Spelling suggestions: "subject:"find role"" "subject:"find ros""
1 |
USING A GIS-BASED APPROACH AND WIND ROSE TO DETERMINE RUNWAY EFFECTIVENESS AND STUDY THE IMPACTS OF O'HARE CHICAGO INTERNATIONAL AIRPORTLewis, Patrici A L Danyelle 01 December 2011 (has links)
Although runways are critical components that make up an airport, few studies have examined their orientations and operations. This is further compounded by the fact that runway layout design and/or configuration are so complex yet they play a vital role in the airport's daily operation, capacity, and safety. In this study, I wish to apply GIS techniques, a wind rose model, and a noise distance decay model to achieve two specific objectives: (1) to determine the effectiveness of runways in terms of its orientation, design, and physical layout; and (2) to analyze any socioeconomic and environmental impacts associated with the use and development of O'Hare Chicago International Airport (ORD). The economic impact of this airport that was reviewed includes job employment, annual development, movement of goods and services and tourism. The study highlights the environmental impacts such as noise, lake effects, compatible land use, and other significant factors in relation to the airport and surrounding communities. The noise distance-decay model shows that aircraft noise levels decompose at about 800 feet (243m) from the O'Hare runways. Areas close to the airport have a 70db noise level and there are non-homogenous patterns between the day and night sound levels and the distance from the runways. The wind rose model shows that the wind blowing at O'Hare airport has a southern directional bias only two of the eight runways meet the criteria of a northeast/southwest direction. The directions of the winds are predominantly southerly headings and wind speeds are greater than 7 m/s. The integration of rule-based runway networks and the wind rose model results allowed for a visual analysis and comparison of runway networks. The integration enabled the analysis of the wind direction in relation to the landing or takeoff of aircrafts. The final interpretation of this result requires caution as it suggests that the use of daily wind events would provide a better outcome. Although this study has suggested a GIS-based strategy and wind rose model with key four elements it still requires further refinement. Future work should plan to include more analytical models/optimization methods that accounts for most factors that determine the effectiveness utilization of runways. Keywords: GIS, O'Hare Modernization Program, runways, wind rose, noise, economy
|
2 |
Wind And Wind Wave Climate For Turkish Coast And Application To Aegean And Mediterrenean SeaAldogan, Serhan 01 July 2008 (has links) (PDF)
The wind waves have significant effects on small craft and fisheries. Therefore, wind wave climate has an important role in the design and operation of fishing harbors and harbors for small craft. The purpose of this study is to identify the wind wave climate along the eastern part of the Mediterranean Sea coastline of Tü / rkiye. For this purpose, wind wave data for a certain period is obtained from ECMWF for the analysis. Moreover, the data will be analyzed for locations selected along the Turkish coast using a special software developed for this thesis study. For every location, the wind wave roses, significant wind wave height versus mean period of primary wind relations, extreme probability distribution, and log-linear cumulative probability distributions will be presented. By the help of software developed, it will be possible to analyse any coordinate using ECMWF data.
|
3 |
Wind resource assessment for posibel wind farm development in Dekemhare and Assab, EritreaNegash, Teklebrhan January 2018 (has links)
Recently wind resource assessment studies have become an important research tool to identify the possible wind farm locations. In this thesis work technical analysis was carried out to determine the wind resource potential of two candidate sites in Eritrea with help of suitable software tools. The first site is located along the Red Sea cost which is well known for its wind resource potential, whereas the second site is located in the central highlands of Eritrea with significant wind resource potential. Detailed wind resource assessment, for one year hourly weather data including wind speed and wind direction, was performed for the two candidate sites using MS Excel and MATLAB. The measured wind data at Assab wind site showed that the mean wind speed and power density was 7.54 m/s and 402.57 W/m2 , whereas the mean wind speed and mean power density from Weibull distribution was 7.51 m/s and 423.71 W/m2 respectively at 80m height. Similarly, the measured mean wind speed and mean power density at Dekemahre wind site was obtained to be 5.498 m/s and 141.45 W/m2, whereas the mean wind speed and mean power density from Weibull distribution was 5.4859m/s and 141.057W/m2 respectively. Based on the analysis results Assab wind site classified as wind class-III and Dekemhare as wind class-I. Wind farm modeling and Annual Energy Production (AEP) estimation was performed for E-82 & E-53 model turbines from Enercon Company with the help of MATLAB and Windpro software. The analysis revealed that Assab wind farm was an ideal site for wind energy production with capacity factor (CF) 53.4% and 55% for E-82 and E-53 turbines respectively. The gross and net AEP for turbine E-82 at Assab wind farm was 469.5 GWh and 446.025 GWh respectively with 95% park efficiency. Similarly, the analysis showed that the CF in Dekemhare site was very low with typical value 14.2% and 15.26% for E-82 and E-53 turbines respectively. The gross and net AEP of that site for model turbine E-53 was 53.5 GWh and 50.825 GWh respectively with 5% wake loss. Finally, a simplified economic analysis was carried out to determine the economic feasibility of possible wind power projects in both sites by assuming investment cost 1600 €/kW for E-82 turbine and 2000 €/kW for E-53 turbine. The total wind farm investment cost was found to be 215.85 and 107.93 Million Euro for E-82 and E-53 model turbines respectively. The levelized cost of energy at Assab and Dekemhare wind farm for E-82 model turbine was 0.0307 €/kWh and 0.5526 €/kWh respectively. The analysis result show that the levelized cost of energy in Dekemhare wind fasrm was much higher than that of Assab wind farm.
|
4 |
Wind power resource assessment, design of grid - connected wind farm and hybrid power systemRehman, Shafiqur 18 May 2012 (has links)
An exponentially growing global population, power demands, pollution levels and, on the other hand, rapid advances in means of communication have made the public aware of the complex energy situation. The Kingdom of Saudi Arabia has vast open land, an abundance of fossil fuel, a small population but has always been among the front-runners where the development and utilisation of clean sources of energy are concerned. Several studies on wind, solar and geothermal sources of energy have been conducted in Saudi Arabia. Solar photovoltaic (pv) has been used for a long time in many applications such as cathodic protection, communication towers and remotely located oil field installations. Recently, a 2MW grid-connected pv power plant has been put online and much larger solar desalination plants are in planning stage. Wind resource assessment, hub height optimisation, grid-connected wind farm and hybrid power system design were conducted in this study using existing methods. Historical daily mean wind speed data measured at 8 to 12metres above ground level at national and international airports in the kingdom over a period of 37 years was used to obtain long-term annual and monthly mean wind speeds, annual mean wind speed trends, frequency distribution, Weibull parameters, wind speed maps, hub height optimisation and energy yield using an efficient modern wind turbine of 2.75MW rated power. A further detailed analysis (such as estimation of wind shear exponent, Weibull parameters at different heights, frequency distribution at different heights, energy yield and plant capacity factor and wind speed variation with height) was conducted using wind speed measurements made at 20, 30 and 40metres above ground level. As a first attempt, an empirical correlation was developed for the estimation of near-optimal hub height (HH = 142.035 * (α) + 40.33) as a function of local wind shear exponent (α) with a correlation coefficient of 97%. This correlation was developed using the energy yield from a wind turbine of 1 000kW rated power and wind speed and local exponent for seven locations in Saudi Arabia. A wind-pv-diesel hybrid power system was designed and specifications were made for a remotely located village, which is being fed 100% by diesel power generating units. The proposed system, if developed, will offset around 35% of the diesel load and therefore will result in decreased air pollution by almost the same amount. The developed wind speed maps, the frequency distributions and estimated local wind shear exponents for seven locations and energy yield will be of great help in defining the further line of action and policy-building towards wind power development and utilisation in the kingdom. The study also recommends conducting a wind measurement campaign using tall towers with wind measurements at more than one height and estimating the local wind shear exponents and developing a wind atlas for the kingdom. The study further states that a grid-connected wind farm of moderate capacity of 40MW should be developed using turbines of varying rated powers. The wind speed data was also analysed using wavelet transform and Fast Fourier Transform (FFT) to understand the fluctuation in wind speed time series for some of the stations. It is also recommended that policy-makers should take firm decision on the development of hybrid power systems for remotely located populations which are not yet connected with the grid. There are two challenges which need research: one is the effect of dust on the moving and structural elements of the wind turbines and the second is the effect of high prevailing temperatures on the performance and efficiency of the same. / Thesis (PhD)--University of Pretoria, 2012. / Mechanical and Aeronautical Engineering / PhD / Unrestricted
|
Page generated in 0.0702 seconds