• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Détecteurs spectrométriques pour la mammographie et traitement associés / Signal processing methods for energy sensitive mammography exams

Pavia, Yoann 23 May 2017 (has links)
Nous avons étudié l’utilisation de détecteurs spectrométriques, qui émergent dans le domaine de l’imagerie médicale, pour leur application à la mammographie. Ces détecteurs permettent de discriminer l’énergie des photons reçus, ce qui apporte une information supplémentaire à l’imagerie d’atténuation traditionnelle. Ainsi, il est possible d’utiliser des techniques de décomposition en base de deux matériaux, notamment pour déterminer la densité glandulaire dans le sein, qui correspond au pourcentage de tissus glandulaires, et qui est un facteur de risque pour le développement d’un cancer, à partir d’une seule irradiation. Jusqu’alors, il était possible d’utiliser cette méthode à partir de deux expositions à deux énergies distinctes. Dans certains cas, une nouvelle tendance consiste à pratiquer des mammographies avec injection d’un produit de constratse iodé, mais cela nécessite également au moins deux irradiations. Nous avons donc proposé d’estimer la densité du sein et la concentration d’iode simultanément, à partir d’une seule irradiation, à une dose 0,93 mGy, en appliquant des méthodes de décomposition en base de trois matériaux. Premièrement, des méthodes polynomiales ont été adaptées pour être comptibles avec l’information spectrale provenant de 3 canaux d’énergies. Ensuite, nous avons montré qu’une deuxième approche, capable de prendre en compte une information spectrale plus fine, basée sur la maximisation de la vraisemblance entre un spectre mesuré et des spectres de références, était capable d’atteindre de meilleurs résultats. Enfin, nous avons développé une méthode capable de prendre en compte la compression du sein en mammographie pour améliorer les résultats obtenus par la méthode de maximum de vraisemblance. / Energy sensitive X-ray detectors are emerging in the field of medical imaging. We have investigated the use of this new type of X-ray detectos for their application to mammography exams. These detectors are able to discriminate the energy of received photons, which provides additional information to a standard mammography image only composed of the total attenuation signal. Thus, these detectors allow the use of basis material decomposition techniques, from a single x-ray exposure, and permit to determine the breast density, which corresponds to the percentage of glandular tissues in the breast. Breast density is known for being a risk factor for the development of breast cancers. Without energy sensitive X-ray detectors, this method requires two X-ray exposures at different energies. Contrast enhanced mammography is also developing but it requires the use an iodinated contrast media and at least two irradiations. Hence, we proposed to take benefit of energy-sensitive detectors to simultaneously estimate the breast density and the iodine concentration, using a single X-ray exposure at a mean glandular dose of 0.93 mGy. This approach is based on three basis material decomposition methods. First, different polynomial methods have been adapted to comply with spectral information from 3 energy channels. Then, we showed that a second approach, based on the maximisation of the likelihood between a measured spectrum and reference spectra, was able take into consideration finer spectral information and achieved better results. Finally, we have developed a method that can take into consideration the thickness of the compressed breast during a mammography exam to improve the results obtained by the maximum likelihood method.
12

Crescimento e caracterização de filmes espessos de CdTe para a fabricação de detectores de raios-X / Growth and characterization of thick films of CdTe for the manufacture of detectors of nuclear radiation

Santos, José Antônio Duarte 30 April 2010 (has links)
Made available in DSpace on 2015-03-26T13:35:12Z (GMT). No. of bitstreams: 1 texto completo.pdf: 4918198 bytes, checksum: d8295a3e9f68661e7fe4f267ae5aa01d (MD5) Previous issue date: 2010-04-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The presence of nuclear radiation detectors is extremily important in various industries such as medical, astronomy and of national security. There are many types of detectors. However, the detector constructed with CdTe and CdZnTe semiconductor films has become very popular due to some characteristics as convenience, density, energy resolution and for having the possibility of operating at room temperature. In this work, a review of nuclear radiation detectors is made, especially those built with semiconductor. Here are also presented structural, superficial and electric characterization methods to inform which type of sample is the most viable for such purpose. We also present in this work the results of the of CdTe films growth using HotWall Epitaxy technique (HWE) in temperatures from 150 C and 250 C over Si (111), simple glass and glass covered with tin oxide with fluorine . It is also presented the results ofcharacterization of CdTe films by x-ray diffraction and electrical characterization by curves I x V. / A presença de detectores de radiação nuclear é de extrema importância em várias indústrias como, por exemplo, a médica, a astronômica e de segurança nacional. Existem inúmeros tipos de detectores. Um deles, o detector construído com ligas semicondutoras de CdTe e CdZnTe, tem se tornado bastante popular devido às características peculiares como: praticidade, densidade, resolução energética e pela possibilidade de operarem a temperatura ambiente. Neste trabalho, faremos uma revisão de detectores de radiação nuclear, especialmente dos construídos com semicondutores. Apresentamos também métodos de caracterização estrutural, superficial e elétrica de amostras a fim de informar qual tipo de amostra é a mais viável para tal finalidade. Mostramos os resultados do crescimento de filmes espessos de CdTe, utilizando a técnica de Epitaxia de Paredes Quentes (HWE) nas temperaturas de 150 C e 250 C sobre Si (111), vidro simples e vidro coberto com óxido de estanho dopado com flúor. São também apresentados os resultados de caracterização dos filmes de CdTe por difração de raios-X e caracterização elétrica através de curvas I x V do filme.
13

Síntese e caracterização de compostos de terras raras com potencial aplicação na detecção de radiação ionizante / Synthesis and characterization of Rare Earth compounds with potencial appplication in ionizing radiation detection

Simone Aparecida Cicillini 23 June 2006 (has links)
Luminóforos inorgânicos contendo Terras Raras (TR) apresentam um papel importante como detectores de radiação ionizante, aplicados em diagnósticos médicos por imagem, como radiologia e tomografia. A função dos luminóforos é transformar os fótons da radiação de alta energia absorvidos (raios X ou ?) em fótons de luz visível, promovendo melhor qualidade de imagem e, conseqüentemente menor tempo de exposição do paciente à radiação. Os luminóforos de TR consistem de uma matriz hospedeira onde estão presentes íons de TR como Lu, La, Y ou Gd e de um íon ativador (que emite luz na região visível do espectro) como Eu3+, Tb3+, Tm3+ ou Ce3+, por exemplo. Luminóforos contendo íons Ce3+ como ativador são alvo de várias pesquisas relacionadas com detecção de radiação ionizante, devido às rápidas transições 5 d ? 4 f (tempo de resposta de ~ 10 a 100 ns) e emissão de luz na região do azul ou verde, requisitos esperados para um eficiente luminóforo para tal aplicação. Este trabalho apresenta a preparação de luminóforos de TR, dopados com Ce3+ ou Tm3+, na forma de pó, por diferentes métodos de síntese, como os métodos de combustão e Pechini e também por processo sol-gel. Aluminatos de TR (Lu3Al5O12 e Y3Al5O12) dopados com cério ou túlio foram obtidos pela reação de combustão entre precursores nitrato com uréia ou glicina sob aquecimento, ou pela síntese de polímeros de ácido cítrico com etilenoglicol contendo íons TR e alumínio (método Pechini). Em ambos os métodos os compostos foram obtidos por calcinação a temperaturas baixas quando comparadas às dos métodos convencionais. Silicatos de TR (Gd2SiO5, Lu2SiO5 e Y2SiO5) dopados com cério ou túlio foram preparados pelo método sol-gel convencional, por reação entre tetraetóxisilano (TEOS), etanol, água e nitratos metálicos, sob catálise básica, e por um método sol-gel modificado utilizando um polímero precursor. Neste último procedimento, TEOS, etanol e água reagiram juntamente com um sal orgânico de TR, álcool polivinílico (PVA) e uréia como combustível, produzindo um gel. Posterior calcinação levou à formação do silicato. A caracterização dos compostos foi realizada por análises de difratometria de raios X pelo método do pó (DRX), microscopia de eletrônica de varredura (MEV) ou de transmissão (MET), EDX, excitação e emissão no UV-Vis e tempo de vida de luminescência. Para os aluminatos dopados com cério foram ainda realizados espectros de emissão sob excitação por raios X. Os métodos de síntese utilizados se mostraram eficientes para obtenção de luminóforos na forma de pó nanométrico, com exceção do método sol-gel modificado, pois para algumas amostras observou-se a formação de mistura de fases. Os compostos dopados com cério apresentaram excitação e emissão características desse íon na região do verde ou azul do espectro visível, dependendo da matriz, com tempos de vida menores que 100 ns. Já aqueles dopados com túlio apresentaram emissão característica do íon, na região do azul, porém com tempos de vida da ordem de microssegundos. / Rare Earth (RE) inorganic phosphors play an important role as ionizing radiation detectors when applied to medical imaging techniques like radiology and tomography. These phosphors is to convert the high energy radiation absorbed photons (X or ?-rays) into visible photons, leading to better quality images and reducing the time the patient is exposed to radiation. RE phosphors consist of a host lattice where RE ions such as Lu, La, Y, or Gd are present, as well as activator ions (which emit light in the visible range of the spectrum) such as Eu3+, Tb3+, Tm3+, or Ce3+. Cerium-doped phosphors have been the target of several researches related with ionizing radiation detection due to their 5d - 4 f fast transitions (decay time in the ~ 10 to 100 ns range) and due to the fact that they emit light in the blue or green region of the spectrum, which is required for to the efficient phosphors to be applied in the detection of X or ?-rays. This work presents the synthesis of RE phosphor powders doped with Ce3+ or Tm3+, through different synthetic methods: combustion, Pechini, and sol-gel. RE aluminates (Lu3Al5O12 and Y3Al5O12) doped with Ce or Tm were prepared by combustion reaction between nitrate precursors and urea or glycine under heating. They were also obtained via the synthesis of polymers using citric acid, ethileneglycol, RE3+ and Al3+ ions (Pechini method). In both cases, the compounds were obtained by calcination at lower temperatures than those used inconventional methods. RE silicates (Gd2SiO5, Lu2SiO5 e Y2SiO5) doped with Ce or Tm were synthesized by the conventional sol-gel method using tetraethoxisylane (TEOS), ethanol and water, under basic catalysis, and also by a modified sol-gel route that uses a polymeric precursor. In the latter one, TEOS, ethanol and water were reacted with an organic RE salt, polyvinyl alcohol (PVA), and urea was used as fuel, thus yielding a gel. After calcination, we observed silicate formation. Characterization of the compounds was performed by X-ray diffractometry (XRD ? powder method), scanning or transmission electron microscopy (SEM or TEM), energy dispersive X-ray (EDX), luminescence spectroscopy in the UV-Vis range and lifetime analyses. For the cerium doped aluminates, emission spectra under X-ray excitation were also obtained. The synthetic methods used here showed to be efficient for the preparation of nanometric phosphor powders except for the modified sol-gel route, because in this case formation of a mixture of phases was observed for some samples. The Ce-doped compounds exhibited excitation and emission features of this ion in either the green or blue region of the visible spectrum, depending on the matrix, with lifetime values lower than 100 ns. However, the Tm-doped compounds displayed the blue emission typical of Tm ions, but the lifetime values were in the range of microseconds.
14

Obrazové detektory rentgenového záření pro aplikace v microCT systémech / X-ray Image detectors for using in microCT systems.

Papajová, Gabriela January 2017 (has links)
Diplomová práce se zabývá detektory rentgenového záření pro mikro-CT systémy. Teoretická část zahrnuje standartní typy rentgenových detektorů a požadavky na kvalitu obrazu pro výslednou 3D rekonstrukci. V závěru jsou popsány fyzikální parametry reálných detektorů a metody jejich měření a vyhodnocení.
15

Development and Performance Study of Thick Gas Electron Multiplier (THGEM) Based Radiation Detector

Garai, Baishali January 2013 (has links) (PDF)
Radiations can be classified as either ionizing or non-ionizing according to whether it ionizes or does not ionize the medium through which they propagate. X-rays photons and gamma rays are the typical examples of ionizing radiations whereas radiowave, heat or visible light are examples of non ionizing radiations. UV photons have some features of both ionizing and non-ionizing radiation. Both ionizing and non-ionizing radiation can be harmful to living organisms and to the natural environment. Hence the detection and measurement of radiation is very important for the well being of living organisms as well as the natural environment. Not only for safety reasons, have radiation detectors found their applications in various fields including medical physics, nuclear and particle physics, astronomy and homeland security. Industrial sectors that use radiation detection include medical imaging, security and baggage scanning, the nuclear power industry and defense. Gas electron multiplier (GEM) is one of the most successful representatives of gaseous detectors used for UV photon and X-ray photon detection. Recently there is a growing demand for large area photon detectors with sensitivity reaching to the level of single photon. They are used in spectroscopy and imaging in astronomy high energy physics experiments etc. Thick GEM (THGEM) is a mechanical expansion of standard GEM. It has all the necessary requirements needed for large area detector and offers a multiplication factor that permits efficient detection of light. Hence, the development and performance study of THGEM based radiation detector is chosen as the topic of study in the present thesis. The initial part of the thesis contains simulation studies carried out for the understanding the working of the detector and the effect of various design parameters of THGEM for the above said applications. Different steps for the fabrication of THGEM and the technical challenges faced during the process are discussed. In the view of application of the fabricated THGEM for UV photon detection, cesium iodide photocathode is prepared using thin film technology and characterized. The performance of the photocathode under various operating conditions is studied in terms of its photoemission property. The effect of vacuum treatment on the photoemission property of the photocathode exposed to moist air is studied in detail. A major portion of this thesis focuses on maximizing the detection efficiency of the UV photon detector realized using the fabricated THGEM coupled with the cesium iodide photocathode. Simulations are used at different stages to interpret the experimental observations. The electron spectrum obtained from the detector under study was analyzed. The dependence of secondary effect like photon feedback on the operating parameters is also discussed. The last portion of the thesis deals with the application of THGEM as an X-ray detector. The performance is evaluated in terms of the gain and energy resolution achieved. The thesis is organized as follows: Chapter 1 is divided into two sections. Section A gives a general introduction to different types of radiation detectors found in the present day and their working principles. This is followed by discussion about gas ionization based detector and its working principle in detail. A brief literature survey of the different types of micropattern gas detectors is also given in this section. In Section B of this chapter GEM and THGEM are introduced with discussion about their working principle and areas of application. Chapter 2 deals with the simulation study of THGEM undertaken to have a clear understanding of the detector’s working. Section A of this chapter gives an overview of the simulation tools used for the present thesis in particular ANSYS and GARFIELD. Section B presents the results of the simulation study highlighting the effects of different geometrical and operating parameters on the electric field distribution in and around the THGEM aperture. The relevance of the study to the detectors performance is discussed vividly for all the cases. In Chapter 3, the details of the different steps involved in THGEM fabrication are given. Design aspects involved, fabrication of the THGEM using standard PCB technology coupled with photolithography technique are discussed in this chapter. This is followed by an elaborate description of the test setup used for all the performance study. Preface In the view of application of THGEM as a UV photon detector, cesium iodide photocathode was prepared and characterized. Chapter 4 discusses about the CsI photocathode preparation and its characterization for the above said application. Photoemission property of the photocathode was analyzed under various operating parameters. The effect of vacuum treatment on the photocathode performance is a new aspect of this thesis. Its correlation with the microstructure of the film is reported for the first time. Chapter 5 deals with the application of THGEM as a UV photon detector. The study mainly focuses on the improvement of the detection efficiency of the detector. The effect of drift parameters on the electron transfer efficiency and hence on the detection efficiency of the detector is a major contribution of this thesis. There are no literature available which discusses this aspect of a UV photon detector. The experimental study has been supported with simulation results. In addition to the study on detection efficiency, electron spectrum has also been acquired from the UV photon detector. The spectrum has been analyzed under various operating conditions. Discussions about secondary effects like photon feedback prevailing in the detector output are also present in this chapter. Chapter 6 presents the results of THGEM as an X-ray detector. The performance of the detector has been evaluated in terms of the effective gain and energy resolution achieved under different operating conditions. The gain instability with time and its uniformity across the THGEM area are also studied. The effect of drift field on the energy resolution and its correlation with ETE is a new aspect of this work. Chapter 7 summarizes the salient features of the work presented in this thesis. Also the scope of future work based on this thesis is discussed at the end of the chapter.
16

Study of macroscopic and microscopic homogeneity of DEPFET X-ray detectors / Untersuchung der makroskopischen und mikroskopischen Homogenität von DEPFET-Röntgendetektoren

Bergbauer, Bettina 15 January 2016 (has links) (PDF)
For the X-ray astronomy project Advanced Telescope for High ENergy Astrophysics (Athena) wafer-scale DEpleted P-channel Field Effect Transistor (DEPFET) detectors are proposed as Focal Plane Array (FPA) for the Wide Field Imager (WFI). Prototype structures with different pixel layouts, each consisting of 64 x 64 pixels, were fabricated to study four different DEPFET designs. This thesis reports on the results of the electrical and spectroscopic characterization of the different DEPFET designs. With the electrical qualification measurements the transistor properties of the DEPFET structures are investigated in order to determine whether the design intentions are reflected in the transistor characteristics. In addition, yield and homogeneity of the prototypes can be studied on die, wafer and batch level for further improvement of the production technology with regard to wafer-scale devices. These electrical characterization measurements prove to be a reliable tool to preselect the best detector dies for further integration into full detector systems. The spectroscopic measurements test the dynamic behavior of the designs as well as their spectroscopic performance. In addition, it is revealed how the transistor behavior translates into the detector performance. This thesis, as the first systematic study of different DEPFET designs on die and detector level, shows the limitations of the current DEPFET assessment methods. Thus, it suggests a new concise characterization procedure for DEPFET detectors as well as guidelines for expanded testing in order to increase the general knowledge of the DEPFET. With this study of four different DEPFET variants not only designs suitable for Athena mission have been found but also improvement impulses for the starting wafer-scale device production are provided.
17

Study of macroscopic and microscopic homogeneity of DEPFET X-ray detectors

Bergbauer, Bettina 17 December 2015 (has links)
For the X-ray astronomy project Advanced Telescope for High ENergy Astrophysics (Athena) wafer-scale DEpleted P-channel Field Effect Transistor (DEPFET) detectors are proposed as Focal Plane Array (FPA) for the Wide Field Imager (WFI). Prototype structures with different pixel layouts, each consisting of 64 x 64 pixels, were fabricated to study four different DEPFET designs. This thesis reports on the results of the electrical and spectroscopic characterization of the different DEPFET designs. With the electrical qualification measurements the transistor properties of the DEPFET structures are investigated in order to determine whether the design intentions are reflected in the transistor characteristics. In addition, yield and homogeneity of the prototypes can be studied on die, wafer and batch level for further improvement of the production technology with regard to wafer-scale devices. These electrical characterization measurements prove to be a reliable tool to preselect the best detector dies for further integration into full detector systems. The spectroscopic measurements test the dynamic behavior of the designs as well as their spectroscopic performance. In addition, it is revealed how the transistor behavior translates into the detector performance. This thesis, as the first systematic study of different DEPFET designs on die and detector level, shows the limitations of the current DEPFET assessment methods. Thus, it suggests a new concise characterization procedure for DEPFET detectors as well as guidelines for expanded testing in order to increase the general knowledge of the DEPFET. With this study of four different DEPFET variants not only designs suitable for Athena mission have been found but also improvement impulses for the starting wafer-scale device production are provided.

Page generated in 0.0761 seconds