正地理加權迴歸 / A conditional modification to geographically weighted regression梁穎誼, Leong , Yin Yee Unknown Date (has links)
在二十世紀九十年代,學者提出地理加權迴歸(Geographically Weighted Regression;簡稱GWR)。GWR是一個企圖解決空間非穩定性的方法。此方法最大的特性,是模型中的迴歸係數可以依空間的不同而改變,這也意味著不同的地理位置可以有不同的迴歸係數。在係數的估計上,每個觀察值都擁有一個固定環寬,而估計值可以由環寬範圍內的觀察值取得。然而,若變數之間的特性不同,固定環寬的設定可能會產生不可靠的估計值。
為了解決這個問題,本文章提出CGWR(Conditional-based GWR)的方法嘗試修正估計值,允許各迴歸變數有不同的環寬。在估計的程序中,CGWR運用疊代法與交叉驗證法得出最終的估計值。本文驗證了CGWR的收斂性,也同時透過電腦模擬比較GWR, CGWR與local linear法(Wang and Mei, 2008)的表現。研究發現,當迴歸係數之間存有正相關時,CGWR比其他兩個方法來的優異。最後,本文使用CGWR分析台灣高齡老人失能資料,驗證CGWR的效果。 / Geographically weighted regression (GWR), first proposed in the 1990s, is a modelling technique used to deal with spatial non-stationarity. The main characteristic of GWR is that it allows regression coefficients to vary across space, and so the values of the parameters can vary depending on locations. The parameters for each location can be estimated by observations within a fixed range (or bandwidth). However, if the parameters differ considerably, the fixed bandwidth may produce unreliable or even unstable estimates.
To deal with the estimation of greatly varying parameter values, we propose Conditional-based GWR (CGWR), where a different bandwidth is selected for each independent variable. The bandwidths for the independent variables are derived via an iteration algorithm using cross-validation. In addition to showing the convergence of the algorithm, we also use computer simulation to compare the proposed method with the basic GWR and a local linear method (Wang and Mei, 2008). We found that the CGWR outperforms the other two methods if the parameters are positively correlated. In addition, we use elderly disability data from Taiwan to demonstrate the proposed method.
|
52 |
不動產評價之空間計量與地理統計 / Spatial Econometrics and Geostatistics for Real Estate Valuation陳靜宜, Chen, Jing Yi Unknown Date (has links)
近年來由於地理資訊系統(GIS)的快速發展發,空間資料分析開始受到重視並在社會科學領域中逐漸扮演重要的角色。雖然一般的統計方法已在傳統資料分析上發展已久,然而它們卻不能有效地說明空間性資料,並且無法充分處理空間相依或空間異質性問題。一般而言,空間資料分析主要有兩個分派:模型導向學派與資料導向學派。本文研究目的在於應用空間統計方法合理且充分地評估房地產價值,研究方法包含地理統計(克利金和共克利金)、地理加權迴歸與空間特徵價格模型等,並且以台中市不動產資料進行實證探究。這項新的研究技術在不動產評價領域中將可提供更好的解析能力,使其在評價過程中或是不動產投資決策時,成為一個更強而有力的分析工具。 / In recent years, spatial data analysis has received significant awareness and played an important role in social science because of the rapid development of Geographic Information System (GIS). Although classic statistical methods are attractive in traditional data analysis, they cannot be executed seriously for spatial data. Standard statistical techniques didn’t sufficiently deal with spatial dependence or spatial heterogeneity issues. Generally, the model-driven method and the data-driven method are mainly the two branches of the spatial data analysis. The purpose of this paper is to apply spatial statistics methods including geostatistical methods (kriging and cokiging), geographically weighted regression, and spatial hedonic price models to real estate analysis. It seems to be completely reasonable and sufficient. The real estate data in Taichung city (Taiwan) is used to carry out our exploration. These techniques give better insight in the field of real estate assessment. They can apply a good instrument in mass appraisal and decision concerning real estate investment.
|
53 |
Multiscale and meta-analytic approaches to inference in clinical healthcare dataHamilton, Erin Kinzel 29 March 2013 (has links)
The field of medicine is regularly faced with the challenge of utilizing information that is complicated or difficult to characterize. Physicians often must use their best judgment in reaching decisions or recommendations for treatment in the clinical setting. The goal of this thesis is to use innovative statistical tools in tackling three specific challenges of this nature from current healthcare applications.
The first aim focuses on developing a novel approach to meta-analysis when combining binary data from multiple studies of paired design, particularly in cases of high heterogeneity between studies. The challenge is in properly accounting for heterogeneity when dealing with a low or moderate number of studies, and with a rarely occurring outcome. The proposed approach uses a Rasch model for translating data from multiple paired studies into a unified structure that allows for properly handling variability associated with both pair effects and study effects. Analysis is then performed using a Bayesian hierarchical structure, which accounts for heterogeneity in a direct way within the variances of the separate generating distributions for each model parameter. This approach is applied to the debated topic within the dental community of the comparative effectiveness of materials used for pit-and-fissure sealants.
The second and third aims of this research both have applications in early detection of breast cancer. The interpretation of a mammogram is often difficult since signs of early disease are often minuscule, and the appearance of even normal tissue can be highly variable and complex. Physicians often have to consider many important pieces of the whole picture when trying to assess next steps. The final two aims focus on improving the interpretation of findings in mammograms to aid in early cancer detection.
When dealing with high frequency and irregular data, as is seen in most medical images, the behaviors of these complex structures are often difficult or impossible to quantify by standard modeling techniques. But a commonly occurring phenomenon in high-frequency data is that of regular scaling. The second aim in this thesis is to develop and evaluate a wavelet-based scaling estimator that reduces the information in a mammogram down to an informative and low-dimensional quantification of the innate scaling behavior, optimized for use in classifying the tissue as cancerous or non-cancerous. The specific demands for this estimator are that it be robust with respect to distributional assumptions on the data, and with respect to outlier levels in the frequency domain representation of the data.
The final aim in this research focuses on enhancing the visualization of microcalcifications that are too small to capture well on screening mammograms. Using scale-mixing discrete wavelet transform methods, the existing detail information contained in a very small and course image will be used to impute scaled details at finer levels. These "informed" finer details will then be used to produce an image of much higher resolution than the original, improving the visualization of the object. The goal is to also produce a confidence area for the true location of the shape's borders, allowing for more accurate feature assessment. Through the more accurate assessment of these very small shapes, physicians may be more confident in deciding next steps.
|
54 |
GIS-integrated mathematical modeling of social phenomena at macro- and micro- levels—a multivariate geographically-weighted regression model for identifying locations vulnerable to hosting terrorist safe-houses: France as case studyEisman, Elyktra 13 November 2015 (has links)
Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.
|
55 |
Spatial Pattern and Accessibility Analysis of Covid-19 Vaccine Centers in MichiganAmin, Faria January 2021 (has links)
No description available.
|
Page generated in 0.0733 seconds