• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 10
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

Crop residue management and its impacts on soil properties

He, Yuxin January 1900 (has links)
Doctor of Philosophy / Agronomy / DeAnn R. Presley / Crop residue removal for livestock feeding and biofuel production at large scales must be evaluated to assess impacts on soil productivity and properties. Among all the potential negative impacts, wind erosion is a major concern in the central Great Plains. We conducted an on-farm study from 2011 to 2013 by removing crop residue at five levels (0, 25, 50, 75, and 100%) to determine the effects of crop residue removal on soil wind erosion parameters such as dry aggregate size distribution including soil wind erodible fraction (EF <0.84 mm aggregates), geometric mean diameter (GMD) and geometric standard deviation (GSD), dry aggregate stability, and soil surface roughness. The sub-model of Wind Erosion Prediction System (WEPS) developed by the USDA-ARS, Single-event Wind Erosion Evaluation Program (SWEEP) is a stand-alone companion software package that can be applied to simulate soil loss and dust emission from a single windstorm event. We applied measured data (i.e. EF, GMD, GSD, and roughness) to SWEEP for predicting wind velocity that can initiate wind erosion and soil loss under each crop residue removal condition with wind velocity at 13 m sˉ¹. The threshold wind velocity to initiate wind erosion generally decreased with increase in crop residue removal levels, particularly for residue removal >75%. The total amount of soil loss in 3 hours ranged from about 0.2 to 2.5 kg mˉ² and depends on soil condition and crop residue cover. On the other hand, high-yielding crops can produce abundant crop residue, which then raises the question that if a farmer wants to reduce residue, what could they do without removing it? The application of fertilizer on crop residue to stimulate microbial activity and subsequent decomposition of the residue is often debated. We conducted wheat straw decomposition field experiments under different fertilizer rates and combinations at three locations in western Kansas following wheat harvest in 2011 and 2012. A double shear box apparatus instrumented with a load cell measured the shear stress required to cut wheat straw and photomicrography was used to measure the cross-sectional area of wheat straw after shearing. Total C and N were also analyzed. The fertilizer rate and timing of application during summer 2012 and Fall 2013 at the Hays site had impacts on wheat straw shear stress at break point. Across site years, earlier (fall) fertilizer application generally resulted in lower remaining aboveground biomass as compared to a spring application. Multivariate and linear regressions suggested that N and C:N ratio partially explain the results observed with respect to treatment effects on winter wheat residue decomposition.

Local Source Influences Upon the Structure of Dust Plumes in the Channel Country of Western Queensland, Australia

Butler, Harry, n/a January 2004 (has links)
Most of the early wind erosion research undertaken in Australia, concentrated on how wind erosion affects cultivated farm land. However, in the 1990's the focus of wind erosion research in Australia started to shift to include rangeland environments. Initially these rangeland experiments used experimental configurations that were developed for cultivated fields. This meant that in most cases a sampler was set up in the middle of a field and it was assumed that the data collected was representative of the field as a whole. It was also assumed that temporal changes in dust fluxes/concentration reflect overall changes in the land type erodibility and wind erosivity. However, recent experiments and field observations within the rangelands, of the Channel Country suggest that this assumption is not valid. These experiments and observations suggest that there are substantial spatial and temporal variations in erodibility within individual land types. Such variations complicate the interpretation of temporal and spatial erosion trends. In particular, this variability implies that it is difficult to compare sampler data between different wind erosion events. To begin quantifying and comparing sampler data between events within the rangeland environments, the Dust Source Interaction Simulation Model (DSism) was developed to simulate the effect that physical processes and spatial variations in erodibility have upon observed dust concentration pro- files. The modelling/simulation approach used is closely linked to experimental data via the extensive use of sensitivity testing. Another key feature of the DSism approach, is its flexibility in allowing different dust source areas to have particle emission characteristics. This combined sensitivity testing and simulation approach has provided new insights into the wind erosion processes. By using DSism, it has been possible to identify several key features of the wind erosion process within rangeland environments. The first observation is that spatial and temporal changes in erodibility produce distinct changes in both the vertical and crosswind dust concentration profiles. Further investigations, indicate that the dispersion processes in operation vary from event to event. In particular, the results presented here indicate that surface heating plays an important role in some wind erosion events. These results also suggest that even small variations in the vertical dust concentration profile can reflect temporal and spatial changes in processes and erodibility. Finally the simulation results show that the particle size distribution of a vertical dust concentration profile depends on (a) the processes in operation during a given event and (b) the spatial variation in the particle size emission characteristics of the various source areas. These findings have several important implications. In particular, they indicate that both the crosswind and vertical dust concentration profiles can be viewed as amalgamation of several distinct plumes from different dust source areas and that dust concentration profiles contain significant information about both the spatial distribution of sources and the processes in operation during any given event. Most field studies have used regression models to describe the variation in dust concentration with height. A problem with this approach is that it assumes that the variation in dust concentration with height, always has a given functional form (or shape) and that dust concentration always decreases with height. Field observations, indicate that this assumption is only valid for some events within rangeland environments and that dust concentration does not always decrease with height in these environments. In most cases, such variations from the regression fit have been assumed to be the result of experimental 'noise' (error) or spatial variations in erodibility. This thesis presents, modelling and field evidence, which suggests that such variations, are the result of a combination of spatial variations in erodibility and changes in thermal conditions.

Influence of Roughness Density and Plant Distribution on Wind Flow Patterns within a Complex Vegetated Surface

St. Hilaire, Ashley MT 12 September 2011 (has links)
This thesis investigated the interaction of complex vegetation with wind flow and sediment transport at a creosote shrubland located in New Mexico and formed part of a larger on-going study to improve wind erosion modeling techniques. Directionally dependent roughness densities, λ, were computed and compared to mean wind speed ratios (WSRs) derived from anemometry data. A significant relationship existed among decreasing WSRs and increasing λ, indicating that shelter to the ground changed depending on the orientation of the wind. WSRs were larger on the west, more sparsely vegetated side, than in the east, demonstrating that distribution and plant size have a significant effect on near surface winds. Comparison of these data to a similar study completed in a mesquite coppice dune field demonstrated weaknesses in the roughness density parameter. These results have application for improving the understanding of interactions between wind flow and vegetation in complex rangeland environments.

Aerodynamics of wind erosion and particle collection through vegetative controls

Gonzales, Howell B. January 1900 (has links)
Doctor of Philosophy / Biological & Agricultural Engineering / Mark E. Casada / Ronaldo G. Maghirang / Wind erosion is an important problem in many locations, including the Great Plains, that needs to be controlled to protect soil and land resources. This research was conducted to assess the effectiveness of vegetation (specifically, standing vegetation and tree barriers) as controls for wind erosion. Specific objectives were to: (1) measure sand transport and abrasion on artificial standing vegetation, (2) determine porosity and drag of a single row of Osage orange (Maclura pomifera) barrier, (3) assess effectiveness of Osage orange barriers in reducing dust, (4) predict airflow through standing vegetation, and (5) predict airflow and particle collection through Osage orange barriers. Wind tunnel tests were conducted to measure wind speed profiles, relative abrasion energies, and sand discharge rates for bare sand and for two vegetation heights (150 and 220 mm) at various densities of vegetation. Results showed that vegetation density was directly related to threshold velocity and inversely related to sand discharge. The coefficient of abrasion was adversely affected by saltation discharge but did not depend on wind speed. Field tests measured the aerodynamic and optical porosities of Osage orange trees using wind profiles and image analysis, respectively, and an empirical relationship between the two porosities was derived. Vertical wind profiles were also used to estimate drag coefficients. Optical porosity correlated well with the drag coefficient. Field measurements also showed a row of Osage orange barrier resulted in particulate concentration reduction of 15 to 54% for PM2.5 and 23 to 65% for PM10. A computational fluid dynamics (CFD) software (OpenFOAM) was used to predict airflow in a wind tunnel with artificial standing vegetation. Predicted wind speeds differed slightly from the measured values, possibly due to oscillatory motions of the standing vegetation not accounted for in the CFD simulation. OpenFOAM was also used to simulate airflow and particle transport through a row of Osage orange barrier. Predicted and measured wind speeds agreed well. Measured dust concentration reduction at two points (upwind and downwind) were also similar to the predicted results.

Earth, Wind, and Water: Plio-Pleistocene Climate Evolution in East Asia and the North Pacific

Abell, Jordan Tyler January 2021 (has links)
The Pliocene, a geologic epoch spanning ~2.6-5.3 million years ago (Ma), was a period in Earth’s history where temperatures were several degrees warmer than today and atmospheric CO2 was close to modern levels, making it an analogue for future climate change. Following this interval, the planet’s climate shifted to the familiar glacial-interglacial cycles of the Pleistocene (~0-2.6 Ma), beginning with the development of extensive Northern Hemisphere ice sheets at ~2.7 Ma. In response to these changes through the Plio-Pleistocene, several components of the Earth System, particularly related to East Asia and the North Pacific Ocean, varied both temporally and spatially, further modifying regional and global climate through various feedbacks. In this thesis, I utilize a combination of geochemical proxies derived from North Pacific marine sediments as well as a regional climate model to better understand the evolution of the westerly winds, North Pacific Ocean circulation, and East Asian desert landscapes, across the last five million years. In Chapter 1, I reconstruct Pliocene dust fluxes at two different sites in the North Pacific using the constant flux proxy extraterrestrial 3He (3HeET), the first of such records in the Pliocene. Along with 3HeET-derived export productivity fluxes and sea surface temperatures from the westernmost core, I show that the Northern Hemisphere westerly winds, were shifted poleward and weaker during much of the warm Pliocene. Coinciding with the intensification of Northern Hemisphere Glaciation, the westerlies shifted equatorward and strengthened at ~2.7 Ma, and during subsequent glacial periods thereafter. Combining my dust flux record with others from different ocean basin, I find that these changes in the westerly winds were globally synchronous. Chapter 2, entitled “Pliocene Variability of Active Pacific Meridional Overturning Circulation: Reevaluating North Pacific Productivity and Redox Conditions from ~2.5-6 Ma”, presents additional 3HeET-based export productivity flux data, as well as redox element concentrations, from the central subarctic North Pacific through the Pliocene. The new records suggest elevated North Pacific export production during the interval spanning ~4-5.5 Ma, followed by a decrease in the mid-Pliocene (~3.5-4 Ma). Combining this new data with previously published records and modeling output, I provide additional evidence for an active Pacific meridional overturning circulation during the warmer-than-present Pliocene, and add constraints on its variability under various climatic conditions. In Chapter 3, I bring together two constant flux proxy-derived dust flux datasets from the same core in the western North Pacific Ocean to provide novel insight into Quaternary dust dynamics in East Asia. By utilizing constant flux proxies, and accounting for inputs of volcanic material, I show for the first time that dust input to the North Pacific decreased over the last ~2.7 Myr, particularly during glacial periods. While quite different from other previously published dust datasets, this finding is consistent with our current understanding of East Asian dust production mechanisms, and acts as a strong impetus to perform more comprehensive studies of dust fluxes to the North Pacific and other depositional areas downwind of arid regions. Chapter 4 transitions to a terrestrial setting, in which I investigate the impacts of shifting arid region surface albedo on the atmospheric boundary layer using the Hami Basin, China, as a test location. Combining new simulations from the Weather Research and Forecasting base model and available geologic data, I report a previously undescribed “wind-albedo-wind” feedback process. Specifically, I propose that wind erosion, in conjunction with surficial sediments of various albedos, leads to altered wind speeds, and eventually fluctuations in erosion itself. In Chapter 5, I expand upon the work in the preceding chapter by coupling the Weather Research and Forecasting model with a chemistry component to simulate dust emissions. In addition, along with albedo, I characterize previously interpreted surface changes through time to reflect shifts in erodibility and surface roughness. I conclude that although albedo does ultimately influence near-surface wind speeds and dust emissions as predicted in my earlier study, the effects of variable surface roughness and erodibility dominate. Integrating these results with an updated interpretation of the geologic evolution of the Hami Basin, we find that during various periods of the last ~700 ky, the Hami Basin, and likely the greater stony Gobi Desert, could have been much more important dust sources than today.

An investigation of the erosion technique for the evaluation of pedestrian level winds in the wind tunnel

Grip, Robert Erik January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Robert Erik Grip. / M.S.

Advancements for the Numerical Simulation of Free Fall Penetrometers and the Analysis of Wind Erosion of Sands

Zambrano Cruzatty, Luis Eduardo 27 August 2021 (has links)
The coastal population is growing, putting extra stress on coastal sediments and protection features, such as beach dunes. Moreover, global warming will increase the frequency of storms, and coastal dunes and other defense infrastructure will be subjected to increased erosion and scouring, endangering the people they are meant to protect. Understanding soil dynamics and fluid interaction is crucial to predict the effects of sand erosion. In particular, the study of wind erosion of sands in coastal dunes is essential due to the protective role these earthen structures have during storm events. One of the challenges about predicting wind erosion in coastal dunes is its extended spatial scale and the associated economic and logistics costs of sampling and characterizing the sediments. Because of this, in-situ testing for sediment characterization is essential. In particular, the usage of free-fall penetrometers (FFP) is appealing due to their portability and robustness. The sediment properties obtained with this type of testing can later be used to assess wind erosion susceptibility by determining, for example, the wind velocity to initiate the erosion process. FFP testing involves dropping an instrumented probe that impacts the soil and measures the kinematics or kinetics during the penetration process. For example, deceleration measurements are used to compute an equivalent quasi-static failure, which is not in line with the dynamic process characteristic of FFP testing. This preassumed failure mechanism is used to back-calculate the sand's geomechanical properties. However, soil behavior is highly complex under rapid loading, and incorporating this behavior into FFP sediment characterization models is challenging. Advanced numerical modeling can improve the understanding of the physics behind FFP testing. This thesis presents various advancements in numerical modeling and erosion models to bridge FFP in-situ testing with predicting the initiation of wind erosion of sands. First, improvements oriented to the Material Point Method (MPM) for modeling in-situ FFP testing are proposed. The numerical results show that the simulation of FFP deployment in sands is affected by strain localization and highlight the importance of considering constitutive models sensitive to different loading rates. Because of the importance of rate effects in soil behavior, the second aspect of this thesis proposes a novel consistency framework. Two constitutive models are adapted to study strain-rate sensitive non-cohesive materials: i) a strain-softening Mohr-Coulomb, and ii) a NorSand model. In addition to increased strength, the proposed framework captures increased dilatation, an early peak deviatoric stress, and relaxation. Finally, a novel sand erosion model is derived using a continuum approximation and limit equilibrium analysis. The erosion law considers geotechnical parameters, the effects of slope, and moisture suction, in a combined manner. The proposed model is theoretically consistent with existing expressions in the literature. It covers a wide range of environmental and geometrical conditions and helps to reconcile the results from FFP testing with the prediction of the initiation of wind erosion. The model was validated in a wind tunnel and is demonstrated to be a viable alternative for predicting sand erosion initiation. This thesis opens up new research prospects, such as improving the soil characterization models or the direct prediction of sand erosion using rapid, reliable, and efficient in-situ testing methods. / Doctor of Philosophy / With global warming and climate change, it is expected that the frequency and intensity of storms will increase. This increment will put extra stress on coastal sediments such as beach sand and coastal dunes, making them prone to erosion. Coastal dunes lose their ability to withstand storms as they erode, potentially making coastal flooding more frequent. In light of this, all stakeholders involved in the protection against coastal disasters must have the tools to predict, prepare for, and mitigate for situations like the ones stated above. An essential aspect of the prediction component is dependent on a successful sediment characterization, for example, determining how much wind the sand can withstand before it erodes. Free-fall penetrometers (FFP) are devices designed to conduct the characterization mentioned above. However, the procedures used to perform this characterization are mainly based on empirical or semi-empirical expressions. Computer models, capable of simulating the physics behind FFP testing, can bring more insight into the process of interaction between FFP devices, sands, and water and can be the basis to improve the characterization methods. The latter results can be utilized for instance to predict wind erosion, including several properties of the sand, such as its mineralogy and shape. This study contributes to developing the computer simulations of FFP deployment and the wind erosion prediction models. Eventually, these developments can help engineers and coastal managers to anticipate and prepare for more frequent coastal hazards.

Cattle feedlot dust – laser diffraction analysis of size distribution and estimation of emissions from unpaved roads and wind erosion

Gonzales, Howell B. January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Ronaldo G. Maghirang / Large cattle feedlots emit considerable amounts of particulate matter (PM), including TSP (total suspended particulates), PM[subscript]10 (PM with equivalent aerodynamic diameter of 10 μm or less), and PM[subscript]2.5 (PM with equivalent aerodynamic diameter of 2.5 μm or less). Particulate emissions result from pen surface disturbance by cattle hoof action, vehicle traffic on unpaved roads and alleyways, and wind erosion. Research is needed to determine concentrations of various size fractions, size distribution, and emission rates from various sources in feedlots. This research was conducted to measure particle size distribution using laser diffraction method and estimate emissions from unpaved roads and wind erosion. Particle size distribution and concentrations of PM[subscript]10 and PM[subscript]2.5 at a commercial cattle feedlot in Kansas (Feedlot 1) were measured over a 2-yr period. The feedlot had a capacity of 30,000 head and total pen area of 50 ha and was equipped with a sprinkler system for dust control. Collocated low-volume samplers for TSP, PM[subscript]10, and PM[subscript]2.5 were used to measure concentrations of TSP, PM[subscript]10, and PM[subscript]2.5 at the upwind and downwind edges of the feedlot. Dust samples that were collected by TSP samplers were analyzed with a laser diffraction analyzer to determine particle size distribution. Particle size distribution at the downwind edge of the feedlot was also measured with micro-orifice uniform deposit impactor (MOUDI). The laser diffraction method and MOUDI did not differ significantly in mean geometric mean diameter (13.7 vs. 13.0 μm) but differed in mean geometric standard deviation (2.9 vs. 2.3). From laser diffraction and TSP data, PM[subscript]10 and PM[subscript]2.5 concentrations were also calculated and were not significantly different from those measured by low-volume PM[subscript]10 and PM[subscript]2.5 samplers (122 vs. 131 μg/m[superscript]3 for PM[subscript]10; 26 vs. 35 μg/m[superscript]3 for PM[subscript]2.5). Both PM[subscript]10 and PM[subscript]2.5 fractions decreased as pen surface moisture contents increased, while the PM[subscript]2.5/PM[subscript]10 ratio did not change much with pen surface moisture content. Published emission models were used to estimate PM[subscript]10 emissions from unpaved roads and wind erosion at Feedlot 1 and another nearby feedlot (Feedlot 2). Feedlot 2 had a capacity of 30,000 head, total pen surface area of 59 ha, and used water trucks for dust control. Estimated PM[subscript]10 emissions from unpaved roads and wind erosion were less than 20% of total PM[subscript]10 emissions obtained from inverse dispersion modeling. Further research is needed to establish the applicability of published emission estimation models for cattle feedlots.

Influence de particules non-érodables dans le processus d'érosion éolienne / Influence of non-erodible particles on aeolian erosion

Ferreira, Maria Clara Schuwartz 05 January 2017 (has links)
Le processus d'érosion éolienne peut entraîner plusieurs conséquences environnementales: la désertification, la dégradation des sols, la pollution de l'air, etc. Cette dernière est liée aux émissions de particules de matériaux granulaires couramment trouvés sur des sites industriels tels que le minerai et le charbon. La distribution granulométrique de ces matériaux consiste habituellement en un mélange d'une large gamme de diamètres, qui comprennent des particules plus grosses qui ne sont pas érodables même avec de fortes rafales de vent. Les particules non érodables jouent un rôle protecteur pour les particules érodables, en recouvrant la surface et en réduisant ses émissions. L'objectif principal de cette thèse est d'estimer plus précisément les émissions dues à l'érosion éolienne compte tenu de l'influence du pavage causée par des particules non érodables. Un modèle analytique a été proposé pour quantifier les émissions des lits de particules et des tas de stockage avec une large distribution granulométrique. Les effets du processus de pavage sont incorporés dans le modèle par la diminution de la vitesse de frottement moyenne sur la surface érodable puisque les particules non érodables s'accumulent. Des travaux antérieurs ont défini une relation mathématique entre l'évolution de la vitesse de frottement sur la surface érodable et la géométrie des éléments de rugosité. Néanmoins, l’equation n'est valable que pour des taux de couverture de particules non érodables limités. Des simulations numériques ont été effectuées dans ce travail pour étendre cette relation afin d'inclure d'autres cas rencontrés dans des situations réelles (avec de plus grandes quantités de particules non érodables). Le modèle d'émission proposé décrit la relation entre la valeur minimale de la vitesse de frottement (à laquelle les émissions cessent), en tirant parti des résultats numériques, et la profondeur finale érodée du lit, qui fournit à son tour la masse émise. Des expériences en soufflerie ont été réalisées afin de mieux comprendre le phénomène de pavage et estimer les émissions d'un lit de particules contenant une distribution de taille bimodale. Les résultats expérimentaux ont également été utilisés pour valider la modélisation, y compris la masse émise globale et les caractéristiques finales de la surface du lit. Un bon accord a été trouvé entre les résultats expérimentaux et modélisés pour les émissions globales et la profondeur de lit érodé. Le modèle d'érosion a été étendu pour l'application dans les tas de stockage. Dans ce cas, l'érodabilité des particules est plus complexe, puisque la vitesse de frottement et les conditions de seuil ne sont pas spatialement homogènes. L'idée du modèle était de subdiviser le tas en isosurfaces dans lesquelles les conditions de seuil et la vitesse de frottement sont constantes, et traiter chacune de ces zones comme une source différente où le modèle d'émission peut être appliqué. Des expériences en soufflerie ont été réalisées afin d'estimer les émissions d'un tas de sable contenant une distribution de taille bimodale. Les résultats modélisés et expérimentaux ont été comparés pour la configuration d'un tas isolé et un bon accord a été trouvé entre la masse émise estimée et mesurée. L'impact de la présence d'un bâtiment et d'un tas de stockage parallèle successif sur l'émission globale de particules a également été évalué. Des expériences en soufflerie et des simulations numériques ont été effectuées pour plusieurs configurations, en évaluant les effets de: (i) l'orientation du vent, (ii) la vitesse du vent, (iii) la distance entre l'obstacles et (iv) la quantité de particules non érodables. Il a été constaté que les interférences de l'écoulement entre les obstacles augmentent les émissions. Par conséquent, toutes les perturbations du vent ont un impact significatif et doivent être prises en compte dans l'estimation et la modélisation des émissions de poussières. / Wind erosion process can lead to several environmental consequences: desertification, land degradation, air pollution, etc. This last one is related to particulate matter emissions from granular materials commonly found on industrial sites, such as ore and coal. The particle size distribution of these granular materials usually consist of a mixture of a wide range of diameters, which include larger particles that are non-erodible even with strong gusts of wind. The non-erodible particles play a protective role for erodible particles, paving the surface and reducing emissions. The main objective of this thesis is to estimate more accurately emissions due to wind erosion considering the influence of the pavement caused by non-erodible particles. An analytical model was proposed to quantify emissions from particle beds and stockpiles with a wide size distribution. The effects of pavement process are incorporated in the model through the decrease of the mean friction velocity on the erodible surface as the non-erodible particles accumulate. Previous works have defined a mathematical relation between the evolution of the friction velocity over the erodible surface and the geometry of the roughness elements. Nonetheless, the formulation was only valid to limited cover rates of non-erodible particles. Numerical simulations were carried out in this work to extend the formulation in order to include other cases encountered in real situations (with larger amounts of non-erodible particles). The proposed emission model describes the relationship between the minimum value of friction velocity (at which emissions cease), taking advantage of the numerical findings, and the final eroded depth of the bed, which in turn, provides the emitted mass. Wind tunnel experiments were carried out in order to better understand the pavement phenomenon and estimate emissions from a bed of particles containing a bimodal size distribution. The experimental results were also used to validate the modeling, including the global emitted mass and the final characteristics of the bed surface. A good agreement was found between experimental and modeled results for the global emissions and the bed eroded depth. The erosion model was extended for application in stockpiles. In this case, the erodibility of the particles is more complex as the friction velocity and the threshold conditions are not spatially homogeneous. The idea of the model was to subdivide the pile in isosurfaces in which the threshold conditions and the friction velocity are constant and then treat each one of these areas as a different source where the emission model can be applied. Wind tunnel experiments were carried out in order to estimate emissions from a sand pile containing a bimodal size distribution. The modeled and the experimental results were compared for the configuration of an isolated stockpile and a good agreement was found between the estimated and the measured emitted mass. The impact of the presence of a building and a successive parallel stockpiles on the overall particles emission was also evaluated. Wind tunnel experiments and numerical simulations were carried out for several configurations evaluating the effects of: (i) main wind flow orientation, (ii) wind flow velocity, (iii) gap between the obstacle and (iv) amount of non-erodible particles. It was found that the flow interferences between the obstacles increase emissions. Therefore, all wind perturbations have a significant impact and have to be accounted in dust emission estimation and modeling. / O processo de erosão eólica pode levar a várias consequências ambientais: desertificação, degradação da terra, poluição do ar, etc. Esta última está relacionada com as emissões de partículas provenientes de materiais granulares comumente encontrados em indústrias, como minério e carvão. A distribuição granulométrica destes materiais normalmente consiste em uma mistura com uma ampla gama de tamanhos, incluindo partículas maiores que não são erodíveis mesmo com fortes rajadas de vento. As partículas não erodíveis desempenham um papel protetor para as partículas erodíveis, pavimentando a superfície e reduzindo as emissões. O objetivo principal desta tese é estimar com maior acurácia as emissões devidas à erosão eólica considerando a influência da pavimentação causada pelas partículas não-erodíveis. Um modelo analítico foi proposto para quantificar as emissões de leitos de partículas e pilhas com ampla distribuição granulométrica. Os efeitos do processo da pavimentação são incorporados no modelo por meio da diminuição da velocidade de fricção média na superfície erodível à medida que as partículas nãoerodíveis se acumulam. Trabalhos anteriores definiram uma relação matemática entre a evolução da velocidade de fricção na superfície erodível e a geometria dos elementos rugosos. No entanto, a formulação é válida apenas para limitadas taxas de cobertura de partículas não-erodíveis (< 12%). Simulações numéricas foram realizadas neste trabalho para estender a formulação de modo a incluir outros casos encontrados em situações reais (com maiores quantidades de partículas nãoerodíveis). O modelo de emissão proposto descreve a relação entre o valor mínimo da velocidade de fricção (para qual as emissões cessam), utilizando os resultados numéricos, e a profundidade final erodida do leito, que, por sua vez, fornece a massa emitida. Experimentos em túnel de vento foram realizados para melhor compreender o fenômeno da pavimentação e estimar as emissões de um leito de partículas contendo uma distribuição granulométrica bimodal. Os resultados experimentais foram também utilizados para validar a modelagem, incluindo a massa global emitida e as características finais da superfície do leito. Uma boa concordância foi encontrada entre os resultados experimentais e modelados para as emissões globais e a profundidade erodida do leito. O modelo de erosão foi estendido para aplicação em pilhas de estocagem. Neste caso, a erodibilidade das partículas é mais complexa, uma vez que a velocidade de fricção e as condições de limiar não são espacialmente homogêneas. A ideia do modelo é subdividir a pilha em isosuperfícies em que as condições de limiar e a velocidade de fricção são constantes e, em seguida, tratar cada uma dessas áreas como uma fonte diferente onde o modelo de emissão pode ser aplicado. Foram realizados ensaios experimentais em túnel de vento para estimar as emissões de uma pilha de areia contendo uma distribuição de tamanho bimodal. Os resultados experimentais e modelados foram comparados para a configuração de uma pilha isolada (orientada 60 e 90° em relação a direção do escoamento) e uma boa concordância foi encontrada entre a massa estimada e a emitida. O impacto na emissão da presença de um edifício e de uma pilha de estocagem sucessiva também foi avaliado. Experimentos em túnel de vento e simulações numéricas foram realizados para várias configurações avaliando os efeitos de: (i) orientação do vento, (ii) velocidade do vento, (iii) espaçamento entre os obstáculos e (iv) quantidade de partículas não erodíveis. Verificou-se que as interferências do escoamento entre os obstáculos aumentam as emissões. Portanto, todas as perturbações no escoamento têm um impacto significativo e devem ser contabilizadas na estimativa e modelagem de emissões de partículas.

Studie zur Beurteilung des Winderosionsschutzes durch Erstaufforstung, Gehölzstreifen und Ackerbau im Nordraum Leipzig

Ziemann, Astrid, Arnold, Klaus, Schönfeldt, Hans-Jürgen 05 December 2016 (has links)
In der vorliegenden Studie wird einerseits die Winderosion und der damit verbundene Sedimenttransport hinter ausgedehnten Waldgebieten, die in ihrer Zusammensetzung typisch für den Nordraum von Leipzig sind, und hinter schmalen Gehölzschutzstreifen untersucht. Als Ergebnis dieser Analyse lassen sich Empfehlungen für die günstigsten Eigenschaften von Windschutzanpflanzungen hinsichtlich einer maximalen Schutzwirkung vor Sedimenttransport ableiten. Andererseits wird die Häufigkeit möglicher erosiver Ereignisse am Beispiel einer für das Untersuchungsgebiet repräsentativen meteorologischen Station geprüft. Kritische meteorologische Randbedingungen für erosive Prozesse treten entsprechend einer statistischen Datenanalyse zweimal pro Jahr auf. / On the one hand, the wind erosion and the associated sediment transport behind extensive forest areas, which are typically for the northern area of Leipzig, and behind narrow shelterbelts were examined in this study. Recommendations for the favourable properties of such protective arrangements with reference to the maximal shelter effect against sediment transport follow from this analyses. On the other hand, the :frequency of the potential occurrence of erosion will be proofed by data of a representatively meteorological station. Critically meteorological conditions appear two times per year corresponding to the statistical analyses.

Page generated in 0.0686 seconds