• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 61
  • 34
  • 22
  • 12
  • 10
  • 10
  • 9
  • 7
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 523
  • 523
  • 174
  • 151
  • 84
  • 64
  • 64
  • 54
  • 49
  • 48
  • 46
  • 44
  • 41
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Short-circuit currents in wind-turbine generator networks

Howard, Dustin F. 13 January 2014 (has links)
Protection of both the wind plant and the interconnecting transmission system during short-circuit faults is imperative for maintaining system structural integrity and reliability. The circuit breakers and protective relays used to protect the power system during such events are designed based upon calculations of the current that will flow in the circuit during the fault. Sequence-network models of various power-system components, such as synchronous generators, transformers, transmission lines, etc., are often used to perform these calculations. However, there are no such models widely accepted for certain types of wind-turbine generators used in modern wind plants. The problem with developing sequence-network models of wind plants is that several different wind-turbine generator designs exist; yet, each exhibit very different short-circuit behavior. Therefore, a “one size fits all” approach is not appropriate for modeling wind plants, as has been the case for conventional power plants based on synchronous-generator technology. Further, many of the newer wind-turbine designs contain proprietary controls that affect the short-circuit behavior, and wind-turbine manufacturers are often not willing to disclose these controls. Thus, protection engineers do not have a standard or other well-established model for calculating short-circuit currents in power systems with wind plants. Therefore, the research described in this dissertation involves the development of such models for calculating short-circuit currents from wind-turbine generators. The focus of this dissertation is on the four existing wind-turbine generator designs (identified as Types 1 – 4). Only AC-transmission-interconnected wind-turbine generators are considered in this dissertation. The primary objective of this research is the development of sequence-network models, which are frequency-domain analysis tools, for each wind-turbine generator design. The time-domain behavior of each wind-turbine generator is thoroughly analyzed through transient simulations, experimental tests on scaled wind-turbine generator test beds, and solutions to the system dynamic equations. These time-domain analyses are used to support the development of the sequence-network models.
292

Development of an active pitch control system for wind turbines / F.M. den Heijer

Den Heijer, Francois Malan January 2008 (has links)
A wind turbine needs to be controlled to ensure its safe and optimal operation, especially during high wind speeds. The most common control objectives are to limit the power and rotational speed of the wind turbine by using pitch control. Aero Energy is a company based in Potchefstroom, South Africa, that has been developing and manufacturing wind turbine blades since 2000. Their most popular product is the AE1kW blades. The blades have a tendency to over-speed in high wind speeds and the cut-in wind speed must be improved. The objective of this study was to develop an active pitch control system for wind turbines. A prototype active pitch control system had to be developed for the AE1kW blades. The objectives of the control system are to protect the wind turbine from over-speeding and to improve start-up performance. An accurate model was firstly developed to predict a wind turbine’s performance with active pitch control. The active pitch control was implemented by means of a two-stage centrifugal governor. The governor uses negative or stalling pitch control. The first linear stage uses a soft spring to provide improved start-up performance. The second non-linear stage uses a hard spring to provide over-speed protection. The governor was manufactured and then tested with the AE1kW blades. The governor achieved both the control objectives of over-speed protection and improved start-up performance. The models were validated by the results. It was established that the two-stage centrifugal governor concept can be implemented on any wind turbine, provided the blades and tower are strong enough to handle the thrust forces associated with negative pitch control. It was recommended that an active pitch control system be developed that uses positive pitching for the over-speed protection, which will eliminate the large thrust forces. Keywords: pitch control, wind turbine, centrifugal governor, over-speed protection, cut-in wind speed, blade element-momentum theory, rotor, generator, stall, feathering. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
293

Seismic Analysis of Steel Wind Turbine Towers in the Canadian Environment

Nuta, Elena 06 April 2010 (has links)
The seismic response of steel monopole wind turbine towers is investigated and their risk is assessed in the Canadian seismic environment. This topic is of concern as wind turbines are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. An implicit finite element model of a 1.65MW tower was developed and validated. Incremental dynamic analysis was carried out to evaluate its behaviour under seismic excitation, to define several damage states, and to develop a framework for determining its probability of damage. This framework was implemented in two Canadian locations, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, as is the design spectrum. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under seismic loading for future considerations.
294

Seismic Analysis of Steel Wind Turbine Towers in the Canadian Environment

Nuta, Elena 06 April 2010 (has links)
The seismic response of steel monopole wind turbine towers is investigated and their risk is assessed in the Canadian seismic environment. This topic is of concern as wind turbines are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. An implicit finite element model of a 1.65MW tower was developed and validated. Incremental dynamic analysis was carried out to evaluate its behaviour under seismic excitation, to define several damage states, and to develop a framework for determining its probability of damage. This framework was implemented in two Canadian locations, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, as is the design spectrum. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under seismic loading for future considerations.
295

Analysis of a Clean Energy Hub Interfaced with a Fleet of Plug-in Fuel Cell Vehicles

Syed, Faraz January 2011 (has links)
The ‘hydrogen economy’ represents an energy system in which hydrogen and electricity are the dominant energy carriers for use in transportation applications. The ‘hydrogen economy’ minimizes the use of fossil fuels in order to lower the environmental impact of energy use associated with urban air pollution and climate change. An integrated energy system is required to deal with diverse and distributed energy generation technologies such a wind and solar which require energy storage to level energy availability and demand. A distributed ‘energy hub’ is considered a viable concept in envisioning the structure of an integrated energy system. An energy hub is a system which consists of energy input/output, conversion and storage technologies for multiple energy carriers, and would provide an interface between energy producers, consumers, and the transportation infrastructure. Considered in a decentralized network, these hubs would form the nodes of an integrated energy system or network. In this work, a model of a clean energy hub comprising of wind turbines, electrolyzers, hydrogen storage, a commercial building, and a fleet of plug-in fuel cell vehicles (PFCVs) was developed in MATLAB, with electricity and hydrogen used as the energy carriers. This model represents a hypothetical commercial facility which is powered by a renewable energy source and utilizes a zero-emissions fleet of light duty vehicles. The models developed herein capture the energy and cost interactions between the various energy components, and also calculate the CO2 emissions avoided through the implementation of hydrogen economy principles. Wherever possible, similar models were used to inform the development of the clean energy hub model. The purpose of the modelling was to investigate the interactions between a single energy hub and novel components such as a plug-in fuel cell vehicle fleet (PFCV). The final model reports four key results: price of hub electricity, price of hub hydrogen, total annual costs and CO2 emissions avoided. Three scenarios were analysed: minimizing price of hub electricity, minimizing total annual costs, and maximizing the CO2 emissions avoided. Since the clean energy hub could feasibly represent both a facility located within an urban area as well as a remote facility, two separate analyses were also conducted: an on-grid analysis (if the energy hub is close to transmission lines), and an off-grid analysis (representing the remote scenarios). The connection of the energy hub to the broader electricity grid was the most significant factor affecting the results collected. Grid electricity was found to be generally cheaper than electricity produced by wind turbines, and scenarios for minimizing costs heavily favoured the use grid electricity. However, wind turbines were found to avoid CO2 emissions over the use of grid electricity, and scenarios for maximizing emissions avoided heavily favoured wind turbine electricity. In one case, removing the grid connection resulted in the price of electricity from the energy hub increasing from $82/MWh to $300/MWh. The mean travel distance of the fleet was another important factor affecting the cost modelling of the energy hub. The hub’s performance was simulated over a range of mean travel distances (20km to 100km), and the results varied greatly within the range. This is because the mean travel distance directly affects the quantities of electricity and hydrogen consumed by the fleet, a large consumer of energy within the hub. Other factors, such as the output of the wind turbines, or the consumption of the commercial building, are largely fixed. A key sensitivity was discovered within this range; the results were ‘better’ (lower costs and higher emissions avoided) when the mean travel distance exceeded the electric travel range of the fleet. This effect was more noticeable in the on-grid analysis. This sensitivity is due to the underutilization of the hydrogen systems within the hub at lower mean travel distances. It was found that the greater the mean travel distance, the greater the utilization of the electrolyzers and storage tanks lowering the associated per km capital cost of these components. At lower mean travel distances the utilization of the electrolyzers ranged from 25% to 30%, whereas at higher mean travel distances it ranged from 97% to 99%. At higher utilization factors the price of hydrogen is reduced, since the cost recovery is spread over a larger quantity of hydrogen.
296

Investing Flow over an Airfoil at Low Reynolds Numbers Using Novel Time-Resolved Surface Pressure Measurements

Gerakopulos, Ryan 06 April 2011 (has links)
An aluminum NACA 0018 airfoil testbed was constructed with 95 static pressure taps and 25 embedded microphones to enable novel time-resolved measurements of surface pressure. The main objective of this investigation is to utilize time-resolved surface pressure measurements to estimate salient flow characteristics in the separated flow region over the upper surface of an airfoil. The flow development over the airfoil was examined using hot wire anemometry and mean surface pressure for a range of Reynolds numbers from 80x103 to 200x103 and angles of attack from 0° to 18°. For these parameters, laminar boundary layer separation takes place on the upper surface and two flow regimes occur: (i) separation is followed by flow reattachment, so that a separation bubble forms and (ii) separation occurs without subsequent reattachment. Measurements of velocity and mean surface pressure were used to characterize the separated flow region and its effect on airfoil performance using the lift coefficient. In addition, the transition process and the evolution of disturbances were examined. The lift curve characteristics were found to be linked to the rate of change of the separation, transition, and reattachment locations with the angle of attack. For both flow regimes, transition was observed in the separated shear layer. Specifically, the amplification of disturbances within a band of frequencies in the separated shear layer resulted in laminar to turbulent transition. Validation of time-resolved surface pressure measurements was performed for Rec = 100x103 at α = 8° and α = 12°, corresponding to regimes of flow separation with and without reattachment, respectively. A comparative analysis of simultaneous velocity and time-resolved surface pressure measurements showed that the characteristics and development of velocity fluctuations associated with disturbances in the separated shear layer can be extracted from time-resolved surface pressure measurements. Specifically, within the separated flow region, the amplitude of periodic oscillations in the surface pressure signal associated with disturbances in the separated shear layer grew in the streamwise direction. In addition, the frequency at the spectral peak of the amplified disturbances in the separated shear layer was identified. Based on the results of the validation analysis, time-resolved surface pressure measurement analysis techniques were applied for a Reynolds number range from 60x103 to 130x103 and angles of attack from 6° to 16°. Within the separated flow region, the streamwise growth of surface pressure fluctuations is distinctly different depending on the flow regime. Specifically, within the separation bubble, the RMS surface pressure fluctuations increase in the streamwise direction and reach a peak just upstream of the reattachment location. The observed trend is in agreement with that observed for other separating-reattaching flows on geometries such as the forward and backward facing step and splitter plate with fence. In contrast to the separation bubble formation, when the separated shear layer fails to reattach to the airfoil surface, RMS surface pressure fluctuations increase in the streamwise direction with no maximum and the amplitude is significantly lower than those observed in the separation bubble. Surface pressure signals were further examined to identify the frequency, convective velocity, and spanwise uniformity of disturbances in the separated shear layer. Specifically, for both flow regimes, the fundamental frequency and corresponding Strouhal number exhibit a power-law dependency on the Reynolds number. Based on the available data for which velocity measurements were obtained in the separated flow region, the convective velocity matched the mean velocity at the wall-normal distance corresponding to the maximum turbulence intensity. A distinct increase in the convective velocity of disturbances in the separated shear layer was found when the airfoil was stalled in comparison to that found in the separation bubble. From statistical analysis of surface pressure signals in the spanwise direction, it was found that disturbances are strongly two-dimensional in the laminar portion of the separated shear layer and become three-dimensional through the transition process.
297

Suction caissons in sand as tripod foundations for offshore wind turbines

Senders, Marc January 2009 (has links)
[Truncated abstract] The demand for offshore wind turbines is increasing in densely populated areas, such as Europe. These constructions are typically founded on a gravity foundation or a large 'mono pile'. Gravity foundations can only be used at locations where strong soils exist and water depths are limited. Costs associated with a 'mono pile' type foundation contribute to a very large percentage of the total investment costs. This research, therefore, focuses upon a different foundation for offshore wind turbines, namely suction caissons beneath a tripod. This foundation can be used in all kinds of soil types and is cheaper than the 'mono pile' foundation, both in the amount of steel used and installation costs. Cheaper foundations can contribute to a more competitive price for offshore wind energy in comparison with other energy resources. To date, there have been relatively few studies to investigate the behaviour of this type of foundation during the installation process and during operational and ultimate loading for seabed conditions comprising dense sand. Two types of investigations were performed during this research to determine the behaviour of suction caissons beneath a tripod. Firstly, an existing computer program was extended to predict the typical loading conditions for a tripod foundation. Secondly, centrifuge tests on small scale suction caissons were performed to investigate the behaviour during the installation and loading phases. The computer program developed helped to quantify the likely ranges of environmental loading on an offshore wind turbine. For a typical 3 MW wind turbine of 90 m height, the vertical load is low at around 7 MN. During storm conditions the horizontal hydrodynamic load can be in the order of 4 MN. During normal working conditions the horizontal aerodynamic loads can reach 0.4 MN, but can increase to 1.2 MN when the pitch system malfunctions and gusts reach 30 m/s. This aerodynamic load will result in a very large contribution to the overturning moment, due to the high action point of this load. When the wind turbine is placed on top of a tripod, these large moments are counteracted by a push-pull system. ... The development of differential pressure was found to depend on the soil permeability, the extraction speed and a consolidation effect. During cyclic loading no obvious signs of a decrease in resistance were observed. During very fast cyclic loading differential pressures developed, which could increase the drained frictional resistance by approximately 40%. All centrifuge tests results were used to develop methods to predict or back calculate the installation process of suction caissons in sand and layered soil, and the behaviour during tensile and cyclic loading. These methods all use the cone resistance as the main input parameter and predict the force (or required suction) as a function of time, for a given rate of pumping or uplift displacement, in addition to the variation of suction with penetration (or force with uplift displacement). These new methods provide a useful tool in designing a reliable foundation for offshore wind turbines consisting of a tripod arrangement of suction caissons embedded in dense sand.
298

Ανάλυση και έλεγχος αιολικού συστήματος παραγωγής ηλεκτρικής ενέργειας με σύγχρονη μηχανή με μόνιμους μαγνήτες

Γκουντρουμάνη, Βάια 14 October 2013 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη μιας διάταξης ανεμογεννήτριας με σύγχρονη μηχανή με μόνιμους μαγνήτες η οποία συνδέεται μέσω dc διασύνδεσης με το δίκτυο. Τη dc διασύνδεση τη δημιουργεί ένας dc πυκνωτής και από την πλευρά της μηχανής υπάρχει ένας ac/dc πλήρως ελεγχόμενος ανορθωτής ισχύος ενώ από την πλευρά του δικτύου βρίσκεται ένας dc/ac πλήρως ελεγχόμενος αντιστροφέας ισχύος. Σκοπός της εργασίας είναι αρχικά να μελετήσουμε θεωρητικά το συνολικό σύστημα της ανεμογεννήτριας χρησιμοποιώντας το μετασχηματισμό Park για τη μοντελοποίηση του στο d-q πλαίσιο αναφοράς. Στη συνέχεια προχωρούμε στον υπολογισμό των εξισώσεων στο χώρο κατάστασης και τελικά προτείνουμε ένα σύστημα ελέγχου το οποίο βασίζεται στους PI ελεγκτές. Τέλος, προσομοιώνουμε το παραπάνω σύστημα με τη βοήθεια της εφαρμογής Simulink του λογισμικού MATLAB και μελετώντας τα αποτελέσματα, εξάγουμε τα ανάλογα συμπεράσματα. / This thesis deals with the study of a wind turbine device with a permanent magnet synchronous machine which is connected with the grid side via a dc interconnection. The dc link is created by a dc capacitor and on the machine side there is an ac / dc power converter while on the grid side there is a dc / ac power converter, both of which are totally controlled. Aim of this thesis is to study the complete wind turbine system in the d-q rotating vertical axes system through the Park transformation. Then we calculate the state space equations and propose a control system based on PI controllers. Finally, we simulate the complete system with the MATLAB Simulink and having studied the results, we draw conclusions.
299

Modelo de sistema para aquisição e monitoração de dados remotos utilizando sensores e redes de celular 3G aplicado em um pequeno aerogerador

Gruber, Vilson January 2010 (has links)
Esta Tese apresenta o desenvolvimento de um modelo de sistema capaz de monitorar, adquirir, armazenar e transmitir dados remotamente utilizando diversos sensores e rede de celulares 3G para ser aplicada no projeto de pequenos aerogeradores, tendo como meta gerar um produto que apresente boa relação custo/eficiência, com emprego de materiais e processos de manufatura adaptados à realidade mundial. É apresentado um novo modelo de sistema para aquisição de dados, baseado na integração das novas tecnologias da informação e comunicação e de técnicas de processamento analógico e digital de sinais, visando estudar o desempenho de parâmetros gerados em um pequeno aerogerador de bancada. Através deste modelo será possível monitorar continuamente, dentro dos intervalos previstos de amostragem, a ocorrência de mudanças dos parâmetros analisados através de sensores instalados no aerogerador. Os resultados das análises destes sensores podem ser adquiridos e transmitidos remotamente através da Rede 3G, diretamente para uma sala de operações ou ainda ser disponibilizada na WEB através das novas tecnologias e mídias sociais. As informações aqui estudadas mostram resultados que podem ser úteis para qualquer segmento do mercado e para todas as áreas científicas, econômicas e ambientais, que queiram conhecer e aplicar o modelo de um sistema de aquisição e monitoração de dados para o gerenciamento de aerogeradores de pequeno porte. Apesar de no experimento ter sido utilizado variáveis de um aerogerador, são mostradas outras aplicações possíveis de aquisição de dados, monitoramento e experimentos remotos utilizando-se o canal de comunicação celular 3G e a integração das novas tecnologias de informação e comunicação. / This thesis presents the development of model system that can monitor, acquire, store and transmit data remotely using various sensors and 3G cellular network to be applied in the design of small wind turbines, aiming to generate a product that presents a cost-efficient through use of materials and manufacturing processes adapted to the reality world. It presented a new model system for data acquisition based on the integration of new information technologies and communication and processing techniques of analog and digital signals, to study the performance of parameters generated in a small wind turbine bench and remote. Through this model will be possible to monitor continuously, within the ranges provided for sampling, the occurrence of changes of parameters measured by sensors installed in the turbine. The results of analysis of these sensors can be acquired and transmitted remotely via the 3G network, directly to an operating room or be available on the Web with new technologies and social media. The information studied here show results that may be useful for any market segment and for all scientific, economic and environmental issues, willing to learn and apply the model of an acquisition system and data monitoring for management of small wind turbines. Although the experiment has been used variables of a wind turbine, are shown other possible applications of data acquisition, remote monitoring and experiments using the 3G mobile communication channel and the integration of new information technologies and communication.
300

Influência da turbulência atmosférica na esteira aerodinâmica de turbinas eólicas : estudo experimental em túnel de vento

Zúñiga Inestroza, Manuel Alejandro January 2017 (has links)
Aerogeradores, ou turbinas eólicas, são máquinas instaladas em grandes parques eólicos que convertem a energia cinética do vento em energia elétrica. A definição da separação e da interação entre máquinas é um fator fundamental de análise durante a fase de projeto, pois os chamados efeitos de esteira podem inviabilizar o desenvolvimento de um parque eólico. Em geral, a esteira de um aerogerador está caracterizada por um significativo déficit de velocidade e uma intensificação dos níveis de turbulência, o que ocasiona a diminuição da eficiência aerodinâmica e a redução da vida útil das máquinas localizadas a sotavento. Embora existam diferentes pesquisas destinadas à compreensão e previsão dos efeitos de esteira, o problema permanece como uma questão desafiadora que exige a adoção de ferramentas de alta precisão para sua identificação. Este trabalho apresenta uma metodologia experimental em túnel de vento, para a caracterização e avaliação do campo de escoamento na esteira aerodinâmica de um modelo reduzido, sob diferentes condições de escoamento incidente. Especificamente, investiga-se a influência da turbulência atmosférica para quatro perfis de escoamento: i) uniforme-suave; ii) uniforme-turbulento; iii) lei potencial com expoente α = 0,11; iv) lei potencial com expoente α = 0,23. Todos os casos foram conduzidos sob condições de estratificação neutra, e foi utilizado anemômetro de fio-quente para efetivar as medições dos perfis de velocidade média e intensidade da turbulência, em diferentes posições da esteira. Os resultados mostraram diferenças substanciais no comportamento dos perfis de esteira, em função dos níveis de turbulência incidente. Particularmente, observou-se que o incremento da turbulência atmosférica reduz o déficit de velocidade e promove uma maior mistura turbulenta, o que acelera a dissipação dos efeitos de esteira. Assim, a metodologia experimental em túnel de vento evidencia-se como uma importante ferramenta de análise que possibilita amplo espectro para a investigação, precisão e confiabilidade de projetos eólicos. / Wind turbines are machines installed in large wind farms to convert the wind's kinetic energy into electrical power. For an optimal wind farm siting, it is necessary to take into account the interaction between wind turbine wakes. In general, wake effects are associated with velocity deficit and enhanced turbulence intensity. This may reduce the aerodynamic efficiency and lifetime of downwind turbines, making the project unfeasible. Several experimental and numerical studies have been conducted to unravel the behavior of wind turbine wakes under different inflow conditions. However, current wind farm siting tools are incapable of accurately predicting and assessing its effects. This document presents an experimental methodology in the wind tunnel to survey the influence of the atmospheric turbulence on the wake flow field of a wind turbine model. Specifically, four different flow conditions were investigated: i) uniform-laminar; ii) uniform-turbulent; iii) power law exponent α = 0.11; iv) power law exponent α = 0.23. All cases were developed under neutrally stratified conditions. Hot-wire anemometry was used to obtain high-resolution measurements of the mean velocity and turbulence intensity profiles at different downwind positions. Results show that different turbulence intensity levels of the incoming flow lead to substantial differences in the spatial distribution of the wakes. Particularly, higher ambient turbulence promotes a faster wake recovery and lower velocity deficit. In conclusion, the use of wind tunnel experiments is a trustworthy alternative that brings precision and reliability to wind projects.

Page generated in 0.0549 seconds