• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 11
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 155
  • 155
  • 67
  • 64
  • 46
  • 45
  • 41
  • 39
  • 28
  • 27
  • 25
  • 23
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Power Systems Analysis in the Power-Angle Domain

Arana, Andrew Jex 23 December 2009 (has links)
The idea of performing power systems dynamic analysis in the power-angle domain has been hinted at by previous researchers, but this may be the first published document to develop detailed techniques by which entire power systems can be represented and solved in the power-angle domain. With the widespread deployment of phasor measurement units and frequency data recorders the industry is looking for more real-time analytical tools to turn real-time wide-area measurements into useful information. Applications based on power-angle domain analysis are simple enough that they may be used online. Power-angle domain analysis is similar to DC load-flow techniques in that a flat voltage profile is used and it is assumed that real power and voltage angle are completely decoupled from reactive power and voltage magnitude. The linearized equations for the dynamics of generators and loads are included in the model, which allows the electromechanical response to be solved using conventional circuit analysis techniques. The effect of generation trips, load switching, and line switching can be quickly approximated with nodal analysis or mesh analysis in the power-angle domain. The analysis techniques developed here are not intended to be as accurate as time-domain simulation, but they are simpler and fast enough to be put online, and they also provide a better analytical insight into the system. Power-angle domain analysis enables applications that are not readily available with conventional techniques, such as the estimation of electromechanical propagation delays based on system parameters, the formulation of electromechanical equivalents, modal analysis, stability analysis, and event location and identification based on a small number of angle or frequency measurements. Fault studies and contingency analysis are typically performed with detailed time-domain simulations, where the electromechanical response of the system is a function of every machine in the interconnection and the lines connecting them. All of this information is rarely known for the entire system for each operating condition; as a result, for many applications it may be more suitable to compute an approximation of the system response based on the current operating state of only the major lines and generators. Power-angle domain analysis is adept at performing such approximations. / Ph. D.
102

A Data Analytics Framework for Regional Voltage Control

Yang, Duotong 16 August 2017 (has links)
Modern power grids are some of the largest and most complex engineered systems. Due to economic competition and deregulation, the power systems are operated closer their security limit. When the system is operating under a heavy loading condition, the unstable voltage condition may cause a cascading outage. The voltage fluctuations are presently being further aggravated by the increasing integration of utility-scale renewable energy sources. In this regards, a fast response and reliable voltage control approach is indispensable. The continuing success of synchrophasor has ushered in new subdomains of power system applications for real-time situational awareness, online decision support, and offline system diagnostics. The primary objective of this dissertation is to develop a data analytic based framework for regional voltage control utilizing high-speed data streams delivered from synchronized phasor measurement units. The dissertation focuses on the following three studies: The first one is centered on the development of decision-tree based voltage security assessment and control. The second one proposes an adaptive decision tree scheme using online ensemble learning to update decision model in real time. A system network partition approach is introduced in the last study. The aim of this approach is to reduce the size of training sample database and the number of control candidates for each regional voltage controller. The methodologies proposed in this dissertation are evaluated based on an open source software framework. / Ph. D.
103

Coordinated Control of Inter-area Oscillations using SMA and LMI

Pal, Anamitra 13 March 2012 (has links)
The traditional approach to damp inter-area oscillations is through the installation of Power System Stabilizers (PSSs) which provide damping control action through excitation control systems of the generating units. However, study of recent blackouts has shown that the control action provided by a PSS alone is not sufficient for damping oscillations in modern power systems which operate under stressed conditions. An integrated form of control using remote measurements to coordinate the different control elements present in the system is the need of the hour. One way of implementing such a coordinated control is through the development of a Linear Matrix Inequality (LMI)-based polytopic model of the system that guarantees pole placement for a variety of operating conditions. The size of the polytopic formulation is an issue for application of LMIs to large systems. The use of Selective Modal Analysis (SMA) alleviates this problem by reducing the size of the system. The previous attempts have used a model containing all the and modes, with SMA being used to eliminate all the other states. In practical applications the resulting system was still found to be too large to use in a polytopic model. This thesis presents an algorithm to reduce the size of the system to the relevant modes of oscillations. A 16 machine, 68 bus equivalent model of the New England-New York interconnected power system is used as the test case with DC lines and SVCs acting as the control. The algorithm is then applied to a 127-bus equivalent model of the WECC System. The use of ESDs as a form of control is also demonstrated. The results indicate that the proposed control successfully damps the relevant modes of oscillations without negatively damping the other modes. The control is then transferred to a more detailed 4000+ bus model of the WECC system to realize its performance on real-world systems. / Master of Science
104

THE FUTURE OF DATA ACQUISITION

Wexler, Marty 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / The necessity to acquire and analyze data dates back to the beginning of science itself. Long ago, a scientist may have run experiments and noted the results on a piece of paper. These notes became the data. The method was crude, but effective. As experiments got more complex, the need for better methodologies arose. Scientists began using computers to gather, analyze, and store the data. This method worked well for most types of data acquisition. As the amount of data being collected increased, larger computers, faster processors, and faster storage devices were used in order to keep up with the demand. This method was more refined, but still did not meet the needs of the scientific community. Requirements began to change in the data acquisition arena. More people wanted access to the data in real time. Companies producing large data acquisition systems began to move toward a network-based solution. This architecture featured a specialized computer called the server, which contained all of the data acquisition hardware. The server handled requests from multiple clients and handled the data flow to the network, data displays, and the archive medium. While this solution worked well to satisfy most requirements, it fell short in meeting others. The ability to have multiple computers working together across a local or wide area network (LAN or WAN) was not addressed. In addition, this architecture inherently had a single point of failure. If the server machine went down, all data from all sources was lost. Today, we see that the requirements for data acquisition systems include features only dreamed of five years ago. These new systems are linked around the world by wide area networks. They may include code to command satellites or handle 250 Mbps download rates. They must produce data for dozens of users at once, be customizable by the end user, and they must run on personal computers (PCs)! Systems like these cannot work using the traditional client/server model of the past. The data acquisition industry demands systems with far more features than were traditionally available. These systems must provide more reliability and interoperability, and be available at a fraction of the cost. To this end, we must use commercial-off-the-shelf (COTS) computers that operate faster than the mainframe computers of only a decade ago. These computers must run software that is smart, reliable, scalable, and easy to use. All of these requirements can be met by a network of PCs running the Windows NT operating system.
105

AN EVOLUTIONARY APPROACHTO A COMMUNICATIONS INFRASTRUCTURE FOR INTEGRATED VOICE, VIDEO AND HIGH SPEED DATA FROM RANGETO DESKTOP USING ATM

Smith, Quentin D. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevada / As technology progresses we are faced with ever increasing volumes and rates of raw and processed telemetry data along with digitized high resolution video and the less demanding areas of video conferencing, voice communications and general LAN-based data communications. The distribution of all this data has traditionally been accomplished by solutions designed to each particular data type. With the advent of Asynchronous Transfer Modes or ATM, a single technology now exists for providing an integrated solution to distributing these diverse data types. This allows an integrated set of switches, transmission equipment and fiber optics to provide multi-session connection speeds of 622 Megabits per second. ATM allows for the integration of many of the most widely used and emerging low, medium and high speed communications standards. These include SONET, FDDI, Broadband ISDN, Cell Relay, DS-3, Token Ring and Ethernet LANs. However, ATM is also very well suited to handle unique data formats and speeds, as is often the case with telemetry data. Additionally, ATM is the only data communications technology in recent times to be embraced by both the computer and telecommunications industries. Thus, ATM is a single solution for connectivity within a test center, across a test range, or between ranges. ATM can be implemented in an evolutionary manner as the needs develop. This means the rate of capital investment can be gradual and older technologies can be replaced slowly as they become the communications bottlenecks. However, success of this evolution requires some planning now. This paper provides an overview of ATM, its application to test ranges and telemetry distribution. A road map is laid out which can guide the evolutionary changeover from today's technologies to a full ATM communications infrastructure. Special applications such as the support of high performance multimedia workstations are presented.
106

Apprentissage actif pour la classification des occupations du sol sur larges étendues à partir d'images multispectrales à haute résolution spatiale : application en milieu cultivé, Lebna (Cap-Bon Tunisie) / Active learning for Mapping land cover on wide area, from high spatial resolution satellite images : application in cultivated areas, Lebna (Cap-Bon Tunisie)

Ben Slimene Ben Amor, Ines 23 November 2017 (has links)
Les activités anthropiques dans le bassin méditerranéen sont en forte évolution. Dans les zones agricoles, cette croissance entraîne des évolutions considérables de l'occupation du sol. Cette activité agricole exerce un impact majeur sur le fonctionnement hydrologique des paysages qui n'est identifiable qu'à une échelle bien plus large, sur plusieurs dizaines de km². Cette thèse se concentre sur la classification de l'occupation du sol sur une large étendue à partir d'une image monodate à haute résolution spatiale (SPOT6/7).Dans ce contexte, les données d'apprentissage sont collectées par des enquêtes terrain, par conséquent, elles sont très limitées. Les méthodes d'apprentissage supervisées sont généralement utilisées, en supposant que la distribution des classes est stable sur toute l'image. Cependant, en pratique, on constate une distorsion des distributions des classes (apparition de nouvelles classes, disparition de classes). Ce problème, intitulé "datashift", se produit souvent sur des larges étendues. Ainsi le modèle construit sur les données d'apprentissage initiales s'avère sous optimal pour la classification de l'image entière. Pour atténuer ce problème, les techniques d'apprentissage actif définissent un ensemble d'apprentissage efficace, en l'adaptant itérativement par l'ajout des données non labellisées les plus informatives. Ces techniques permettent d'améliorer le modèle de classification tout en conservant un petit ensemble d'apprentissage initial. L'échantillonnage se base généralement sur deux métriques : l'incertitude et la diversité.Dans cette thèse, nous montrons l'apport des techniques d'apprentissage actif pour la cartographie de l'occupation du sol en milieu agricole, en proposant un échantillonnage adapté par parcelle.L'apport des méthodes d'apprentissage actif est validé par rapport à une sélection aléatoire des parcelles. Une métrique de diversité basée sur l'algorithme Meanshift a été proposée.Dans un deuxième temps, nous avons traité le sous-problème du "datashift" qui est l'apparition de nouvelles classes. Nous avons proposé de nouvelles métriques de diversité basées sur l'algorithme Meanshift et les Fuzzy k-means ainsi qu'une nouvelle stratégie de sélection des données adaptées à la détection de nouvelles classes.Dans la dernière partie, nous nous sommes intéressés aux contraintes spatiales induites par les observations sur terrain et nous avons proposé une stratégie de labellisation par points de vue qui permet de diminuer largement les coûts humains d'observations terrain tout en gardant de bonnes précisions de classification ainsi que la découverte des nouvelles classes.Les méthodes proposées ont été testées et validées avec une image multispectrale SPOT6 à 6m de résolution sur le bassin versant de Lebna, Cap-Bon, Tunisie. / Anthropogenic activities in the Mediterranean are in strong evolution. In agricultural areas, this growth leads to considerable changes in land cover. This agricultural activity has a major impact on the hydrological functioning of the landscapes which can be only identified on a wide scale, over several tens of km². This thesis focuses on the land cover classification on wide area from a high spatial resolution monodate image (SPOT6/7).In this context, the learning data are collected by field surveys, therefore they are very limited. Supervised learning methods are generally used, assuming that the class distribution is stable over all the image. However, in practice, there is a class distributions distortion (new classes appear, classes disappear). This problem, called "datashift", always occurs over wide areas. Thus, the model constructed on the initial learning data is sub-optimal for the classification of the entire image. To lessen this problem, active learning techniques define an effective learning set, by iteratively adapting it by adding the most informative unlabeled data. These techniques improve the classification model while retaining a small initial learning set. Sampling is generally based on two metrics: uncertainty and diversity.In this thesis, we show the contribution of active learning techniques for the land cover mapping in agricultural environment, proposing a suitable sampling per parcel.The active learning methods contribution is validated respectively to a random selection of parcels. A diversity metric based on the Meanshift algorithm has been proposed.Secondly, we treated the sub-problem of the "datashift" which is the appearance of new classes. We proposed new metrics of diversity based on the Meanshift algorithm and Fuzzy k-means as well as a new data selection strategy adapted to the detection of new classes.Finally we were interested in the spatial constraints induced by the field observations and we proposed a strategy of labeling by stand points which make it possible to greatly reduce the human costs for field observations while maintaining good classification precisions as well as the discovery of new classes.The proposed methodologies were tested and validated on a multispectral SPOT6 image with 6m resolution on the Lebna watershed, Cap-Bon, Tunisia.
107

Performances and quality of service of PLC networks for MV and LV distribution systems / Performances et qualité de service dans les réseaux courants porteurs pour des systèmes de distribution moyenne tension et basse tension

Lu, Liping 22 November 2006 (has links)
In this thesis, we are interested in a wide-area PLC (Power Line Communication) network to provide a communication infrastructure for monitoring and control of energy distribution and consumption. This work has been carried out as a part of REMPLI (Real-time Energy Management via Power Line and Internet) European project and resulted in the definition of REMPLI PLC. For achieving high network performance and real-time data transfer using medium voltage and low voltage electricity grids, major problems such as dynamic packet routing, quality of service management and real-time event reporting are addressed. We designed an efficient routing protocol to cope with dynamic electricity grid topology changes and to relay packets to reach the destination. REMPLI PLC performance is evaluated using simulations and complemented by analytic studies. It is proved that most of the application requirements can be satisfied by REMPLI PLC. We proposed and implemented a new traffic dispatcher providing differentiated quality of service for applications. Based on ALOHA protocol, some variants have been designed and evaluated for enabling efficient real-time event notification / Dans cette thèse, nous nous intéressons à la problématique liée à la communication numérique sur courant porteur dans l’objectif de fournir une infrastructure de communication qui permet la surveillance et le contrôle de la distribution et de la consommation de l’énergie. Ce travail a été effectué dans le cadre du projet européen REMPLI (Real-time Energy Management via Power Line and Internet) et a produit la spécification REMPLI PLC (Power Line Communication). Pour fournir une meilleure performance de la communication et effectuer le transfert de données en temps réel, en utilisant les réseaux électriques de moyenne tension et de basse tension, les problèmes principaux qui sont le routage dynamique de paquets de données, la gestion de la qualité de service et la notification des événement en temps réel, ont été traités. Nous avons développé un protocole de routage efficace pour s’adapter au changement dynamique de topologie du réseau électrique. Les performances de REMPLI PLC sont évaluées en utilisant des approches de simulation couplée avec des approches analytiques. Il est prouvé que la majorité des besoins applicatifs peuvent être satisfaite par REMPLI PLC. Nous avons proposé et implanté un nouvel “ordonnançeur de traffic” fournissant différents niveaux de qualité de service pour les applications. Des variantes de protocole ALOHA ont été proposées et évaluées afin de vérifier que les propriétés temps réel requises sur les notifications d’événements sont respectées
108

Real-time shadow detection and removal in aerial motion imagery application

Silva, Guilherme Fr?es 14 August 2017 (has links)
Submitted by PPG Engenharia El?trica (engenharia.pg.eletrica@pucrs.br) on 2017-11-08T12:48:45Z No. of bitstreams: 1 Guilherme_Silva_Dissertacao.pdf: 5806780 bytes, checksum: dd97b70975650b889aaa277b7e6f2b19 (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-11-17T12:39:26Z (GMT) No. of bitstreams: 1 Guilherme_Silva_Dissertacao.pdf: 5806780 bytes, checksum: dd97b70975650b889aaa277b7e6f2b19 (MD5) / Made available in DSpace on 2017-11-17T12:50:25Z (GMT). No. of bitstreams: 1 Guilherme_Silva_Dissertacao.pdf: 5806780 bytes, checksum: dd97b70975650b889aaa277b7e6f2b19 (MD5) Previous issue date: 2017-08-14 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES
109

Sistema de medição fasorial sincronizada aplicado à proteção de retaguarda de grandes áreas / Synchronized phasor measurement system applied to wide area protection of transmission systems

Aline Flávia Nonato da Costa 29 October 2015 (has links)
Este trabalho tem o objetivo de apresentar o desenvolvimento de uma metodologia para a proteção de retaguarda de linhas de transmissão de grandes áreas, utilizando dados de um Sistema de Medição Fasorial Sincronizada. O estudo se justifica devido à contínua expansão dos Sistemas de Transmissão, tais como os que fazem parte do Sistema Interligado Nacional. Vale esclarecer que esta expansão pode vir a dificultar a operação e controle do mesmo, o que faz com que seja necessário, um sistema de proteção cada vez mais confiável, que diminua o impacto de eventos danosos de grande porte, e que atenda aos requisitos de um sistema de proteção de grandes áreas. Neste contexto, o modelo do sistema elétrico de potência em análise foi implementado computacionalmente a partir do RSCAD, ambiente computacional e interface gráfica do RTDS® (Real Time Digital Simulator). Como principal passo, o algoritmo desenvolvido verifica a variação da potência ativa em todos os barramentos monitorados do sistema de transmissão e, de acordo com tal variação, associada ao estado dos dois extremos da linha, detecta e aponta a localização de uma situação de falta. Pelos resultados obtidos, a metodologia se mostrou eficiente na detecção e localização da falta em linhas de transmissão para sistemas de grandes áreas. Toda a metodologia desenvolvida, considerações adotadas e os promissores resultados observados serão reportados neste documento. / This work aims to present the development of a methodology for wide area transmission line backup protection, using Synchronized Phasor Measurement Systems. This study is justified due to continuous expansion of Transmission Systems, such as those which are part of the National Interconnected System. It is worth clarifying that this expansion might difficult system operation and control, which makes necessary to have an increasingly reliable protection system, that minimizes the impact of large dangerous events, and, at the same time, supplies the requirements of a wide area protection system. Within this context, the electrical system model under analysis was implemented through RSCAD, which is a RTDS® (Real Time Digital Simulator) computing environment and graphical interface. As main step, the developed algorithm verifies the active power variation in all monitored buses of the transmission system and then, according to such variation, associated with the communication of the variation state of both line sides, detects and indicates the localization of a faulting condition. According to the results obtained, the methodology has shown its efficiency in transmission line faults detection and localization for wide areas of electrical power systems. The entire developed methodology, considerations adopted and promising outcomes will be reported along this document.
110

Sistema de medição fasorial sincronizada aplicado à proteção de retaguarda de grandes áreas / Synchronized phasor measurement system applied to wide area protection of transmission systems

Costa, Aline Flávia Nonato da 29 October 2015 (has links)
Este trabalho tem o objetivo de apresentar o desenvolvimento de uma metodologia para a proteção de retaguarda de linhas de transmissão de grandes áreas, utilizando dados de um Sistema de Medição Fasorial Sincronizada. O estudo se justifica devido à contínua expansão dos Sistemas de Transmissão, tais como os que fazem parte do Sistema Interligado Nacional. Vale esclarecer que esta expansão pode vir a dificultar a operação e controle do mesmo, o que faz com que seja necessário, um sistema de proteção cada vez mais confiável, que diminua o impacto de eventos danosos de grande porte, e que atenda aos requisitos de um sistema de proteção de grandes áreas. Neste contexto, o modelo do sistema elétrico de potência em análise foi implementado computacionalmente a partir do RSCAD, ambiente computacional e interface gráfica do RTDS® (Real Time Digital Simulator). Como principal passo, o algoritmo desenvolvido verifica a variação da potência ativa em todos os barramentos monitorados do sistema de transmissão e, de acordo com tal variação, associada ao estado dos dois extremos da linha, detecta e aponta a localização de uma situação de falta. Pelos resultados obtidos, a metodologia se mostrou eficiente na detecção e localização da falta em linhas de transmissão para sistemas de grandes áreas. Toda a metodologia desenvolvida, considerações adotadas e os promissores resultados observados serão reportados neste documento. / This work aims to present the development of a methodology for wide area transmission line backup protection, using Synchronized Phasor Measurement Systems. This study is justified due to continuous expansion of Transmission Systems, such as those which are part of the National Interconnected System. It is worth clarifying that this expansion might difficult system operation and control, which makes necessary to have an increasingly reliable protection system, that minimizes the impact of large dangerous events, and, at the same time, supplies the requirements of a wide area protection system. Within this context, the electrical system model under analysis was implemented through RSCAD, which is a RTDS® (Real Time Digital Simulator) computing environment and graphical interface. As main step, the developed algorithm verifies the active power variation in all monitored buses of the transmission system and then, according to such variation, associated with the communication of the variation state of both line sides, detects and indicates the localization of a faulting condition. According to the results obtained, the methodology has shown its efficiency in transmission line faults detection and localization for wide areas of electrical power systems. The entire developed methodology, considerations adopted and promising outcomes will be reported along this document.

Page generated in 0.1119 seconds