• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 150
  • 34
  • 21
  • 18
  • 14
  • 12
  • 8
  • 8
  • 5
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 627
  • 136
  • 112
  • 92
  • 83
  • 80
  • 80
  • 79
  • 78
  • 75
  • 66
  • 65
  • 59
  • 59
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Influence of Alloy Elements on Selective Oxidation and Galvanizability of Dual Phase Steels

Wang, Hung-Ping 17 July 2008 (has links)
none
72

Interfacial Behaviour of Polyelectrolyte-Nanoparticle Systems

Sennerfors, Therese January 2002 (has links)
No description available.
73

Silicone biomaterials obtained by plasma treatment and subsequent surface hydrosilylation

Olander, Björn January 2004 (has links)
<p>The need for safe and functional implants has led to anincreased demand for improved biomaterials. The performance invivo depends on the interaction between the biologicalsurrounding and the surface of the material. By tailoring thesurface of a material with suitable bulk properties,biomaterials with an ability to interact with the biologicalsystem in a specific and controlled way are obtained. Siliconeelastomers have been used as biomaterials for several decades,but it is widely recognized that they are difficult to modifyby the conventional methods used for organic polymers due tothe partly inorganic structure of silicone.</p><p>This thesis presents a strategy to obtain siliconebiomaterials by covalent coupling of molecules to the surfaceusing silicon chemistry. The first step is to introduce Si-Hgroups onto the surface of silicone elastomers by plasmatreatment. The second step is to react a terminal double bondof a molecule with the formed Si-H group by a catalyzedhydrosilylation reaction. The coupled molecule may eitherprovide the desired properties itself, or have a functionalitythat is able to couple another molecule with suitablecharacteristics.</p><p>The influence of plasma treatment in hydrogen, argon andoxygen on the silicone elastomer was characterized by X-rayphotoelectron spectroscopy (XPS). To quantify the effect ofplasma treatment, the method of ternary XPS diagrams wasdeveloped. It was found that undesired silica-like layers wereformed under severe treatment conditions. Argon plasma at lowpower and short treatment time was the most suitable parametersetting. Subsequent hydrosilylation grafting ofallyltetrafluoroethylether, aminopropylvinylether andN-vinylformamide showed that it was possible to functionalizethe surface via a covalent link to the surface. The primaryamino groups introduced onto the surface were accessible forfurther coupling reactions. Heparin surfaces were obtained by acoupling reaction with the introduced amino groups.</p><p><b>Keywords:</b>Silicone elastomers, PDMS, XPS, ESCA, surfacemodification, plasma</p>
74

Spectroscopic studies of boron carbo-nitride

Ahearn, Wesley James 14 February 2011 (has links)
BCxNy films were characterized as a potential pore sealing layer for low κ dielectrics. The changes in chemical bonding were studied as a function of growth temperature to aid in understanding the variation in electrical performance of these films. Thermal chemical vapor deposition of BCxNy using dimethylamine borane and ethylene were deposited on porous methylsilsesquioxane substrates at 335 °C and 1 Torr. BCxNy was able to seal the porous interface with a thickness of 3.9 nm for both blanket and patterned substrates. BCxNy films deposited over a temperature range of 300-400 °C with dimethylamine borane and either ethylene or ammonia coreactant gas were characterized. Films deposited with ethylene became more concentrated in B at the expense of C with increasing temperature. These films favored C-B intermixing over C-C and B-B bonding at higher temperature. H was detected in the form of B-H and C-H bonds. Films deposited with ammonia became concentrated in N at the expense of B, and favored B-N viii bonding at higher temperatures. H was found in the films as B-H, C-H, and N-H bonds. The amount of H in the films decreased with increasing growth temperature for both ethylene and ammonia coreacted films. The valence band offset of C-rich films increased from 0.17 ± 0.22 eV to 0.32 ± 0.22 eV when deposited at 300°C and 400 °C. For the Nrich films, the valence band offset shifted from 0.26 ± 0.28 at 300 °C to -0.15 ± 0.24 eV at the same deposition conditions. High temperature annealing from 400-800 °C in forming gas caused all BCxNy films to decrease in thickness up to 30%. At the same time, the index of refraction increased, and likely, the dielectric constant. X-ray photoelectron spectroscopy revealed little change in the constituent bonding, suggesting that volatile –H containing species were removed during the annealing process. / text
75

An Investigation of the Electronic and Catalytic Properties of Ceria Nanocubes

2013 October 1900 (has links)
The focus of this thesis was on the synthesis, characterization and application of ceria nanocubes. This thesis is divided into two main sections; the first section investigates the electronic properties of ceria nanocubes, and the second explores their catalytic applications towards alcohol oxidation reactions. The first project of this thesis consisted of the X-ray characterization of hydrothermally synthesized ceria nanocubes of various sizes. For the first time, the electronic properties of such nanocubes were systematically studied using high resolution XPS and XANES. It was found that the concentration of Ce3+ present within the nanocubes was independent of the particle size, as well as the Ce precursor used during synthesis. Throughout the analysis of the Ce 3d and 4d XPS spectra, it was observed that the surface of the ceria nanocube samples was undergoing photoreduction/damage over time. This damage was attributed to the samples’ exposure to high intensity X-ray radiation. This was confirmed through examination of the Ce M4,5- and N4,5-edge XANES spectra. From these results, it was clear that the concentration of Ce3+ on the surface of the ceria nanocubes was independent of particle size. This fact may become important when investigating their potential catalytic activity. The second project of this thesis concentrated on the analysis of the catalytic activity of a variety of CeO2, Au and Au/CeO2 catalysts towards the oxidation of benzyl alcohol. The low temperature oxidation reactions were studied using 1H NMR spectroscopy. It was observed that Au NPs, Au/bulk CeO2, and Au/CeO2 nanocubes in water and K2CO3 were active catalysts for this oxidation reaction at 60°C in both air and O2 (g) atmospheres. Surprisingly, however, the Au/bulk CeO2 and Au/CeO2 nanocube catalysts showed very similar activities. It was also found that ceria nanocubes alone, and Au25(SR)18/bulk CeO2 showed no activity for this reaction under similar conditions. It was determined that below a substrate to catalyst ratio of ~ 1500:1, the Au/CeO2 catalysts, which showed the highest activities, were mass-transport limited with respect to the O2 in the system. The turnover frequencies of the supported catalysts were approximately double those of the unsupported NPs. Furthermore, these reactions have indicated that activating Au25(SR)18/CeO2 for catalysis is a non-trivial task, and more work needs to be done to understand the activation of such clusters.
76

Passivation of III-V Semiconductor Surfaces

Contreras, Yissel, Muscat, Anthony 08 November 2013 (has links)
Computer processor chips of the last generation are based on silicon, modified to achieve maximum charge mobility to enable fast switching speeds at low power. III-V semiconductors have charge mobilities that are much higher than that of silicon making them suitable candidates for boosting the performance of new electronic devices. However, III-V semiconductors oxidize rapidly in air after oxide etching and the poor quality of the resulting oxide limits device performance. Our goal is to design a liquid-phase process flow to etch the oxide and passivate the surface of III-V semiconductors and to understand the mechanism of layer formation.Self-assembled monolayers of 1-eicosanethiol (ET) dissolved in ethanol, IPA, chloroform, and toluene were deposited on clean InSb(100) surfaces. The InSb passivated surfaces were characterized after 0 to 60 min of exposure to air. Ellipsometry measurements showed a starting overlayer thickness (due to ET, oxides, or both) of about 20 Å in chloroform and from 32 to 35 Å in alcohols and toluene. Surface composition analysis of InSb with X-ray photoelectron spectroscopy after passivation with 0.1 mM ET in ethanol confirmed the presence of ET and showed that oxygen in the Auger region is below detection limits up to 3 min after the passivation. Our results show that a thiol layer on top of a non-oxidized or low-oxide semiconductor surface slows oxygen diffusion in comparison to a surface with no thiol present, making this a promising passivation method of III-V semiconductors.
77

Surface science studies of conversion coatings on 2024-T3 aluminum alloy

Akhtar, Anisa Shera 05 1900 (has links)
The research in this thesis aims to develop new mechanistic knowledge for coating processes at 2024-Al alloy surfaces, ultimately to aid the design of new protective coatings. Coatings formed by phosphating, chromating, and permanganating were characterized especially by scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy, and scanning electron microscopy . The objective was to learn about growth (nm level) as a function of time for different coating baths, as well as a function of lateral position across the different surface microstructural regions, specifically on the μm-sized Al-Cu-Mg and Al-Cu-Fe-Mn particles which are embedded in the alloy matrix . The research characterizes coating thickness, composition, and morphology. The thesis emphasizes learning about the effect of different additives in zinc phosphating baths . It was found that the Ni²⁺ additive has two main roles : first, the rate of increase in local solution pH is limited by the slower kinetics of reactions involving Ni²⁺ compared to Zn²⁺, leading to thinner zinc phosphate (ZPO) coatings when Ni²⁺ is present. Second, most Ni²⁺ deposition occurs during the later stages of the coating process in the form of nickel phosphate and a Ni-Al oxide in the coating pores on the alloy surface, increasing the corrosion resistance. Aluminum fluoride precipitates first during the initial stages of the coating process, followed by aluminum phosphate, zinc oxide, and finally ZPO. When Ni²⁺ is present in the coating solution at 2000 ppm, ZnO predominates in the coating above the A-Cu-Fe-Mn particle while ZPO dominates on the rest of the surface. The Mn²⁺ additive gives a more even coating distribution (compared with Ni²⁺) across the whole surface. The Mn²⁺ -containing ZPO coating is similar to the chromate coating in terms of evenness, while there is more coating deposition at the second-phase particles for permanganate coatings. The oxides on the Al-Cu-Fe-Mn and matrix regions are similar before coating, thereby confirming that a variety of observed differences in ZPO coating characteristics at these regions arise from the different electrochemical characteristics of the underlying metals. Upon exposure to a corrosive solution, the ZPO coating provides more protection to the second-phase particles compared to the matrix.
78

X-Ray Photoemission Spectroscopy Characterization of Fe(II)- and Fe(III)-Phthalocyanine Molecular Films

Droschke, Sonja January 2015 (has links)
This thesis investigates the electronic structure of iron phthalocyanine (Fe(II)Pc) andiron phthalocyanine chloride (Fe(III)PcCl) immobilized on surfaces. For this purposetwo different deposition methods are used and compared: smearing the molecularpowder under atmosphere condition and evaporation of a molecular layer inultra-high vacuum. The electronic states of FePc and FePcCl are probed withphotoelectron spectroscopy (PES) and compared in relation to the ionic state of thecentral metal (Fe). The PE spectra show that evaporation of FePcCl at around 350°Cresults in dissociation of the chlorine from the FePc molecule, which is stable at thistemperature. Mass spectroscopic measurements during heating of FePcCl in ultra-highvacuum (UHV) show a clear Cl signal for temperature still below 250°C. Theoreticalcalculations of the binding energy for Cl in FePcCl seem to indicate dissociation of theCl from the molecules.
79

Surface science studies of conversion coatings on 2024-T3 aluminum alloy

Akhtar, Anisa Shera 05 1900 (has links)
The research in this thesis aims to develop new mechanistic knowledge for coating processes at 2024-Al alloy surfaces, ultimately to aid the design of new protective coatings. Coatings formed by phosphating, chromating, and permanganating were characterized especially by scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy, and scanning electron microscopy . The objective was to learn about growth (nm level) as a function of time for different coating baths, as well as a function of lateral position across the different surface microstructural regions, specifically on the μm-sized Al-Cu-Mg and Al-Cu-Fe-Mn particles which are embedded in the alloy matrix . The research characterizes coating thickness, composition, and morphology. The thesis emphasizes learning about the effect of different additives in zinc phosphating baths . It was found that the Ni²⁺ additive has two main roles : first, the rate of increase in local solution pH is limited by the slower kinetics of reactions involving Ni²⁺ compared to Zn²⁺, leading to thinner zinc phosphate (ZPO) coatings when Ni²⁺ is present. Second, most Ni²⁺ deposition occurs during the later stages of the coating process in the form of nickel phosphate and a Ni-Al oxide in the coating pores on the alloy surface, increasing the corrosion resistance. Aluminum fluoride precipitates first during the initial stages of the coating process, followed by aluminum phosphate, zinc oxide, and finally ZPO. When Ni²⁺ is present in the coating solution at 2000 ppm, ZnO predominates in the coating above the A-Cu-Fe-Mn particle while ZPO dominates on the rest of the surface. The Mn²⁺ additive gives a more even coating distribution (compared with Ni²⁺) across the whole surface. The Mn²⁺ -containing ZPO coating is similar to the chromate coating in terms of evenness, while there is more coating deposition at the second-phase particles for permanganate coatings. The oxides on the Al-Cu-Fe-Mn and matrix regions are similar before coating, thereby confirming that a variety of observed differences in ZPO coating characteristics at these regions arise from the different electrochemical characteristics of the underlying metals. Upon exposure to a corrosive solution, the ZPO coating provides more protection to the second-phase particles compared to the matrix.
80

Plasma based methods for producing controlled polymer surfaces with sulfur and phosphorus containing chemical groups and interactions between such surfaces and proteins

Siow, Kim January 2007 (has links)
Phosphate and sulfate groups are important parts of biological molecules and as such take part in defining bio-interfacial interactions. However, their roles and contributions are insufficiently understood. In this thesis, plasma based techniques were used to produce polymeric coatings with such groups for surface characterization and protein adsorption studies.

Page generated in 0.0393 seconds