• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 150
  • 34
  • 21
  • 18
  • 14
  • 12
  • 8
  • 8
  • 5
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 627
  • 136
  • 112
  • 92
  • 83
  • 80
  • 80
  • 79
  • 78
  • 75
  • 66
  • 65
  • 59
  • 59
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Insights in Li-ion Battery Interfaces through Photoelectron Spectroscopy Depth Profiling

Philippe, Bertrand January 2013 (has links)
Compounds forming alloys with lithium, such as silicon or tin, are promising negative electrode materials for the next generation of Li-ion batteries due to their higher theoretical capacity compared to the current commercial electrode materials. An important issue is to better understand the phenomena occurring at the electrode/electrolyte interfaces of these new materials. The stability of the passivation layer (SEI) is crucial for good battery performance and its nature, formation and evolution have to be investigated. It is important to follow upon cycling alloying/dealloying processes, the evolution of surface oxides with battery cycling and the change in surface chemistry when storing electrodes in the electrolyte. The aim of this thesis is to improve the knowledge of these surface reactions through a non-destructive depth-resolved PES (Photoelectron spectroscopy) analysis of the surface of new negative electrodes. A unique combination utilizing hard and soft-ray photoelectron spectroscopy allows by variation of the photon energy an analysis from the extreme surface (soft X-ray) to the bulk (hard X-ray) of the particles. This experimental approach was used to access the interfacial phase transitions at the surface of silicon or tin particles as well as the composition and thickness/covering of the SEI. Interfacial mechanisms occurring upon the first electrochemical cycle of Si-based electrodes cycled with the classical salt LiPF6 were investigated. The mechanisms of Li insertion (LixSi formation) have been illustrated as well as the formation of a new irreversible compound, Li4SiO4, at the outermost surface of the particles. Upon long cycling, the formation of SiOxFy was shown at the extreme surface of the particles by reaction of SiO2 with HF contributing to battery capacity fading. The LiFSI salt, more stable than LiPF6, improved the electrochemical performances. This behaviour is correlated to the absence of SiOxFy upon long-term cycling. Some degradation of LiFSI was shown by PES and supported by calculations. Finally, interfacial reactions occurring upon the first cycle of an intermetallic compound MnSn2 were studied. Compared to Si based electrodes, the SEI chemical composition is similar but the alloying process and the role played by the surface metal oxide are different.
202

Plasma-assisted deposition of nitrogen-doped amorphous carbon films onto polytetrafluoroethylene for biomedical applications

Foursa, Mikhail 05 December 2007 (has links)
With growing demand for cardiovascular implants, improving the performance of artificial blood-contacting devices is a task that deserves close attention. Current prostheses made of fluorocarbon polymers such as expanded polytetrafluoroethylene (ePTFE) suffer from early thrombosis and require periodic replacement. A great number of attempts have already been made to improve blood compatibility of artificial surfaces, but only few of them found commercial implementation. One of the surfaces under intensive research for cardiovascular use is amorphous carbon-based coatings produced by means of the plasma-assisted deposition. However, this class of coatings can be produced using various techniques leading to a number of coatings with different properties. Carbon coatings produced in different plasmas may be of hard diamond-like type or soft graphite-like type, doping with different elements also changes the surface structure and properties. Taking this into account, the search for blood-compatible coating requires the understanding of surface composition and structure and its influence on blood-compatibility. This work attempts to advance our knowledge of this field. Here, commercial PTFE thin film was used as a working material, which composition corresponds to the composition of modern ePTFE vascular grafts and which compatibility with blood we tried to improve by deposition of nitrogenated amorphous carbon (a-CN) coatings in the plasma. Biocompatibility was assessed by a number of tests including the interaction with whole blood and various cells such as platelets, endothelial cells, neutrophils, and fibroblasts. Most of tests showed the blood compatibility of coated surface is better than that of untreated PTFE. Physico-chemical and morphological properties of coated surfaces were studied in parallel using x-ray photoemission spectroscopy (XPS), electron energy loss spectroscopy (EELS), x-ray absorption spectroscopy (XAS), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM). Some correlation between the structure of coatings and blood compatibility was inferred. It was found that at first nitrogen incorporation into amorphous carbon film stimulates blood compatibility. However, when nitrogen fraction increases over 23-25 %, no further improvement but reduction of blood compatibility was observed. Conclusion is made that for best biomedical performance, nitrogen percentage in a-CN coatings must be adjusted to the optimum value.
203

Development of Techniques to Quantify Chemical and Mechanical Modifications of Polymer Surfaces: Application to Chemical Mechanical Polishing

Diao, Jie 01 December 2004 (has links)
This thesis is devoted to development of techniques to quantify chemical and mechanical influences during chemical mechanical polishing (CMP) near the surface of a polymer film, poly (biphenyl dianhydride-p-phenylenediamine) (BPDA-PDA). To quantify chemical modifications during CMP, an iterative algorithm has been proposed to extract depth profiles based on Ficks second law of diffusion in a multi-element system from data supplied by angle resolved x-ray photoelectron spectroscopy. It has been demonstrated that the technique can be used to quantify the depth of chemical modification of BPDA-PDA surfaces treated with alkaline solutions. Polymer chains near the surface realign themselves during CMP and polarized infrared spectroscopy is chosen in this thesis to quantify chain orientations induced by CMP to evaluate the mechanical influence. A theoretical framework based on a 44 matrix method for spectral simulation together with an oscillator model for BPDA-PDA has been used to obtain quantitative chain orientation information on a post-CMP BPDA-PDA sample by fitting simulated polarized infrared spectra to experimentally generated spectra. Verification of the oscillator model was established from the complex refractive indices of BPDA-PDA films, which were determined using a new method (R/T ratio method) developed in this thesis to extract complex refractive indices of films with biaxial symmetry from polarized transmission and reflection spectra.
204

Thermal Chemistry of Benzyl Azide to Phenyl Isocyanide on Cu(111):Evidence for a Surface Imine Intermediate

Cheng, Cheng-Hung 03 August 2010 (has links)
Abstract The Copper Catalyzed Azide-Alkyne Cycloaddition (CuAAC) is a paradigm of ¡§click¡¨ chemistry which has been applied in different fields. To understand the interaction between organic azides and a copper surface, we use benzyl azide (Bn¡ÐN£\¡ÐN£]¡ÝN£^) as an adsorbate on Cu(111) under ultrahigh vacuum conditions. The thermal reaction process was explored by a combination of temperature-programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and X-ray photoemission spectroscopy (XPS) techniques. The TPD profiles show a multilayer desorption peak at 190K, two peaks for N2 , and H2 from 270K to 390K. At 345K, peak of desorption product (m/z=103) represents phenyl cyanide (PhCN) or phenyl isocyanide (PhNC). RAIR and XP spectra demonstrate that at 190K benzyl azide on Cu(111) readily adopt the imine intermediate formalism involving N£\¡ÐN£] scission and phenyl group shift from carbon to nitrogen. The mechanism is analogous to the organic reaction of Schmidt rearrangement. To heat the surface to 250K, the CH2 group of the imine intermediate undergoes C¡ÐH bond scission to produce a surface isocyanide intermediate, (M=C=N¡ÐPh). Therefore the final desorption product is phenyl isocyanide at ~350K. Intriguingly, the thermal chemistry of benzyl azide involves both imine and isocyanide intermediacy, despite the fact that azido species usually generate nitrene or imido complexes under thermal conditions.
205

Tribochemical investigation of microelectronic materials

Kulkarni, Milind Sudhakar 02 June 2009 (has links)
To achieve efficient planarization with reduced device dimensions in integrated circuits, a better understanding of the physics, chemistry, and the complex interplay involved in chemical mechanical planarization (CMP) is needed. The CMP process takes place at the interface of the pad and wafer in the presence of the fluid slurry medium. The hardness of Cu is significantly less than the slurry abrasive particles which are usually alumina or silica. It has been accepted that a surface layer can protect the Cu surface from scratching during CMP. Four competing mechanisms in materials removal have been reported: the chemical dissolution of Cu, the mechanical removal through slurry abrasives, the formation of thin layer of Cu oxide and the sweeping surface material by slurry flow. Despite the previous investigation of Cu removal, the electrochemical properties of Cu surface layer is yet to be understood. The motivation of this research was to understand the fundamental aspects of removal mechanisms in terms of electrochemical interactions, chemical dissolution, mechanical wear, and factors affecting planarization. Since one of the major requirements in CMP is to have a high surface finish, i.e., low surface roughness, optimization of the surface finish in reference to various parameters was emphasized. Three approaches were used in this research: in situ measurement of material removal, exploration of the electropotential activation and passivation at the copper surface and modeling of the synergistic electrochemical-mechanical interactions on the copper surface. In this research, copper polishing experiments were conducted using a table top tribometer. A potentiostat was coupled with this tribometer. This combination enabled the evaluation of important variables such as applied pressure, polishing speed, slurry chemistry, pH, materials, and applied DC potential. Experiments were designed to understand the combined and individual effect of electrochemical interactions as well as mechanical impact during polishing. Extensive surface characterization was performed with AFM, SEM, TEM and XPS. An innovative method for direct material removal measurement on the nanometer scale was developed and used. Experimental observations were compared with the theoretically calculated material removal rate values. The synergistic effect of all of the components of the process, which result in a better quality surface finish was quantitatively evaluated for the first time. Impressed potential during CMP proved to be a controlling parameter in the material removal mechanism. Using the experimental results, a model was developed, which provided a practical insight into the CMP process. The research is expected to help with electrochemical material removal in copper planarization with low-k dielectrics.
206

Investigating the Use of Biosorbents to Remove Arsenic from Water

Erapalli, Shreyas 2010 December 1900 (has links)
Evaluating the ability of biosorbents to remove arsenic from water has global significance due to the widespread availability and low cost of biosorbent materials. In this study, the ability of coffee grounds and coconut substrate (two previously unreported biosorbents) to remove arsenic from water was compared against the performance of arsenic removal on rice husk (a recognized and widely tested biosorbent). The three biosorbents were individually screened for their ability to remove arsenite, As (III), and arsenate, As (V), from water. Batch reactors were employed to assess the percent removal, reaction kinetics, adsorption capacity, and desorption of each arsenic species onto/from biosorbents under pH buffered and non‐buffered conditions. The resulting experimental data was statistically interpreted using analysis of variance and ttesting of the means. The experimental results were also fit to existing kinetic and isotherm models to provide kinetic rate constants, the maximum adsorption capacity, and to help interpret the nature of the reactions on the biosorbent surface. While all three biosorbents removed arsenic with similar initial reaction kinetics (pseudo 1st order reaction rate constant for As (III) was 0.13 hr^‐1 for all three biosorbents and for As (V) was 0.17 hr^‐1 for coffee grounds and rice husk and 0.15 hr^‐1 for coconut substrate), the amount of arsenite and arsenate removed was highest for coffee grounds (84 and 91 percent, respectively), followed by rice husk (68 and 72 percent, respectively), and then coconut substrate (26 and 24 percent, respectively). The maximum adsorption capacity of arsenite and arsenate was determined for coffee grounds (0.66 and 0.70 mg/g, respectively) and rice husk (0.55 and 0.66 mg/g, respectively). While desorption was observed for both coffee grounds and rice husk, the total amount of desorption accounted for less than 15 percent of the total retained mass. The results of this thesis work reveal that coffee can be used as an effective biosorbent when compared to rice husk; however, coconut substrate is less effective than rice husk at removing As (III) and As (V).
207

Thermal Chemistry of 2-Propynyl Bromide and 1-Propynyl Iodide on the Ag(111) Surface

Wu, Yu-Jui 19 July 2001 (has links)
none
208

Thermal Chemistry of Adsorbed Molecules Containing Azido and Cyano Groups on a Copper Surface

Yu, Pao-tao 23 July 2009 (has links)
In the organometallic chemistry, the imido complexes are an interesting species because it of their rich reactivity. Imido has two forms, where M=N-R form is nucleophilic and M¡ÝN-R form is elctrophilic. The thermo- or photochemical- decomposition of metal azido complexes is known to result in the formation of the corresponding metal nitride(M¡ÝN) or imido complexes. These reactions are oxidative cleavage type. As far as we know, imido species have not been generated on metal surfaces; therefore, we attempt to use the azidotrimethylsilane((CH3)3Si-N3 ; TMSN3) as precursors to produce imido species(TMSN=Cu) by N2 extrusion mechanism on Cu(111). The process was explored by a combination of temperature-programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and X-ray photoemission spectroscopy (XPS) techniques. In addition, density functional theory (DFT) calculations were conducted to obtain the optimized geometries for the various surface intermediates. The computed IR spectra facilitated the vibrational mode assignments. TPD spectra show that TMSN=Cu was hydrogenated to the TMSNH2 amine product around 520 K. We propose that the hydrogen source is adsorbed methyl groups, invoking the cleavage of the Si-C bond. TMSCH2N3 molecule was also investigated. In this case, N2 and H2 molecules were found to desorb around 260 K and 320K. A novel TMSC¡ÝN product was observed around 280K. We suggest it is a result of the metathesis reaction from ethylidyne (TMSC¡ÝCu) and nitride(N¡ÝCu) species. The TMSC¡ÝCu species are produced by double £\-hydride elimination of TMSCH2-Cu groups. The N¡ÝCu may be generated by the thermaldecomposition of copper azide(N=N=N-Cu). RAIRS reveal that there are three kinds of azido vibrations,where the higher frequency is assigned to the N=N=N-Cu species. This product is verified by the TPD of adsorbed TMSC¡ÝN molecule. Intriguingly, the thermal chemistry of TMSC¡ÝN molecule indicates that the isomeric molecule TMSN¡ÝC could be formed around 210 K, evidenced by a notable change in the RAIRS. The higher frequency £hC¡ÝN of TMSC¡ÝN transforms into a lower frequency £hC¡ÝN for TMSN¡ÝC. The coverage-dependent studies of RAIRS and XPS performed at 160 K surface temperature show that the isomerization may be intermolecular. The back-£k bonded TMSN¡ÝC molecule is desorbed around 410 K. XPS and RAIRS at 800 K show that isocyanide could polymerize to polyisocyanide, with an imine structure, and the characteristic C¡ÝN stretching mode disappeared.
209

Caractérisation de l'interface de couches minces d'oxyde de praséodyme "High-K" sur surfaces de silicium

Libralesso, Laure 28 September 2006 (has links) (PDF)
L'objectif de ce travail a été d'étudier, à l'échelle atomique et depuis les tous premiers stades, la croissance de l'oxyde de praséodyme sur des substrats de silicium orientés (111) et (001). L'étude se focalise sur la caractérisation des propriétés structurales, chimiques, et électroniques de Pr2O3 déposé sur Si(111) et Si(001), avec un accent plus particulier sur cette dernière surface, importante sur le plan technologique. Cet oxyde de terre-rare a été considéré ces dernières années comme un bon candidat "high-k'' pour se substituer à SiO2 comme oxyde de grille dans les transistors CMOS, afin de "miniaturiser'' davantage les composants électroniques. Dans ce contexte, les propriétés des surfaces et des interfaces commencent à dominer sur les performances des dispositifs à base de silicium, puisque le rapport surface/volume augmente. Comme les basses dimensions de ces structures les rendent difficilement étudiables, la brillance de la radiation synchrotron a été employée pour des analyses de diffraction des rayons X et de spectroscopie de photoélectrons. Les résultats ont été complétés par d'autres techniques de science des surfaces, telles que la microscopie à effet tunnel, la spectroscopie Auger et la diffraction d'électrons à basse énergie. Une couche epitaxiale de Pr2O3 hexagonal a été trouvée sur Si(111). Sur la surface (001), une couche ordonnée de Pr2O3 cubique est recouverte par un silicate. Puisque les surfaces atomiquement propres sont le point de départ de la croissance, elles ont également été caractérisées. En particulier, la structure atomique de la surface reconstruite Si(001)-2x1 a été analysée.
210

Etude du comportement anticorrosion de revetements amorphes base Si élaborés par dépot chimique en phase vapeur

Pech, David 01 December 2006 (has links) (PDF)
Ce travail porte sur l'étude du comportement protecteur vis-à-vis de la corrosion de revêtements amorphes base Si élaborés par dépôt chimique en phase vapeur.<br />Le caractère protecteur de revêtements de type SiOx et SiOxNy a été analysé sur différents types de substrats. La tenue à la corrosion résulte de la faible porosité et de la nature très isolante de ces couches. <br />La protection fournie par des dépôts SiCx et SiCxNy utilisés comme couche d'accrochage au DLC (“Diamond Like Carbon”) a ensuite été étudiée. L'influence du taux d'incorporation d'azote de films SiCxNy a révélé une corrélation entre la structure chimique, déterminée par XPS, et le caractère semi-conducteur de la couche, établi par Mott-Schottky. La tenue à la corrosion a été directement associée à la densité de porteurs de charge.<br />L'étude a été complétée par une caractérisation électrochimique et une approche tribocorrosion du caractère protecteur fourni par des revêtements duplex SiCxNy / DLC.

Page generated in 0.3026 seconds