Spelling suggestions: "subject:"rayabsorption"" "subject:"absorption""
161 |
Structure and Ozone Decomposition Reactivity of Supported Manganese Oxide CatalystsRadhakrishnan, Rakesh 26 January 2001 (has links)
Manganese oxide catalysts supported on Al₂O₃, ZrO₂, TiO₂ and SiO₂ supports were used to study the effect of support on ozone decomposition kinetics. X-ray diffraction (XRD), in-situ laser Raman spectroscopy, temperature programmed oxygen desorption, surface area measurements, extended and near edge x-ray absorption fine structure (EXAFS and NEXAFS) showed that the manganese oxide was highly dispersed on the surface of the supports. EXAFS spectra suggest that the manganese active centers on all of the surfaces were surrounded by five oxygen atoms. These metal centers were of a mononuclear type for the Al₂O₃ supported catalyst and multinuclear for the other supports. NEXAFS spectra for the catalysts showed a chemical shift to lower energy and an intensity change in the L-edge features which followed the trend Al₂O₃ > ZrO₂ > TiO₂ > SiO₂. The trends provided insights into the positive role of available empty electronic states required in the reduction step of a redox reaction.
The catalysts were tested for their ozone decomposition reactivity and reaction rates had a fractional order dependency (n < 1) with ozone partial pressure. The apparent activation energies for the reaction was low (3-15 kJ/mol). The support influenced the desorption step (a reduction step) and this effect manifested itself in the pre-exponential factor of the rate constant for desorption. Trends for this pre-exponential factor correlated with trends in NEXAFS features and reflected the ease of electron donation from the adsorbed species to the active center. / Ph. D.
|
162 |
Structure Sensitivity in the Subnanometer Regime on Pt and Pd Supported CatalystsKuo, Chun-Te 29 October 2020 (has links)
Single-atom and cluster catalysts have been receiving significant interest due to not only their capability to approach the limit of atom efficiency but also to explore fundamentally unique properties. Supported Pt-group single atoms and clusters catalysts in the subnanometer size regime maximize the metal utilization and were reported to have extraordinary activities and/or selectivities compared with nanoparticles for various reactions including hydrogenation reactions.
However, the relationship between metal nuclearity, electronic and their unique catalytic properties are still unclear. Thus, it is crucial to establish their relations for better future catalyst design.
Ethylene hydrogenation and acetylene hydrogenation are two important probe reactions with the simplest alkene and alkyne, and they have been broadly studied as the benchmark reactions on the various catalyst systems. However, the catalytic properties and reaction mechanism of those hydrogenation reactions for metal nuclearitiy in the subnanometer regime is still not well understood. In this study, we applied different characterization techniques including x-ray absorption fine structure (XAFS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy(XPS), diffuse reflectance infrared spectroscopy (DRIFTS), calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the structure of Pt/TiO2 and Pd/COF single-atom catalysts and tested their catalytic properties for hydrogenation reactions.
In order to develop such relations, we varied the nuclearity of Pt supported on TiO2 from single atoms to subnanometer clusters to larger nanoparticles. For acetylene hydrogenation, Pt in the subnanometer size regime exhibits remarkably high selectivity to ethylene compared to its nanoparticle counterparts. The high selectivity is resulted from the decreased electron density on Pt and destabilization of C2H4, which were rationalized by X-ray photoelectron spectroscopy and calorimetry results. On the other hand, the activity of H2 activation and acetylene hydrogenation decreased as Pt nuclearity decreased. Therefore, our results show there's a trade-off between activity and selectivity for acetylene hydrogenation.
Additionally, the kinetics measurements of ethylene hydrogenation and acetylene hydrogenation were performed on Pt/TiO2 catalysts, and they found to be structure sensitive for both reactions, which the reaction orders and activation energy changes as particles size change. The activity of ethylene hydrogenation decreases, and activation energy increase from 43 to 86 kJ/mol, as Pt nuclearity decreased from an average size of 2.1 nm to 0.7 nm and single atoms. The reaction orders in hydrocarbons (ethylene and acetylene) were less negative on subnanometer clusters and single atoms in contract to nanoparticles. The results imply that hydrocarbons, ethylene and acetylene species, do not poison the catalyst on Pt in the subnanometer size regime, and hydrogen activation turn to competitive adsorption path with surface hydrocarbons species.
Moreover, single atom Pd supported on imine-linked covalent organic framework was synthesized, characterized by a various of techniques including X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of adsorbed CO, and evaluated its catalytic properties for ethylene hydrogenation. The XAS results show that Pd atoms are isolated and stabilized by two covalent Pd–N and Pd-Cl bonds. DRIFTS of CO adsorption shows a sharp symmetrical peak at 2130 cm−1. The Pd single atoms are active for hydrogenation of ethylene to ethane at room temperature. The reaction orders in C2H4 and H2 were 0.0 and 0.5 suggesting that ethylene adsorption is not limiting while hydrogen forms on Pd through dissociative adsorption. / Doctor of Philosophy / More than 90% of chemicals come from petroleum and natural gas, and most of these chemicals are composed of alkene and alkyne, hydrocarbons containing at least one double bonds or triple bonds, such as ethylene, propylene, butenes, butadiene. These small hydrocarbon molecules with carbon-carbon bonds (double or triple) are in great interest of fundamental study and serve as probe units for understanding more complex reactions. Catalysts are materials that can be added to a chemical reaction to accelerate the specific rate of reactions. Most catalysts are supported noble metals thus increase the utilization of metal atoms are important. Decreasing the particle size to increase the metal dispersion is the simple approach to maximize the atom efficiency. However, it is not well understood how do the electronic property and catalytic performance change as particle size decrease. In this work, we focus on the structure sensitivity on catalysts in sub-nanometer region. Supported Pt and Pd catalysts, known to be highly active for hydrogenation reactions, are studied on hydrogenation reactions of acetylene and ethylene, the simplest alkene and alkyne. The Pd and Pt catalysts with particle sizes ranging from single atoms, sub-nanometer clusters and nanoparticles were prepared, characterized and tested for hydrogenation reactions mentioned above. The results show that significantly change in electronic property, catalytic performance (activity and/or selectivity) and reaction kinetics of the catalysts as the particle size changing from nanometer to sub-nanometer region. The fundamental understanding of structure sensitivity on catalysts and their relations between surface structure, electronic property and catalytic performance presented in this work can help the researchers design better catalysts for future work.
|
163 |
Poultry Litter Ash as an Alternative Fertilizer Source for CornErvin, Clara 12 November 2019 (has links)
Poultry litter ash (PLA) is a co-product from manure-to-energy systems that originated in response to increased poultry litter (PL) volumes generated in concentrated poultry production regions. Investigating PLA as a crop fertilizer is an alternative solution to balancing poultry and crop regional nutrient cycling in the Commonwealth of Virginia. As the expanding world population places pressure on the poultry industry to meet consumption demands, increased PL production presents an obstacle to identify alternative uses for increased volumes. Currently, Virginia produces 44 million broilers with PL produced predominately in the Shenandoah Valley and Eastern Shore. Likewise, a growing world population places pressure on crop production areas and subsequently finite natural resources used for crop fertilization. Poultry litter ash is an alternative phosphorus (P) and potassium (K) source enhancing transportation logistics, repurposing PL nutrients, and offers dual purpose as a fertilizer and an energy source when compared to PL.
Three PLA products [(fluidized bed bulk (FB Bulk), fluidized bed fly (FB Fly), and combustion Mix (CMix)], two manufactured co-products [(granulated poultry litter ash (GPLA), and ash coated urea (ACU)] were evaluated as P, K, and N sources for corn (Zea Mays L.) production in comparison to industry fertilizers [(PL, triple superphosphate (TSP), muriate of potash (KCL), and urea). A comprehensive examination of elemental composition, P speciation, P and K solubility, improved functionality into granulized forms, and field testing were conducted to discern PLA potential as an alternative fertilizer source.
Poultry litter ash products were evaluated by total elemental analysis, backscatter-electron dispersive (BSED) microscopy, and X-ray absorption near edge structure (XANES) spectroscopy. Poultry litter ash elemental concentrations were highly variable ranging from 50.6 to 102.0 g P kg -1 and 62.6 to 120.0 g K kg -1 and were comparatively higher than PL concentrations. Phosphorus structures that provided and controlled P solubility were Ca and Ca-Mg-phosphate compounds. Spectroscopy confirmed Ca structures as predominately monetite (dicalcium phosphate anhydrous; CaHPO4; log K ̊ 0.30) and brushite (dicalcium phosphate dihydrate; CaHPO4.2H20; 0.63 log K ̊ ) species that were supported by BSED and elemental stoichiometric ratios (Ca:P; 1.12 to 1.71:1). Additionally, GPLA acidified from FB Fly had higher brushite and monetite percentages described by spectra models, translating into a more soluble Ca-phosphate species when compared to FB Fly original P species.
Granulated poultry litter acidulation trials successfully identified a desired granulation point of 29% (14.5 g acid to 50 g PLA) phosphoric acid (75% H3PO4) acidulation. Acidulation dose response relationships created simple linear regression (SLR) equations that sufficiently (R2 > 0.80) described changes in total measurable P and water soluble P, pH, and exothermic reaction temperatures to increasing H3PO4 acidulation. Solubility tests included: sequential extraction, particle size effect on solubility, carbon effect on water soluble P, and Mehlich-1 extraction of PLA sources that confirmed decreased P solubility. A majority PLA P was found in bound plant unavailable fractions (87.7 to 97.7% P of total P). Granulated poultry litter ash had improved P plant available P of 36.0% P of total P. Carbon (C) effects on PLA P were examined by ashing PLA samples in a muffle furnace at 550 ̊C. Differences in total carbon content negatively impacted FB Bulk and CMix total P (1.30 and 4.56 g P kg -1); however, muffle furnace temperatures increased FB Fly total P by 6.74 g P kg -1.
All fertilizer products were investigated under field conditions in separate P, K and N corn studies across Virginia coastal plain soils to determine fertilizer effects on corn plant parameters [(most mature leaf (V6), corn ear leaf (R1), and grain (R6)]. Poultry litter P treatments, averaged over rate, recorded highest yield in both years. At eight of nine field sites, FB Bulk resulted in numerically or significantly higher Mehlich-1 concentrations than other P sources post-harvest. Although Mehlich-1 P increased, yield and plant parameters did not; which leads to the conclusion that PLA sources increased soil residual P that did not translate into immediate plant availability recorded within a growing season. Across plant efficacy parameters examined, PLA K is a comparable nutrient source and improved plant parameters when compared to control. Eighteen out of twenty-one plant parameters examined found similar ACU and urea effects on N concentrations. Therefore, ACU is a comparable N source to urea. When compared to industry fertilizer sources, we concluded that PLA is a slowly available P source, decreased P availability negatively affected early plant growth, K is a comparable nutrient source and improved plant parameters compared to control, and ACU effectively provided N to maintain sufficient corn growth. In conclusion, PLA co-products serve as a densified nutrient source that may provide plant available nutrients if processed to aid in nutrient distribution to grain producing areas. / Doctor of Philosophy / Poultry litter ash (PLA) is a co-product from manure-to-energy systems that originated in response to increased poultry litter (PL) volumes generated in concentrated poultry production regions. Investigating PLA as an alternative crop fertilizer is essential to balancing poultry and crop regional nutrient cycling in the Commonwealth of Virginia. As the expanding world population places pressure on the poultry industry to meet consumption demands, heightened PL production presents an obstacle to identify alternative uses for increased volumes. Currently, Virginia produces 44,683,904 broilers with PL produced predominately in the Shenandoah Valley and Eastern Shore. Likewise, a growing world population places pressure on crop production areas and subsequently finite natural resources used for fertilization vital to maintaining crop yields. Poultry litter ash, a co-product from manure-to-energy systems, is an alternative phosphorus (P) and potassium (K) source enhancing transportation logistics, repurposing PL nutrients, and offers dual purpose as a fertilizer and an energy source when compared to PL.
In this dissertation, three PLA products [(fluidized bed bulk (FB Bulk), fluidized bed fly (FB Fly), and combustion Mix (CMix)], two manufactured co-products [(granulated poultry litter ash (GPLA), and ash coated urea (ACU)] were evaluated as P, K, and N source for corn (Zea Mays L.) production in comparison to industry fertilizers (PL, triple superphosphate (TSP), muriate of potash (KCL), and urea). Each of the following chapters provides a comprehensive examination of the following topics: elemental composition, P speciation, P and K solubility, improved functionality into granulized forms, and field testing designed to provide parameters to conclude PLA potential as an alternative P, K and N source.
In the second chapter, PLA products were evaluated by total elemental analysis, backscatter-electron dispersive (BSED) microscopy, and X-ray absorption near edge structure (XANES) spectroscopy. Poultry litter ash elemental concentrations are highly variable and are comparatively higher than PL concentrations. Phosphorus structure and species identified Ca as the primary element controlling P structure and subsequent solubility. The third component of this dissertation is granulation trials investigating phosphoric acid effects on granulizing and increasing total and water soluble P. Our results identified 29% (14.5 g acid to 50 g PLA) phosphoric acid acidulation for desired granule size. The third dissertation component examines PLA solubility. The results demonstrated PLA decreased P water solubility when compared to industry fertilizer sources. Granulated poultry litter ash demonstrated improved P plant availability due to the granulation process.
The final and fourth dissertation components investigated PLA sources under field conditions in separate P, K and N corn studies across Virginia coastal plain soils to determine fertilizer effects on corn plant parameters. Minority of plant parameters tested revealed P control yielded numerically higher P concentrations than PLA P sources tested. Poultry litter P treatments, averaged over rate, recorded highest yield in both years. At eight of nine field sites, FB Bulk resulted in numerically or significantly higher Mehlich-1 concentrations than other P sources post-harvest. Although Mehlich-1 P concentrations increased, yield and plant parameters did not; which leads to the conclusion that PLA sources increased soil residual P that did not translate into immediate plant availability recorded within a growing season. Across plant efficacy parameters examined, PLA K is a comparable nutrient source and improved plant parameters when compared to controls. The majority of plant parameters examined found similar ACU and urea effects on N concentrations. Therefore, ACU is a comparable N source to urea. When compared to industry fertilizer sources, field results concluded that PLA is a slowly available P source, decreased P availability negatively affected early plant growth, K is a comparable nutrient source and improve plant parameters compared to control, ACU effectively provides N to maintain sufficient corn growth. In conclusion, PLA co-products serve as a densified nutrient source that may provide plant available nutrients if processed to aid in nutrient distribution to grain producing areas.
|
164 |
Structural and Kinetic Study of Low-temperature Oxidation Reactions on Noble Metal Single Atoms and Subnanometer ClustersLu, Yubing 23 April 2019 (has links)
Supported noble metal catalysts make the best utilization of noble metal atoms. Recent advances in nanotechnology have brought many attentions into the rational design of catalysts in the nanometer and subnanometer region. Recent studies showed that catalysts in the subnanometer regime could have extraordinary activity and selectivity. However, the structural performance relationships behind their unique catalytic performances are still unclear. To understand the effect of particle size and shape of noble metals, it is essential to understand the fundamental reaction mechanism. Single atoms catalysts and subnanometer clusters provide a unique opportunity for designing heterogeneous catalysts because of their unique geometric and electronic properties.
CO oxidation is one of the important probe reactions. However, the reaction mechanism of noble single atoms is still unclear. Additionally, there is no agreement on whether the activity of supported single atoms is higher or lower than supported nanoparticles. In this study, we applied different operando techniques including x-ray absorption fine structure (XAFS), diffuse reflectance infrared spectroscopy (DRIFTS), with other characterization techniques including calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the active and stable structure of Ir/MgAl2O4 and Pt/CeO2 single-atom catalysts during CO oxidation. With all these characterization techniques, we also performed a kinetic study and first principle calculations to understand the reaction mechanism of single atoms for CO oxidation. For Ir single atoms catalysts, our results indicate that instead of poisoning by CO on Ir nanoparticles, Ir single atoms could adsorb more than one ligand, and the Ir(CO)(O) structure was identified as the most stable structure under reaction condition. Though one CO was strongly adsorbed during the entire reaction cycle, another CO could react with the surface adsorbed O* through an Eley-Rideal reaction mechanism. Ir single atoms also provide an interfacial site for the facile O2 activation between Ir and Al with a low barrier, and therefore O2 activation step is feasible even at room temperature. For Pt single-atom catalysts, our results showed that Pt(O)3(CO) structure is stable in O2 and N2 at 150 °C. However, when dosing CO at 150 °C, one surface O* in Pt(O)3(CO) could react with CO to form CO2, and the reacted O* can be refilled when flowing O2 again at 150 °C. This suggests that an adsorbed CO is present in the entire reaction cycle as a ligand, and another gas phase CO could react with surface O* to form CO2 during low-temperature CO oxidation.
Supported single atoms synthesized with conventional methods usually consist of a mixture of single atoms and nanoparticles. It is important to quantify the surface site fraction of single atoms and nanoparticles when studying catalytic performances. Because of the unique reaction mechanism of Ir single atoms and Ir nanoparticles, we showed that kinetic measurements could be applied as a simple and direct method of quantifying surface site fractions. Our kinetic methods could also potentially be applied to quantifying other surface species when their kinetic behaviors are significantly different. We also benchmarked other in-situ and ex-situ methods of quantifying surface site fraction of single atoms and nanoparticles.
To bridge the gap between single atoms and nanoparticles and have a better understanding of the effect of nuclearity on CO oxidation, we also studied supported Ir subnanometer clusters with the average size less than 0.7 nm (< 13 atoms) prepared by both inorganic precursor and organometallic complex Ir4(CO)12. Low-temperature CO adsorption indicates that CO and O2/O could co-adsorb on Ir subnanometer clusters, however on larger nanoparticle the particle surface is covered by CO only. Additional co-adsorption of CO and O2 was studied by CO and O2 calorimetry at room temperature. CO oxidation results showed that Ir subnanometer clusters are more active than Ir single atoms and Ir nanoparticles at all conditions, and this could be explained by the competitive adsorption of CO and O2 on subnanometer clusters. / Doctor of Philosophy / CO oxidation is one of the important reactions in catalytic converters. Three-way catalysts, typically supported noble metals, are very efficient at high temperature but could be poisoned by CO at cold start. Better designed catalysts are required to improve the performance of the catalytic converter to lower the emissions of gasoline engines. To reach this goal, more efficient use of the noble metal is required. Single-atom catalysts consist of isolated noble metal atoms supported on different supports, which provide the best utilization of noble metal atoms and provides a new opportunity for a better design of heterogeneous catalysts. The unique electronic and geometric properties of metal single atoms catalysts could lead to a better activity and selectivity. Subnanometer clusters have also been shown to have unique electronic properties. With a better understanding of the structure of supported single atoms and subnanometer clusters, their catalytic performance can be optimized for better catalysts in the catalytic converter and other applications. In this work, we applied in-situ and operando characterization, kinetic studies and first principle calculations aiming to understand the active and stable structure of noble metal single atoms and vi subnanometer clusters under reaction condition, and their reaction mechanisms during CO oxidations. For MgAl₂O₄ supported Ir single atoms, our results suggest that CO could be co-adsorbed with O₂/O under reaction conditions. These multiple ligands adsorption leads to a unique reaction mechanism during CO oxidation. Though one CO was adsorbed during the whole reaction cycle, another gas phase CO could react with the O* species co-adsorbed with CO through an Eley-Rideal mechanism. This suggests that Ir single atoms are no longer poisoned by CO, and on the other hand the O₂ can be activated on an interfacial site with a low reaction barrier. Ir subnanometer clusters showed higher activities than Ir single atoms and nanoparticles. In-situ IR and high energy resolution fluorescence detected – X-ray absorption near edge spectroscopy (HERFD-XANES) showed that CO could co-adsorb with O₂ at room temperature, and this competitive adsorption could explain the high activity during CO oxidation. Supported Ir single atoms and subnanometer clusters are not poisoned by CO and O₂ could be co-adsorbed, this could be potentially applied to solve the poisoning of catalyst in the catalytic converter at cold start temperature. We also performed kinetic study on CeO₂ supported Pt single atoms. Similar behavior was observed, and we showed that the CO and O co-adsorbed complex is stable in O₂ and N₂, but could react in CO. With the understanding of the active structure of noble metal single atoms and the origin of activities, better-designed catalysts can be synthesized to improve the activity and selectivity of low-temperature oxidation reactions.
|
165 |
The Trials and Triumphs of Modelling X-ray Spectroscopy of Strongly Correlated Transition Metal ComplexesBoydaş, Esma Birsen 19 September 2024 (has links)
Diese Dissertation befasst sich mit der Modellierung von Spin- und Oxidationszuständen stark korrelierter Übergangsmetallkomplexe der ersten Reihe. Verschiedene ab initio-Methoden zur Modellierung der Elektronenkorrelation wurden verwendet, basierend auf einer oder mehreren Referenzwellenfunktionen, wobei ein besonderer Schwerpunkt auf den spektroskopischen Eigenschaften von offenschaligen Molekülenliegt. Die Arbeit untersucht die Stärken und Grenzen theoretischer Parameter und Effekte, wie der Elektronenkorrelation, Multiplett-Effekte sowie Größe und Natur des aktiven Raumes. Darüber hinaus setzt sich die Studie mit entscheidenden physikalischen und chemischen Konzepten wie Kovalenz, thermodynamische Stabilität, Ligandenfeldeffekte, magnetische Austauschwechselwirkungen und der Bestimmung von Spin- und Oxidationszuständen molekularer Systeme. / This dissertation delves into the challenges and successes encountered while modeling spin and oxidation states of strongly correlated first-row transition metal complexes using various single- and multireference quantum chemical methods with a focus on X-ray spectroscopy. It thoroughly examines the strengths and limitations of theoretical approaches, addressing electron correlation, multiplet effects, active space size and nature, dynamic electron correlation corrections, truncated configuration interaction (CI) techniques, and Density Functional Theory (DFT). Furthermore, the study explores pivotal physical and chemical factors such as covalency, stability, ligand-field effects, magnetic exchange interactions, and the determination of spin and oxidation states within molecular systems.
|
166 |
Atomic and electronic structure of complex metal oxides during electrochemical reaction with lithiumGriffith, Kent Joseph January 2018 (has links)
Lithium-ion batteries have transformed energy storage and technological applications. They stand poised to convert transportation from combustion to electric engines. The discharge/charge rate is a key parameter that determines battery power output and recharge time; typically, operation is on the timescale of hours but reducing this would improve existing applications and open up new possibilities. Conventionally, the rate at which a battery can operate has been improved by synthetic strategies to decrease the solid-state diffusion length of lithium ions by decreasing particle sizes down to the nanoscale. In this work, a different approach is taken toward next-generation high-power and fast charging lithium-ion battery electrode materials. The phenomenon of high-rate charge storage without nanostructuring is discovered in niobium oxide and the mechanism is explained in the context of the structure–property relationships of Nb2O5. Three polymorphs, T-Nb2O5, B-Nb2O5, and H-Nb2O5, take bronze-like, rutile-like, and crystallographic shear structures, respectively. The bronze and crystallographic shear compounds, with unique electrochemical properties, can be described as ordered, anion-deficient nonstoichiometric defect structures derived from ReO3. The lessons learned in niobia serve as a platform to identify other compounds with related structural motifs that apparently facilitate high-rate lithium insertion and extraction. This leads to the synthesis, characterisation, and electrochemical evaluation of the even more complicated composition–structure–property relationships in ternary TiO2–Nb2O5 and Nb2O5–WO3 phases. Advanced structural characterisation including multinuclear solid-state nuclear magnetic resonance spectroscopy, density functional theory, X-ray absorption spectroscopy, operando high-rate X-ray diffraction, and neutron diffraction is conducted throughout to understand the evolution of local and long-range atomic structure and changes in electronic states.
|
167 |
Characterization of Self-Assembled Monolayers of Oligo(phenyleneethynylene) Derivatives on GoldWatcharinyanon, Somsakul January 2007 (has links)
<p>Oligo(phenyleneethynylene) (OPE) molecules are a class of fully conjugated aromatic molecules, that attract attention for their application as “molecular wires” in molecular electronic devices. In this thesis work, self-assembled monolayers (SAMs) formed from a variety of OPE derivatives have been studied. The chemical properties, structure, and packing density of the SAMs have been characterized utilizing techniques such as high-resolution X-ray photoemission spectroscopy (HRXPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), Infrared reflection absorption spectroscopy (IRRAS), contact angle measurements, and atomic force microscopy (AFM).</p><p>In a first study, three OPE-derivatives, with benzene, naphthalene and anthracene, respectively, inserted into the backbone, and an acetyl-protected thiophenol binding group were found to form SAMs on Au(111) substrates with lower molecular surface densities and larger molecular inclination as the lateral π-system increases.</p><p>In a second study, porphyrin was introduced as the end group to a wire-like molecule such as OPE. The purpose was to obtain well-organized and functionalized surfaces with optical and redox properties. Three porphyrin-functionalized OPEs had different binding groups, an acetyl-protected thiophenol, a benzylic thiol, and a trimethylsilylethynylene group, and were found to form SAMs on gold surfaces with difference in structure and degree of order. The molecules with the acetyl-protected thiophenol binding group were found to form a high quality SAM compared to the other two. This SAM exhibits a well-ordered and densely packed layer.</p><p>This study gives rise to a better understanding of SAM formation of OPE derivatives, and will form a base for further investigations of charge transport properties of these molecular films, which is of interest for applications in molecular electronic devices.</p>
|
168 |
Etude de la structure de verres magnésio-silicatés : approche expérimentale et modélisation / Study of magnesium-silicate glass structure experimental approach and simulationTrcera, Nicolas 05 September 2008 (has links)
Le magnésium est l'un des quatre éléments majeurs sur Terre. Il est présent dans différentes proportions dans les verres industriels et naturels (jusqu'à 30 poids% dans les komatiites, verres ultramafiques d'âge archéen). Sa présence semble influencer les propriétés physico-chimiques des verres et tout spécialement leur durabilité. Malgré ce comportement, le magnésium a été relativement peu étudié dans les verres et les études précédentes ont conduit à des contradictions sur son environnement (coordinence 4 et 6 par RMN et en coordinence 5 par diffraction des neutrons). Dans le but de lever ces contradictions, l'étude de la structure des verres magnésio-silicatés et de l'environnement du magnésium a été réalisée en utilisant deux méthodes complémentaires : la spectrométrie Raman et la spectroscopie d'absorption des rayons X. La spectroscopie Raman permet d'obtenir des informations sur la structure des verres telle que la connectivité du réseau silicaté, la variation des angles Si-O-Si ou la modification de la taille des anneaux de silicium. Plus précisément, les variations de la région des spectres Raman comprise entre 800 et 1400 cm-1 illustrent l'évolution du degré de polymérisation des verres en fonction du taux de magnésium, du taux de silicium et de la nature de l'alcalin modificateur de réseau. La spectroscopie d'absorption des rayons X au seuil K du magnésium nous a permis d'accéder à l'environnement spécifique autour de cet ion. Les spectres XANES des verres ont été comparés à ceux de références cristallines contenant du magnésium dans différents environnements (coordinence et nature des voisins notamment). Pour aller au-delà de la méthode dite « d'empreinte digitale », et extraire des informations structurales pertinentes, les spectres XANES des cristaux et des verres ont été calculés. Les calculs ont été réalisés avec un code basé sur une méthode en ondes planes, dans l'espace réciproque avec l'utilisation de potentiel non muffin-tin. L'utilisation des calculs a permis de mettre en évidence des paramètres structuraux pertinents pour expliquer la position des structures XANES. Pour les verres, les structures initiales utilisées pour les calculs ont été obtenus par dynamique moléculaire classique puis relaxée de façon ab initio. L'environnement du magnésium (coordinence/distorsion) peut varier en fonction de la composition du verre. De ce fait, les interprétations classiquement réalisées des spectres Raman des verres doivent être considérées avec précaution / The structure of magnesio-silicate glasses have been studied by using two complementray spectroscopic methods : (i) The Raman spectroscopy allows to obtain information on the silicate network and on the network connectivity. The variations of the region between 800 and 1400 cm?¹ show the evolution of the polymerization degree as a function of various compositions. (ii) The local environment of the magnesium has been investigated by X-ray absorption spectroscopy at the Mg K-edge. The XANES spectra have been compared with the spectra of model compounds containing magnesium in different environments. As it is not straightforward to extract relevant structural information of crystalline model compound spectra by the "fingerprint" method, we have used ab initio calculations based on the planewave method. The results obtained by calculations have allowed us to connect relevant structural characteristics with the positions of the XANES features
|
169 |
Síntese e caracterização estrutural e dielétrica de compostos ferroelétricos Pb1-xRxZr0,40Ti0,60O3 (R = Ba, La) / Synthèse et caracterisation des composés ceramiques ferroelectriques Pb1-xRxZr0,40Ti0,60O3 (R = Ba, La) / Synthesis and characterization of Pb1-xRxZr0.40Ti0.60O3 (R = Ba, La) ferroelectric materialsMesquita, Alexandre 15 March 2011 (has links)
Les principaux objectifs de cette thèse de doctorat ont été de réaliser la synthèse et la caractérisation structurale et dieléctrique des échantillons céramiques ferroélectriques appartenants au système Pb1-xRxZr0,40Ti0,60O3 avec R = Ba et La et x entre 0,00 à 0,50. Ce système a été choisi car il est un matériel ferroélectrique qui a des propriétés physiques intéressantes, comme haute constante diélectrique et piézo-électrique, ce qui les rend candidats potentiels pour des applications telles que les condensateurs à haute densité d'énergie et les actionneurs. Afin d'évaluer le comportement relaxor, les études ont été effectuées avec la variation de la composition, du type de dopage (par des atomes de la même ou différente valence – La ou Ba) et de la taille des particules de céramique, dès l'échelle micrométrique à l'échelle nanométrique. Les échantillons céramiques micrométriques ont été préparées par la méthode de réaction de l'état solide et la frittage dans un four électrique conventionnel. Les données fournies par la technique de diffraction des rayons X de cettes échantillons ont montré une transition de une phase tétragonal pour une phase cubique avec l'augmentation de la concentration de cations substituants. Ces changements ont été attribués à une diminution de distorsion dans le maille cristallographique en raison de l'apparition de défauts causés par l'incorporation de dopage. Les mesures électriques ont été obtenues par spectroscopie d'impédance et ont montré un comportement électrique relaxor à partir de compositions avec plus de 12% at. La et de 30% at. Ba pour les systèmes PLZT et PBZT, respectivement. Les mesures électriques de l'échantillon avec 12%, 13% et 14% at. La et 30% at. Ba présentent un comportement qui, selon la littérature, est liée à une transition de phase spontanée d'un comportement relaxor et au comportement d'un matérial ferroélectrique normal. La technique de diffraction des rayons X a également été utilisé pour surveiller le processus de transition de phase en fonction de la température pour échantillons PLZT et PBZT. Il est possible de voir le changement de structure tétragonal de groupe d'espace P4mm en structure cubique de groupe d'espace Pm-3m. En ce qui concerne la structure locale, nous avons effectué des mesures expérimentales avec la technique de spectroscopie d'absorption des rayons X dans le spectre XANES aux seuils d'absorption de différents éléments pour les échantillons PLZT et PBZT. Dans les cas de seuil d'absorption K du titane, l'intégration de La et Ba atomes de la structure du PZT entraîne une diminution dans le désordre local dans le octaèdre TiO6, vérifié par la réduction du déplacement statique de atome Ti au centre de l'octaèdre TiO6. Cette évolution est plus faible pour les échantillons que montrent le comportement relaxor. Les spectres d'absorption EXAFS au seuil LIII du plomb et seuil K du zirconium ont été effectués aussi et ces mesures indiquent que la structure locale autour des atomes de plomb ou de zirconium est également affectée par l'introduction des atomes de La et Ba dans la structure. Le comportement relaxor a été aussi étudié en fonction de la taille de grain dans une échelle nanométrique. Ainsi les échantillons de compostions PZT, PLZT11 et PBZT10 ont eté préparés en utilisant la méthode de synthèse chimique de polymères précurseurs et le processus de frittage par spark plasma. La caractérisation de ces échantillons par diffraction de rayons X montrent que les paramétres de maille réduisent en comparison avec les échantillons de même composition et taille de grain micrométrique. Pour l'échantillon de composition PLZT11, il est possible de constater le comportement relaxor par les mesures de la constante dieléctrique en fonction de la température. Les changements quand la taille de grain est dans une échelle nanométrique sont attribués à la limitation des frontières de grains, qui provoquent un systéme de tension, responsable de la diminuition des paramétres de maille, et provoquent l'apparition de domaines ferroélectriques nanométriques / The main objectives of this doctoral thesis were the synthesis and structural characterization of Pb1-xRxZr0.40Ti0.60O3 ferroelectric ceramic samples, with R = Ba and La and x between 0.00 to 0.50. This system was chosen because its interesting physical properties such as high dielectric and piezoelectric constant. These characteristics make it potential candidate for applications such as capacitors in high energy density and actuators. To evaluate the relaxor behavior, the studies were carried out with the change in the composition, type of doping (by atoms of the same or different valence – La or Ba) and the particle size of ceramics, from the micrometer to nanometer scale. Micrometric ceramic samples are prepared by the method of reaction of solid state and sintering in a conventional furnace. The characterization with X-ray diffraction technique of these samples showed a transition from tetragonal phase to a cubic phase with increase of the dopping cation concentration. These changes have been attributed to the appearance of defects caused by the incorporation of La or Ba cations. Electrical measurements were obtained by impedance spectroscopy and showed a electric relaxor behavior from compositions with more than 12 at. % of La and the 30 at. % of Ba for PLZT and PBZT systems, respectively. These measurements for the samples with 12 at. %, 13 at. % and 14 at. % of La and 30 at. % of Ba exhibit a behavior that, according to the literature, is related to a spontaneous phase transition from a relaxor behavior to a normal ferroelectric behsvior. The technique of X-ray diffraction also been used to monitor the phse transition phase as a function of the temperature for PLZT and PBZT samples. It is possible to note the change in a tetragonal structure with P4mm space group to a cubic structure with Pm-3m space group. Concerning the local structure, XANES spectra in the absorption edge of various elements in PLZT and PBZT samples were performed. In the cases of Ti K-edge absorption, the dopping of La and Ba atoms in the PZT structure leads to a decrease of the local disorder in the TiO6 octahedron and it is verified the reduction of static displacement of Ti atom in the center of the TiO6 octahedron. This displacement is lower for samples that show relaxor behavior. The EXAFS measurements in Pb LIII-edge and Zr K-edge were performed and also indicate that local structure around lead or zirconium atoms is also affected by the introduction of La and Ba atoms in the PZT structure. The relaxor behavior was also studied depending on the size of particle size in a nanometer scale. Thus samples PZT, PLZT11 and PBZT10 compositions were prepared using the synthesis method of precursor polymers and the process of sintering by spark plasma. Characterization of these samples by X-ray diffraction shows that the lattice parameters are reduced in comparison with samples of the same composition and micrometer particle size. For PLZT11 composition, it is possible to observe a relaxor behavior by measurement of the dielectric permittivity as a function of the temperature. These changes when the grain size is in a nanoscale are attributed to the grain boundaries, that are responsible for the decrease in the lattice parameters and the appearance of ferroelectric nanodomains
|
170 |
Speciation of phosphorus in reduced tillage systems: placement and source effect.Khatiwada, Raju January 1900 (has links)
Master of Science / Department of Agronomy / Ganga M. Hettiarachchi / Phosphorus (P) management in reduced tillage systems has been a great concern for farmers. Conclusive results for benefits of deep banding of P fertilizers for plant yield in reduced tillage system are still lacking. Knowledge of the dominant solid P species present in soil following application of P fertilizers and linking that to potential P availability would help us to design better P management practices. The objectives of this research were to understand the influence of placement (broadcast- vs. deep band-P or deep placed-P), fertilizer source (granular- versus liquid-P), and time on reaction products of P. Greenhouse and field based experiments were conducted to study P behavior in soils. Soil pH, resin extractable P, total P, and speciation of P were determined at different distances from the point of fertilizer application at 5 weeks (greenhouse and field) and 6 months (field) after P application (at rate 75 kg/ha) to a soil system that was under long-term reduced tillage. X-ray absorption near edge structure spectroscopy technique was used to speciate reaction products of fertilizer P in the soil. The reaction products of P formed upon addition of P fertilizers to soils were found to be influenced by soil pH, P placement methods, and P sources. Acidic pH (below~5.8) tended to favor formation of Fe-P and Al-P like forms whereas slightly acidic near neutral pH soils favored formation of Ca-P like forms. Scanning electron microscope with energy dispersive X-ray analysis of applied fertilizer granules at 5-wk showed enrichment of Al, Fe and Ca in granule- indicating these elements begin to react with applied P even before granules dissolve completely. The availability of an applied P fertilizer was found to be enhanced as a result of the deep banding as compared to the surface broadcasting or deep placed methods. Deep banded liquid MAP was found to be in more adsorbed P like forms and resulted greater resin extractable P both at 5 wk and 6 month after
application. Deep banding of liquid MAP would most likely result both agronomically and environmentally efficient solution for no-till farmers.
|
Page generated in 0.0899 seconds