• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EXPLORING THE ROLE OF FGFS ON RADIAL PATTERNING OF THE EMBRYONIC CHICKEN COCHLEA

Elizabeth Wehren (10035161) 01 March 2021 (has links)
<p>Proper development of the inner ear, including the cochlea, is necessary for normal hearing. Development of the inner ear requires many signaling molecules under both spatial and temporal control. These signaling molecules include the wingless-related integration site (Wnts) and the fibroblast growth factors (Fgfs) gene families. The embryonic chick inner ear was chosen as the model to study cochlear development due to its homology with the mammalian cochlea and the ease of access to the inner ear in ovo. Both the mammalian cochlea and the homologous chick basilar papilla contain two domains with their own type of hair cells and innervation. The neural side of the basilar papilla contains the tall hair cells innervated by the afferent axons which takes the noise signal to the brain. The abneural side of the basilar papilla contains the short hair cells innervated by the efferent axons which receive signals from the brain to turn down added gain.</p> <p>Previous research showed that virally induced cWnt9a overexpression within the basilar papilla generated a neural side phenotype across the basilar papilla (Munnamalai et al., 2017). These basilar papillas contained more tall hair cells and increased innervation at embryonic day 18 (E18) than their wild-type counterparts. Additionally, there were many differentially expressed genes found to be downstream of cWnt9a including cFgf3 and cFgf19. This project focused on determining the role of cFgf19 in inducing a neural side phenotype in the basilar papilla. First, in situ hybridization was used to determine the cFgf3 and cFgf19 mRNA transcript location with cWnt9a overexpression. Both Fgfs were found across the basilar papilla. Next, a possible cWnt9a receptor, cFzd4, which was upregulated with cWnt9a overexpression, was found in the neural side of the basilar papilla. cFgf19 was then overexpressed using one of two different vectors: RCAS(A)/EGFP-P2A-Fgf19 or RCAS(B)/Fgf19-P2A-EGFP in which the order of cFgf19 transcription was altered. RCAS(B)/Fgf19-P2A-EGFP was found to produce less GFP when transfected into DF-1 cells than RCAS(A)/EGFP-P2A-Fgf19. Additionally, RCAS(B)/Fgf19-P2A-EGFP transfected cells produced secreted fusion proteins of GFP and Fgf19, compared to RCAS(A)/EGFP-P2A-Fgf19 transfected cells which produced secreted individual proteins. The viruses were injected into the otocyst at E3 and the embryos harvested several days later including at E6, E10, and E14. Inner ears injected with either virus showed no changes in innervation, hair cells, proliferation, cartilage formation around the cochlear duct, cFgf3 expression, or phosphorylation of ERK. To determine understand where Fgf19 could be producing an effect, the location of a possible receptor, Fgfr4, was determined in wild-type embryos. At E6 and E8, cFgfr4 was found within the basilar papilla, but many more transcripts were found surrounding the cochlear duct. Overall, the role of Fgf19 in neural side fate of the basilar papilla was not determined. Possible reasons for the lack of phenotypic changes include nonfunctional Fgf19 being secreted which could not bind and induce downstream signaling, Fgf19 being responsible for an untested aspect of the cWnt9a overexpression model, or other misregulated genes would be needed for the phenotypic change to occur.</p>
2

Molecular Regulators of Innervation and Patterning in the Developing Chicken Inner Ear

Mary K. Scott (5930246) 17 January 2019 (has links)
<p>Normal hearing and balance relies on the detection of sound, orientation and acceleration by sensory hair cells (HCs) located in the inner ear. Once sound is detected, that information must be transmitted to the brain by sensory neurons. Damage to the HCs and/or neurons in the auditory or vestibular organs of the inner ear can result in hearing loss or balance disorders. In mammals, these disorders can be permanent, as HCs do not regenerate after damage. While hearing aids and cochlear implants can restore some ability to hear, there are currently no molecular therapies for hearing loss. By examining genes involved in HC development and innervation, basic science can identify candidate genes for potential molecular therapies. This dissertation focuses on molecular regulators involved in establishing and/or maintaining innervation in the chicken inner ear during embryonic development.</p><p>The basilar papilla (BP) is the auditory sensory organ in the chicken and is homologous to the mammalian organ of Corti (oC). The BP houses two types of sensory HCs – tall HCs and short HCs. On the neural side of the BP, tall HC receive primarily afferent innervation (neural-side identity). On the abneural side, short HC receive primarily efferent innervation (abneural-side identity). The patterning of these two identities along the radial axis is dependent upon the precise spatiotemporal expression of certain genes during embryonic development. One such gene is <i>Wingless/integrated (Wnt)9a</i>.</p><p>Previous work has shown that <i>Wnt9a</i>is expressed on the neural edge of the BP and is likely secreted in a gradient across the prosensory domain during crucial time points when proliferation, differentiation, and innervation are occurring. When <i>Wnt9a </i>was overexpressed, we observed an increase in the width of the BP as well as an expansion of the neural-side identity, likely at the expense of the abneural-side identity. RNA sequencing of <i>Wnt9a</i>-overexpressing and control BPs identified genes involved in the Wnt signaling pathway, cytoskeletal remodeling, and axon guidance signaling that were differentially expressed. This dissertation focuses on axon guidance genes, specifically those involved in Slit/Robo (Roundabout), Contactin (Cntn), and Semaphorin (Sema) signaling, that were differentially expressed in this RNA sequencing data set.</p><p>Slits typically act as repulsive cues for neurites expressing Robo receptors. RNA sequencing data indicates that <i>Slit2</i>transcripts increased by 1.2 fold when <i>Wnt9a </i>was overexpressed. When examining Slit2 spatial expression pattern in <i>Wnt9a-</i>overexpressing BPs, we did not observe an upregulation of <i>Slit2 </i>but rather an expansion of the <i>Slit2</i>-expression domain that is likely due to increased proliferation in response to <i>Wnt9a</i>. To better understand the role of Slit/Robo signaling in the developing BP, we examined the radial expression patterns of <i>Slit2</i>, <i>Robo1</i>, and <i>Robo2</i>. <i>Slit2 </i>is expressed on the anterior and posterior walls of the cochlear duct (CD). <i>Robo1</i>and <i>Robo2 </i>had graded expression in the prosensory domain of the BP, highest on the abneural side. <i>Robo1</i>is also present in the auditory ganglion. While only a small population of cochleovestibular ganglion neurites have been previously shown to respond to Slits, Slit-Robo has also been shown to activate TCF transcription factor by non-canonically activating β-catenin through Abl kinase. We examined Abl kinase-activated b-catenin in <i>Slit2-</i>and <i>Wnt9a-</i>overexpressing BPs but did not observe a change in phosphorylated b-catenin. We also overexpressed a dominant-negative Robo1. In some dominant-negative Robo1 overexpressing ears, we observed a reduction in ganglion size; however, this affect did not reliably replicate. These data suggests that Slit-Robo signaling could be involved in neuroblast delamination and/or migration.</p><p>RNA sequencing results indicate that <i>Contactin 6</i><i>Cntn6 </i>transcripts increased by 1.5 fold when <i>Wnt9a </i>was overexpressed. Contactins are cell adhesion molecules that have been previously shown to impact neurite outgrowth and innervation. In the auditory field, clinical studies have also shown that patients diagnosed with autism who also have mutations in <i>Cntn5 </i>and <i>Cntn6 </i>are more likely to exhibit increased sensitivity to sound. Based on RNA sequencing in the embryonic day (E)6 chicken ear, <i>Cntn6 </i>has low levels of expression in controls. We attempted to examine the spatial expression of <i>Cntn6 </i>but found that <i>in situ </i>hybridization is not sensitive enough to detect low levels of <i>Cntn6 </i>in control or <i>Wnt9a-</i>overexpressing BPs.</p><p>Class III Semaphorinsecreted ligands are known to repel neurites expressing Neuropilin (Nrp) and/or Plexin (Plxn) receptors. <i>Sema3D </i>and <i>Nrp2 </i>were downregulated in the presence of exogenous <i>Wnt9a</i>; however, the spatial expression of these transcripts did<i></i>not support their role in establishing or maintaining radial innervation patterns. There is, however, a growing body of literature supporting that Sema signaling also has alternative roles in development such as synaptogenesis, boundary formation, and vasculogenesis. To evaluate these options during inner ear development, we used <i>in situ </i>hybridization or immunohistochemistry to map the expression of <i>Sema3D</i>, <i>Sema3F</i>, Nrp1<i>, Nrp2</i>, and <i>PlxnA1 </i>in the chicken inner ear from E5 to E10. The resulting expression patterns in either the otic epithelium or its surrounding mesenchyme suggest that Sema signaling could be involved in each of the varied functions reported for other tissues. <i>Sema3D</i>expression flanking the sensory tissue in vestibular organs suggests that it may repel <i>Nrp2</i>- and <i>PlxnA1</i>-expressing neurites of the vestibular ganglion away from nonsensory epithelia, thus channeling them into the sensory domains at E5-E8. Expression of Sema signaling genes in the sensory hair cells of both the auditory and vestibular organs on E8–E10 may implicate Sema signaling in synaptogenesis. In the nonsensory regions of the cochlea, <i>Sema3D</i>in the future tegmentum vasculosum opposes Nrp1 and <i>PlxnA1 </i>in the future cuboidal cells; the abutment of ligand and receptors in adjacent domains may enforce or maintain the boundary between them. In the mesenchyme, Nrp1 colocalized with capillary-rich tissue. <i>Sema3D </i>immediately flanks this Nrp1-expressing tissue, suggesting a role in endothelial cell migration towards the inner ear. In summary, Sema signaling may play multiple roles in the developing inner ear.</p><p>To better understand innervation patterns in the avian BP, we also examined the developing efferent innervation patterns from E11 to E17 using NeuroVue lipophilic tracer dye. Our data suggest that efferents have already begun to penetrate the sensory epithelium at E11 and that efferents arrive to the ipsilateral BP earlier than the contralateral BP. By E12, many efferents appear to send back branches out to short HCs. At E15, many efferents appear to have reached the abneural edge of the BP, are innervating the hyaline cells, and are projecting apically.</p><p>In summary, this work suggests that Slit and Sema signaling are not involved in establishing radial innervation patterns but may have alternative roles in inner ear development. Additionally, while efferents appear to arrive to the ipsilateral BP sooner than the contralateral BP, both ears send projections across the radial axis and back branch around the same time.</p>
3

Relació entre Neurogenina3 i la via de senyalització Wnt en la formació de les cèl•lules beta del pàncrees

Pujadas i Rovira, Gemma 15 June 2012 (has links)
El pàncrees és una glàndula secretora formada per teixit exocrí i endocrí. El compartiment endocrí està format per les cèl•lules alpha (productores de glucagó), les cèl•lules beta (productores d'insulina), les cèl•lules delta (somatostatina), les cèl•lules PP (polipèptid pancreàtic) i les cèl•lules epsilon (grelina). La Diabetis Mellitus és un grup de malalties metabòliques que es caracteritzen per mantenir nivells elevats de glucosa en sang com a resultat de la incapacitat de produir o utilitzar la insulina. Les cèl•lules productores d'insulina són les cèl•lules beta del pàncrees. Actualment, el tractament de la diabetis es basa en injeccions periòdiques d'insulina. Per solucionar i millorar la vida d'aquests pacients hi ha molts grups que treballen per trobar noves fonts de cèl•lules productores d'insulina que recuperin la massa de cèl•lules beta perdudes durant la diabetis. Per a això, és necessari conèixer detalladament els passos que se succeeixen per generar una cèl•lula productora d'insulina a partir d'una cèl•lula indiferenciada. Durant la organogènesi pancreàtica s'activen un conjunt de factors de transcripció que són essencials per a la correcta formació de l'òrgan, entre ells el factor proendocrí Neurogenina3 (Neurog3), així com també un seguit de senyals extrínsecs (vies de senyalització) que participen en aquest procés. Neurogenina3 és un factor de transcripció de la família bHLH que exerceix un paper essencial en la diferenciació endocrino-pancreàtica, ja que en la seva absència no hi ha formació de les cèl•lules endocrines del pàncrees. En el primer objectiu d'aquesta tesi hem identificat possibles noves dianes de Neurog3, mitjançant l'ús d'un model de diferenciació endocrina in vitro de cèl•lules ductals pancreàtiques, en el qual la sobreexpresió de Neurog3 indueix l'activació del programa transcripcional endocrino-pancreàtic. Mitjançant l'estudi de canvis globals en el perfil d'expressió gènica d'aquestes cèl•lules hem identificat un conjunt de gens relacionats amb la via de senyalització Wingless (Wnt) com a dianes potencials de Neurog3 in vitro. Entre aquests gens, hem centrat els nostres estudis en l'anàlisi del gen que codifica pel lligand de la via Wnt, Wnt9a. El segon objectiu d'aquesta tesi se centra a estudiar la possible participació del lligand Wnt9a en el procés de diferenciació endocrina del pàncrees. Així, vam demostrar per primera vegada la presència en pàncrees embrionari de ratolí del mRNA de Wnt9a, així com la regulació gènica d'aquest lligand per part de factors de transcripció que participen al programa de diferenciació endocrina. Estudiem també el paper de Wnt9a dins de la cascada endocrino-pancreàtica, demostrant un paper regulador de Wnt9a sobre els efectes promoguts per Neurog3 en alguns dels gens endocrins estudiats. Aquests resultats ens han portat al tercer objectiu d'aquesta tesi: caracterització de la diferenciació endocrino-pancreàtica en el model murí gen-anul•lat per Wnt9a. A estadi e18.5 (just abans del naixement) observem un augment generalitzat de les cèl•lules productores d'hormones del compartiment endocrí (cèl•lules β insulina-positives, cèl•lules α glucagó-positives i cèl•lules δ somatostatina-positives) en relació a l'àrea pancreàtica total, que correlaciona amb una major taxa de proliferació d'aquestes. L'anàlisi de l'expressió gènica realitzat a estadi e15.5 (moment de màxima expansió endocrina) no mostra diferències en els nivells del mRNA de Neurog3, indicant que l'augment en el compartiment endocrí observat a e18.5 no es deu a una major especificació endocrina. No obstant això, l'estudi de diferents factors integrants del programa transcripcional endocrí mostra un augment en l'expressió de Pdx1 en els animals deficients que podria explicar l'augment en cèl•lules beta observat a e18.5. Per tant, en aquesta tesi definim per primera vegada la relació directa entre factors de transcripció bHLH i components de la via Wnt en pàncrees, així com identifiquem la presència del mRNA de Wnt9a en pàncrees embrionari de ratolí i en illots adults. Demostrem la regulació gènica de Wnt9a per part de factors de la cascada de transcripció endocrina, així com la regulació d'aquests per part de Wnt9a sota l'acció de Neurog3. Identifiquem, mitjançant l'estudi del model animal gen anul•lat per Wnt9a, un augment del compartiment endocrí abans del naixement, a causa d'una major taxa de proliferació, en absència de Wnt9a. Per tant, el conjunt d'aquests resultats indicaria que la via de senyalització Wnt juga un paper important durant el procés de diferenciació endocrina del pàncrees, suggerint una connexió entre el programa transcripcional endocrí i la via de senyalització intracel•lular Wnt. / The pancreas is a gland consisting of secretory exocrine and endocrine tissue. The endocrine compartment is formed by the alpha cells (glucagon producing), the beta cells (insulin producing), delta cells (somatostatin), PP (pancreatic polypeptide) cells and epsilon cells (ghrelin). Diabetes Mellitus is a group of metabolic diseases characterized by maintaining high levels of blood glucose resulting from the inability to produce or use insulin. Currently, the treatment for diabetes is based on regular injections of insulin. There are many groups working on finding new sources of insulin-producing cells to recover beta cells mass lost during diabetes development. For this reason, it’s necessary to detail the molecular steps that occur from an undifferentiated cell to an insulin-producing cell. During pancreatic organogenesis, a set of transcription factors that are essential for proper formation of the organ are activated, including the proendocrine factor Neurogenin3 (Neurog3), as well as a number of extrinsic signals (signalling pathways). Neurogenin3 is a transcription factor that belongs to bHLH transcription factors family. It plays an essential role in pancreatic-endocrine differentiation, since in its absence there is no formation of endocrine cells. In the first objective of this thesis we have identified potential new targets for Neurog3, using an in vitro model of endocrine differentiation process, pancreatic ductal cells (mPAC), in which adenoviral overexpression of Neurog3 induces the activation of the transcriptional differentiation program. Using whole genomic profile study, we identified a set of genes related to signalling Wingless (Wnt) pathway as potential targets of Neurog3 in vitro. Among these genes, we focused our studies on the analysis of the gene encoding the ligand of the Wnt pathway, Wingless- type MMTV integration site 9A (Wnt9a). The second objective of this thesis focuses on the study of the possible role of Wnt9a during endocrine differentiation. Thus, we demonstrate for the first time, the presence of Wnt9a mRNA in mouse embryonic pancreas, as well as its regulation by transcription factors involved in endocrine differentiation program. We studied the role of Wnt9a within the endocrine differentiation cascade, demonstrating a regulatory role of Wnt9a on some Neurog3 activated genes. Finally, we did the characterization of the endocrine differentiation process in the Wnt9a knock out animal mouse model. At embryonic stage (e) 18.5 (just before birth), we observed a general increase in the major hormone-producing cells of the endocrine compartment (β cell insulin-positive, α cells glucagon-positive cells and δ somatostatin- positive) in relation to the total pancreatic area, which correlated with a high rate of proliferation. The analysis of gene expression performed at (e) 15.5 (time of maximum endocrine expansion) shows no difference in levels of Neurog3 mRNA, indicating that the increase in the endocrine compartment observed at (e) 18.5 is not due to a greater endocrine specification. However, the study of transcriptional endocrine factors shows an increase in the expression of Pdx1 gene in the deficient Wnt9a animals; this could explain the increase in beta cells observed at (e) 18.5. Therefore, this thesis define for the first time the direct relationship between bHLH transcription factors and components of the Wnt pathway in the pancreas, as well as the identification of Wnt9a mRNA in embryonic mouse pancreas and in adult islets. We demonstrate the regulation of Wnt9a by transcription factors of the endocrine cascade and the regulation of some of them by Wnt9a. We have identified an increase of the endocrine compartment, just before birth, in Wnt9a deficient animals, probably due to a higher rate of proliferation in the absence of Wnt9a. Hence, all these results indicate that Wnt signalling pathway plays an important role during pancreatic endocrine differentiation, suggesting a connection between the endocrine transcriptional program and Wnt signalling.

Page generated in 0.0281 seconds