Spelling suggestions: "subject:"wide are"" "subject:"side are""
91 |
Scheduling algorithms for resilient packet ring networks with video transport applications /Zhu, Jian, January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2005. / Includes bibliographical references (p. 71-76). Also available in electronic format on the Internet.
|
92 |
Microsoft Windows Server 2003 : security enhancements and new features /Montehermoso, Ronald Centeno. January 2004 (has links) (PDF)
Thesis (M.S. in Information Technology Management)--Naval Postgraduate School, Sept. 2004. / Thesis Advisor(s): Douglas E. Brinkley. Includes bibliographical references (p. 111-118). Also available online.
|
93 |
Characterisation of end-to-end performance for web-based file server respositoriesMascarenhas da Veiga Alves, Manoel Eduardo. January 2001 (has links) (PDF)
Bibliography: leaves 128-135. Investigates the behaviour of TCP bulk file transfer application sessions in a broadband access environment. Introduces some concepts for evaluating network behaviour: a path instability parameter for analyzing different TCP connections; a minimum RTT delay and a minimum typical path for estimating path characteristics between a client and application servers.
|
94 |
PMU based PSS and SVC fuzzy controller design for angular stability analysisAhmed, Sheikh January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Shelli Starrett / Variability in power systems is increasing due to pushing the system to limits for economic purposes, the inclusion of new energy sources like wind turbines and photovoltaic, and the introduction of new types of loads such as electric vehicle chargers. In this new environment, system monitoring and control must keep pace to insure system stability and reliability on a wide area scale. Phasor measurement unit technology implementation is growing and can be used to provide input signals to new types of control. Fuzzy logic based power system stabilizer (PSS) controllers have also been shown effective in various studies. This thesis considers several choices of input signals, composed assuming phasor measurement availability, for fuzzy logic-based controllers. The purpose of the controller is to damp power systems’ low frequency oscillations. Nonlinear transient simulation results for a 4-machine two-area system and 50 machine system are used to compare the effects of input choice and controller type on damping of system oscillations.
Reactive power in the system affects voltage, which in turn affects system damping and dynamic stability. System stability and damping can be enhanced by deploying SVC controllers properly. Different types of power system variables play critical role to damp power swings using SVC controller. A fuzzy logic based static var compensator (SVC) was used near a generator to damp these electromechanical oscillations using different PMU-acquired inputs. The goal was again improve dynamic stability and damping performance of the system at local and global level. Nonlinear simulations were run to compare the damping performance of different inputs on the 50 machine system.
|
95 |
Improved Grid Resiliency through Interactive System ControlJanuary 2014 (has links)
abstract: With growing complexity of power grid interconnections, power systems may become increasingly vulnerable to low frequency oscillations (especially inter-area oscillations) and dependent on stabilizing controls using either local signals or wide-area signals to provide adequate damping. In recent years, the ability and potential to use wide-area signals for control purposes has increased since a significant investment has been made in the U. S. in deploying synchrophasor measurement technology. Fast and reliable communication systems are essential to enable the use of wide-area signals in controls. If wide-area signals find increased applicability in controls the security and reliability of power systems could be vulnerable to disruptions in communication systems. Even though numerous modern techniques have been developed to lower the probability of communication errors, communication networks cannot be designed to be always reliable. Given this background the motivation of this work is to build resiliency in the power grid controls to respond to failures in the communication network when wide-area control signals are used. In addition, this work also deals with the delay uncertainty associated with the wide-area signal transmission. In order to counteract the negative impact of communication failures on control effectiveness, two approaches are proposed and both approaches are motivated by considering the use of a robustly designed supplementary damping control (SDC) framework associated with a static VAr compensator (SVC). When there is no communication failure, the designed controller guarantees enhanced improvement in damping performance. When the wide-area signal in use is lost due to a communication failure, however, the resilient control provides the required damping of the inter-area oscillations by either utilizing another wide-area measurement through a healthy communication route or by simply utilizing an appropriate local control signal. Simulation results prove that with either of the proposed controls included, the system is stabilized regardless of communication failures, and thereby the reliability and sustainability of power systems is improved. The proposed approaches can be extended without loss of generality to the design of any resilient controller in cyber-physical engineering systems. / Dissertation/Thesis / Ph.D. Electrical Engineering 2014
|
96 |
A PMIPv6 Approach to Maintain Network Connectivity during VM Live Migration over the Internet / A PMIPv6 Approach to Maintain Network Connectivity during VM Live Migration over the InternetKassahun, Solomon, Demissie, Atinkut January 2013 (has links)
Live migration is a mechanism that allows a VM to be moved from one host to another while the guest operating system is running. Current live migration implementations are able to maintain network connectivity in a LAN. However, the same techniques cannot be applied for live migration over the Internet. We present a solution based on PMIPv6, a light-weight mobility protocol standardized by IETF. PMIPv6 handles node mobility without requiring any support from the moving nodes. In addition, PMIPv6 works with IPv4, IPv6 and dual-stack nodes. We have setup a testbed to measure the performance of live migration in a PMIPv6 network. Our results show that network connectivity is successfully maintained with little signaling overhead and short VM downtime. As far as we know, this is the first time PMIPv6 is used to enable live migration beyond the scope of a LAN.
|
97 |
Resilient Monitoring and Robust Control towards Blackout Prevention in Modern Power GridsBanerjee, Abhishek January 2020 (has links)
This dissertation embodies a comprehensive approach towards resilient monitoring of frid events using Structure Preserving Energy Functions (SPEFs) and introduces a novel control architecture in Multi Terminal Direct Current (MTDC) grids, for inter-area oscillation damping and achieving robustness to AC as well as DC side, post-contingency events in the modern power grid. This work is presented as a collection of several publications which investigate and address the proposed research topics. At first, SPEFs are derived for multi-machine IEEE benchmark models with the help of the Wide-Area Measurements (WAMs). A physics-based hybrid approach to develop one-to-one mapping between properties of energy function components with respect to the type of fault in the system is introduced. The proposed method is tested offline on a IEEE-39 bus, New England Test System (NETS), with particular interest in monitoring the most sensitive energy functions during relay misoperations. Such events can be precipitated by zone 3 trips in distance relays due to load encroachment during stressed conditions. These might include a genuine misoperation, a false trip due to cyber-attacks, or a load encroachment, all of which are undesirable under normal operating circumstances. An online monitoring scheme is introduced in an actual blackout simulation in the Western Electricity Coordinating Council (WECC) to examine what further indications these energy function components can provide, especially during a cascading sequence, and how they could supervise critical tripping decisions by distance relays. Next, a futuristic grid comprised of Voltage Source Converter (VSC) based AC-MTDC is considered due to its recent proliferation in integrating offshore wind farms to onshore grids, and additionally improving strength of weak AC grids. A robust control is designed using the converter station poles as actuators to provide damping support to the surrounding AC grid. Further, a design problem is envisioned and implemented that introduces disturbance rejection into control architecture by designing a novel explicitly modeled disturbance plant in the Linear Matrix Inequality (LMI) framework. Finally, a novel robust inter-area oscillation damping controller is designed that proves its effectiveness in inter-area mode settling times, and provides robustness to (n-1) contingencies in the AC as well as the DC side of the meshed AC-MTDC grid.
|
98 |
Webová aplikace pro správu síťových prvků Mikrotik / Web application for Mikrotik network nodes managementVaňátko, Matěj January 2016 (has links)
The thesis describes a comprehensive solution of a web application for administration of extensive LAN and WAN networks, which are based on nodes by MikroTik . There is a feasibility study, which says, what modules and what functionality should be included. Also a database structure is clarified and technical procedures of solution of the whole assignment are outlined with an emphasis on universality and maximal simplicity.
|
99 |
WAMS-based Intelligent Load Shedding Scheme for Preventing Cascading BlackoutsVeda, Santosh Sambamoorthy 07 January 2013 (has links)
Severe disturbances in a large electrical interconnection cause a large mismatch in generation and load in the network, leading to frequency instability. If the mismatch is not rectified quickly, the system may disintegrate into multiple islands. Though the Automatic Generation Controls (AGC) perform well in correcting frequency deviation over a period of minutes, they are ineffective during a rolling blackout. While traditional Under Frequency Load Shedding Schemes (UFLS) perform quick control actions to arrest frequency decline in an islanded network, they are not designed to prevent unplanned islanding.
The proposed Intelligent Load Shedding algorithm combines the effectiveness of AGC Scheme by observing tie line flows and the speed of operation of the UFLS Scheme by shedding loads intelligently, to preserve system integrity in the event of an evolving cascading failure. The proposed scheme detects and estimates the size of an event by monitoring the tie lines of a control area using Wide Area Measurement Systems (WAMS) and initiates load shedding by removing loads whose locations are optimally determined by a sensitivity analysis. The amount and location of the load shedding depends on the location and size of the initiating event, making the proposed algorithm adaptive and selective. Case Studies have been presented to show that control actions of the proposed scheme can directly mitigate a cascading blackout. / Ph. D.
|
100 |
Communication Infrastructure for the Smart Grid: A Co-Simulation Based Study on Techniques to Improve the Power Transmission System Functions with Efficient Data NetworksLin, Hua 24 October 2012 (has links)
The vision of the smart grid is predicated upon pervasive use of modern digital communication techniques in today's power system. As wide area measurements and control techniques are being developed and deployed for a more resilient power system, the role of communication networks is becoming prominent. Advanced communication infrastructure provides much wider system observability and enables globally optimal control schemes. Wide area measurement and monitoring with Phasor Measurement Units (PMUs) or Intelligent Electronic Devices (IED) is a growing trend in this context. However, the large amount of data collected by PMUs or IEDs needs to be transferred over the data network to control centers where real-time state estimation, protection, and control decisions are made. The volume and frequency of such data transfers, and real-time delivery requirements mandate that sufficient bandwidth and proper delay characteristics must be ensured for the correct operations. Power system dynamics get influenced by the underlying communication infrastructure. Therefore, extensive integration of power system and communication infrastructure mandates that the two systems be studied as a single distributed cyber-physical system.
This dissertation proposes a global event-driven co-simulation framework, which is termed as GECO, for interconnected power system and communication network. GECO can be used as a design pattern for hybrid system simulation with continuous/discrete sub-components. An implementation of GECO is achieved by integrating two software packages: PSLF and NS2 into the framework. Besides, this dissertation proposes and studies a set of power system applications which can be only properly evaluated on a co-simulation framework like GECO, namely communication-based distance relay protection, all-PMU state estimation and PMU-based out-of-step protection. All of them take advantage of interplays between the power grid and the communication infrastructure. The GECO experiments described in this dissertation not only show the efficacy of the GECO framework, but also provide experience on how to go about using GECO in smart grid planning activities. / Ph. D.
|
Page generated in 0.0482 seconds