• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 62
  • 58
  • 17
  • 10
  • 10
  • 9
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 361
  • 120
  • 95
  • 77
  • 56
  • 49
  • 45
  • 41
  • 39
  • 38
  • 34
  • 33
  • 32
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Effects of Submerged Arc Weld (SAW) Parameters on Bead Geometry and Notch-Toughness for X70 and X80 Linepipe Steels

Pepin, Joel 11 1900 (has links)
For the manufacture of higher strength pipelines to be feasible, a better understanding of the effects of welding on toughness is necessary. Bevel submerged arc welds were performed on X80 grade steel. The subsequent Charpy V-notch (CVN) test results indicated that the notch placement in the various heat affected zone regions, and hence the bead geometry, affected the test results. A series of bead-on-plate (BOP) submerged arc welds then were performed on X70 grade steel plate to determine the effects of current, voltage, heat input, polarity, and waveform manipulation (i.e., balance, offset, and frequency) on both single and tandem weld bead geometry. A new bead profile characteristic, the SP ratio, is proposed to describe weld bead geometry, and its relationship with welding parameters is discussed. Sub-size CVN specimens, pulled from many of the BOP weld coupons, were then tested. The greatest subsize CVN fracture energies were achieved when the bead was produced using lower heat input, and when the bead profile possessed a greater SP ratio. / Materials Engineering
52

Numerical simulation of residual stresses in a weld seam : An application of the Finite Element Method

Maczugowski, Maciej January 2017 (has links)
Articulated haulers are fundamental equipment to transport material. The load carrying structure on a hauler consists mainly of welded frames. During welding of the frames high residual stress will be introduced. These stresses may have a significant impact on the fatigue life of the frames. This is the reason for having good knowledge of the weld residual stresses. The finite element method was used to calculate the residual stress distributions in a butt weld and a T-join weld. Simulation of the welding process with thermal and mechanical analysis was prepared by means of welding GUI implemented in LS-PrePost. The welding simulation is a computer intensive operation with high CPU time. That is why it is important to investigate which process factors that have the largest impact on welding simulation results. The aim of this thesis is to investigate the correlation between designed models in FEA software with published results of weld residual stress measurements and conclude which parameters should be mainly taken into consideration.
53

Investigation of Weldability in High-Cr Ni-base Filler Metals

Luskin, Timothy Clark 24 July 2013 (has links)
No description available.
54

Fatigue properties of cut and welded high strength steels : Quality aspects in design and production

Stenberg, Thomas January 2016 (has links)
This doctoral thesis concerns fatigue of welded structures. Welding is one of the world’s most common joining methods and it is frequently used in several structural applications in many fields. Some examples are construction vehicles, loader cranes, trucks, busses, forestry and agricultural machines, bridges and ships. Since these structures are subjected to repeated loading, fatigue is the most common cause of failure. A novel numerical algorithm has been developed which assesses the welded surface and calculates and quantifies weld quality parameters and the presence of defects which are critical in fatigue applications. The algorithm is designed for implementation in serial production. It will provide robust and reliable feedback on the quality being produced, which is essential if high strength steels are utilized. Two welding procedures which can increase the weld quality in as welded conditions have been assessed. These procedures utilize welding in different positions and pendling techniques, which can be accomplished using the existing welding equipment. It was found that by using these methods, the fatigue strength can be increased compared to normal weld quality. Furthermore, two fatigue assessment methods ability to account for increased weld quality in low cycle and high cycle fatigue applications has been studied. One of these methods showed sufficient accuracy in predicting the fatigue strength with small scatter and also account for increased weld quality. When implementing thinner high strength steels, the overall stress level in the structure increase. Therefore, other locations such as the steel cut edges may become critical for fatigue failure unless they are not designed and manufactured with the same quality as the welded joint. The influence of surface quality on cut edges was studied and the fatigue strength was estimated using international standards and a fatigue strength model for cut edges. / <p>QC 20160613</p> / WIQ / LIGHTSTRUCT / ONWELD
55

Effects of different heat treatments on hardness of Grade 91 steel / Effekter av olika värmebehandlingar på hårdheten hos Grade 91 stål

Ohlsson, Jonas January 2014 (has links)
CCI Valve Technology AB is a company located in Säffle, Sweden, that manufactures and installs bypass valves. Due to requirements outside normal standards on the valve's hardness values, some measurements have had difficulties meeting such requirements. During this thesis work, tests were carried out to determine how to overcome the difficulties. The experiments focused on five different areas that may affect the components hardness, welding method, soaking temperature during post weld heat treatment, measuring procedure, component thickness and number of heat treatment cycles. The Grade 91 steel specimens that were examined consisted of five solid cylinders and three various pipes that were welded together by using shielded metal arc welding (SMAW) or gas tungsten arc welding (GTAW). Each pipe was sawed apart into three equal parts. All specimens were hardness tested and eight of the specimens' microstructure was studied with an optical microscope. The hardness measurement instruments used, LECO V-100-C2 and GE-MIC 10, are Vickers hardness testers, one stationary and the other one portable. The measuring results contain a vast number of different hardness measurement data. From the analyzed data, the conclusions were drawn that the most suitable soaking temperature during post weld heat treatment were 750° C, that the SMAW method creates a more stable hardness profile than the GTAW method, and that one heat treatment cycle is more beneficial than two or more.
56

Total Fume and Heavy Metals Emission Factors Applicable to Aluminum-Lithium Alloy Welding

Carr, Katie 14 May 2010 (has links)
From constructing buildings to manufacturing ships, welding is the structural backbone to numerous industries. With over one hundred welding techniques, primarily driven by the base metals, filler rods, electrodes, and environmental factors, welding is a major process used in industry, commerce, and service sectors. The focus of this research is to understand the fumes generated by the Tungsten Inert-Gas (TIG) welding on Aluminum-Lithium Alloy (Al-Li Alloy), estimate applicable emission factors, and identify the heavy metal concentrations of lead, manganese, and chromium. Although there are numerous metals and various welding procedures this study will focus on three main factors: 1. Base metals comprised of Aluminum Lithium Alloy 2195 and 2219 an agehardened copper containing aluminum alloy 2. Weld wire 4043 comprised of aluminum silicone and 2319 comprised of copper silicone 3. Weld techniques of Variable Polarity Plasma Arc (VVPA) and Tungsten inertgas (TIG).
57

Beräkningsmetoder för verifiering av svetsar med inriktning på PWT / Calculation methods for welding verification with focus on PWT

Petersson, Viktor, Gustafsson, Johan January 2019 (has links)
Stål är ett material som används i olika byggnadskonstruktioner. I de byggnadskonstruktioner som utsätts för upprepade belastningar kan utmattning ske i materialet. Utmattning leder till permanenta skador i form av sprickbildning och slutligen brott. I svetsade konstruktioner är det ofta svetsar som har den lägsta utmattningsstyrkan. För att förbättra en svets utmattningsstyrka finns efterbehandlingsmetoder som benämns Post Weld Treatment (PWT). Idag används den beräkningsmetod som är föreskriven i Eurokod vid verifiering av svetsar. Beräkningsmetoden är förenklad och kan underskatta objektets livslängd med hänsyn till utmattning. Syftet med arbetet är att studera olika dimensioneringsmetoder som behandlar utmattningsbelastade svetsar samt hur tillämpning av PWT kan förbättra en typsvets livslängd. Målet med arbetet är att studera en typsvets och visa skillnaden i antalet lastcykler mellan beräkningsmetoderna samt hur många lastcykler samma typsvets förväntas öka med PWT. Teorin och resultaten utgår från vetenskapliga artiklar, litteraturstudier och enfallstudie som behandlar både en genomsvetsad stumsvets samt en kälsvets lokaliserade på en I-balk. Resultatet pekar mot att den metod som används idag underskattar livslängden och att PWT kan markant kan förbättra en svetsutmattningsstyrka. / Steel is a material used in various building structures. Fatigue can occur in the material if building structures is exposed for repeated loads. Fatigue leads to permanent damages such as crack initiations and fracture. It is common that welds in welded structures have the lowest fatigue strength. A welds fatigue strength can be improved with treatments termed Post Weld Treatment (PWT). Today a welds fatigue strength is verified with a method described in Eurocode. The calculation method is simplified which can underestimate the objects number of lifecycles regarding fatigue. The purpose with this essay is to study different structural design methods for fatigue exposed welds and how many lifecycles a typeweld will increase when applying PWT. The goal with this essay is to study a typeweld and calculate the number of lifecycles between the calculation methods and to show how many lifecycles the same type weld will increase when applying PWT. The results and theory are based on scientific articles, literature studies and a casestudy which both contains a through welded butt weld and a fillet weld placed on an I-beam. The results points at that the calculation method that is used today underestimates the number of lifecycles and that the number of lifecycles increased significant after PWT.
58

Mechanical behaviour of lined pipelines under welding and impact

Obeid, Obeid January 2016 (has links)
The research presented in this thesis covers two critical problems regarding lined pipes: dynamic impact and welding. A lined pipe consists of an inner layer (the liner) made of corrosion resistant alloy (CRA), e.g. AISI304 stainless steel, and an outer layer made of low carbon steel, e.g. carbon-manganese steel, C-Mn. To manufacture the lined pipe, a special heat treatment, known as tight fit pipe (TFP), based on cooling the liner to -200°C, heating the backing pipe to +500°C and inserting the liner inside the outer pipe, was used in this work. Both welding and impact with external objects are responsible for accumulating high levels of plastic strains and residual stresses which could lead to failure in the pipe sometime after the impact or the welding. The special welding process used in lined pipes typically consists of the overlay welding (inner welding) of the liner with the C-Mn steel pipe for each segment and the girth welding (outer welding) of the two segments. To simulate this welding process using the ABAQUS code, nonlinear heat-transfer and mechanical finite-element (FE) analyses have been conducted. A distributed power density of the moving welding torch and a non-linear heat transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in ABAQUS user-subroutines. The modelling procedure has been validated first against previously published experimental results for stainless steel and carbon steel pipe welding separately. The model has been then used to determine the isotherms induced by the one-pass weld overlay and the one-pass girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding. The same FE numerical procedure to analyse line pipe welding is then applied to simulate six cases experimentally tested in the lab within this project. Furthermore, two cases have been analysed first, namely a reference case, in which the effect of the TFP pre-heat treatment is neglected, and a second one where the pre-heat treatment has been taken into consideration. During welding, the FE thermal history and mechanical strain results for both cases correlate well with the experimental ones in the region with the highest residual stresses, because the effect of initial residual stresses is cancelled in the regions subject to very high temperatures. After welding, the numerical and experimental results have proved that the initial residual stresses due to the TFP pre-heat treatment are reasonably important in the liner whereas they are practically negligible in the C-Mn pipe. The same reference case is then compared numerically and experimentally with further five parametric cases to study the effect of welding properties (weld overlay and girth welding materials), geometric parameters (using weld overlay and liner) and welding process parameters (heat input). The numerical temperature fields and residual stresses are in good agreement with their experimental counterparts for all cases. The dynamic impact problem is a crucial one for lined pipes because of the reduction in the thickness of the outer pipe ensured by the internal protection from corrosion given by a thinner liner. In this case, the lined pipe is more affected by potential impact with external objects (so-called 'third party interference' in the Oil and Gas industry). In general, a dent produced by a freely dropped weight is responsible to a large extent of catastrophic failure in pipelines. Therefore, in this work, 3D FE models have been developed to simulate the mechanism of vertical free drop of a weight from different heights resulting in damage in the pipe. Models have been executed using a three-dimensional non-linear explicit-dynamics FE code, ABAQUS/EXPLICIT. In order to precisely simulate the response of the pipe to subsequent impacts and spring back, an elastic-plastic constitutive law is adopted using the isotropic Hooke's law and a Von Mises yield criterion, with work hardening based on an isotropic hardening rule associated with the equivalent plastic strain rate. Strain-rate dependent properties are specified for both materials, C-Mn and AISI304, to take into account the change in velocities during impact. The numerical strain results are reasonably consistent with the experimental ones recorded by four strain gauge rosettes positioned symmetrically around the dent centre. Numerical and experimental results are comprehensively analysed and discussed also in terms of practical implications in the industry.
59

REAL-TIME IMAGE PATTERN SENSOR FOR WELD POOL PENETRATION THROUGH REFLECTION IN GTAW

Chen, Yu-Ting 01 January 2018 (has links)
In gas tungsten arc welding (GTAW), weld pool surface contains crucial information for welding development. In this research, simulate skilled welders to control the welding process and determine the penetration stages based on the weld pool reaction. This study focuses on solving the uncertainty of the liquid weld pool in joint bases. The weld pool penetration process is highly depending on how the weld pool surface shape. To observe the weld pool, reflect the weld pool surface by the laser and image on the shield glass. The experiments show that the penetration can’t be determine by the reflecting grayness due to the variability of base metal. To control the joint bases diversity, fed a tip of the wire after the arc is established. Crate the new pattern of the weld pool penetration. Experiments verified the feasibility of this method.
60

Evaluation of post-weld heat treatments for corrosion protection in friction stir welded 2024 and 7075 aluminum alloys

Widener, Christian Aragon 12 1900 (has links)
This dissertation presents the results of an investigation into the corrosion resistance of friction stir welding (FSW) for aerospace structures. Two of the most common aerospace aluminum alloys, 2024 and 7075, were investigated. In the as-welded condition, both alloys were found to be highly susceptible to exfoliation corrosion, and 7075 was found to be susceptible to stress corrosion cracking as well. The goal of this research was to identify proper initial temper selection and postweld aging treatments for enhancing the corrosion resistance of both 2024 and 7075 alloys, and their dissimilar joints. A large number of heat treatments were investigated for 7075 in the T6 and T73 tempers, including retrogression re-aging (RRA). Heat treatments were also investigated for 2024-T3 and 2024-T81. Samples were evaluated for resistance to exfoliation corrosion using optical microscopy. Microhardness, electrical conductivity, tension, and fatigue crack propagation tests were also performed on the samples. Beneficial heat treatments were found for both alloys as well as for their dissimilar joints. / "December 2005." / Thesis (Ph.D.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering

Page generated in 0.2286 seconds