Spelling suggestions: "subject:"zellzyklus"" "subject:"zellzykluses""
81 |
Experimentelle Untersuchungen zur neuronalen Fehlregulation des Zellzyklus beim SchlaganfallKatchanov, Juri 02 May 2003 (has links)
Ziel der vorliegenden Arbeit war, die pathogenetische Bedeutung von dynamischen Zellzyklusveränderungen nach transienter fokaler Ischämie zu analysieren. Als in-vivo-Modell des humanen Schlaganfalls wurde eine 30-minütige Fadenokklusion der A. cerebri media (MCAo) in der Maus gewählt. In diesem Modell findet ein zeitlich verzögerter selektiver Zelluntergang von striatalen Projektionsneuronen bei relativer Aussparung von Gliazellen und Interneuronen statt. Somit entspricht dieses Modell dem humanpathologischen Konzept der "elektiven Parenchymnekrose". Als in-vitro-Modell wurde eine 90-minütige Sauerstoff-Glukose-Deprivation (OGD) der primären neuronalen Zellkultur eingesetzt. Die Experimente wurden parallel in vivo und in vitro durchgeführt. Wir konnten zeigen, daß alle adulten striatalen Neurone den zellzyklushemmenden CDK4-Inhibitor p16INK4a in vivo exprimierten. Die spezifische Herunterregulierung dieses Inhibitors nach 30-minütiger "milder" zerebraler Ischämie war ein frühzeitiger und zuverlässiger Indikator des verzögerten neuronalen Zellunterganges. Der Verlust von p27Kip1, eines weiteren CDK-Inhibitors, ging dem Zelluntergang in der primären neuronalen Zellkultur nach OGD voraus. Der Verlust von CDK-Inhibitoren wurde von der Hochregulierung des Cyclin D1 begleitet. Cyclin D1 wurde in den Zellkern transloziert. Dieser Translokation folgte eine Aktivierung der Cyclin-abhängigen Kinase 2 (CDK2). Wir postulieren, daß die Herunterregulierung der CDK-Inhibitoren das initiierende Ereignis für die Zellzyklusaktivierung darstellt. Die Mehrzahl der Neurone wurde noch vor dem Eintritt in die S-Phase apoptotisch, wenngleich eine kleine Fraktion noch vor ihrem Untergang DNA synthetisierte. Die Behandlung mit dem synthetischen CDK-Inhibitor Olomoucine schützte die primäre neuronale Zellkultur signifikant vor OGD. In der Zusammenschau weisen diese Ergebnisse darauf hin, daß die Zellzyklusaktivierung nach fokaler transienter Ischämie kausal mit der Schadensprogression verknüpft ist. Die pharmakologische Inhibition dieser Vorgänge könnte -unter Berücksichtigung der Nebenwirkungen der jeweiligen Pharmaka- einen therapeutischen Ansatz im Rahmen der akuten Schlaganfallbehandlung liefern. / Following mild ischemic insults many neurons undergo delayed neuronal death. Aberrant activation of the cell cycle machinery is thought to contribute to apoptosis in a variety of conditions including ischemia. We demonstrate that loss of endogenous cyclin dependent kinase (Cdk) inhibitor p16INK4a is an early and reliable indicator of delayed neuronal death in striatal neurons after mild cerebral ischemia in vivo. Loss of p27Kip1, another Cdk inhibitor, precedes cell death in neocortical neurons subjected to oxygen glucose deprivation in vitro. The loss of Cdk inhibitors is followed by upregulation of cyclin D1, activation of Cdk2, and subsequent cytoskeletal disintegration. The majority of neurons undergoes cell death prior to entering S-phase; albeit a small number (~1%) do progress to the S-phase prior to their death. Treatment with Cdk inhibitors significantly reduces cell death in vitro. These results show that alteration of cell cycle regulatory mechanisms is a prelude to delayed neuronal death in focal cerebral ischemia and that pharmacological interventions aimed at neuroprotection may be usefully directed at cell cycle regulatory mechanisms.
|
82 |
The role of Drosophila Bx42/SKIP in cell cycleDehne, Shaza 05 May 2017 (has links)
Um die Rolle von Bx42 in der Regulation des Zellzyklus von Drosophila zu verstehen, habe ich die Auswirkungen der Expression von dominant negativen Bx42 Allel in Drosophila Augenimaginalscheiben untersucht, sowie die Auswirkungen der Bx42 Protein Abbau in Drosophila S2-Zellen mit Hilfe der RNA-Interferenz-Methode. In meiner Studie fand ich, dass die Expression von Bx42-SNW, einer abgeschnittenen dominant negative Version von Bx42, in den Augenimaginalscheiben zu kleinen und groben Augen führte. Analyse des Zellzyklus in den betroffenen Scheiben zeigte keine signifikanten Unterschiede in der Anzahl der S-Phase-Zellen, aber eine starke Reduktion der mitotischen Zellen und die Herunterregulation von Cyc A und B Cyc in dem normalen mitotischen aktiven SMW Bereich des Augenimaginalscheibes. Ziel dieser Studie war auch Faktoren zu finden, die den kleinen Augenphänotyp von Überexpression der negativen Form Bx42-SNW modifizieren können. Die definierten Modifikatoren waren E2F / Dp, Rb, Tribbles, Cdk1, Cyclin B3, EGFR, Dpp und Armadillo. Um weitere Einblicke in der Rolle des Bx42 in Proliferation, dsRNA-vermittelte Knockdown der Expression von Bx42 in S2-Zellen verwendet wurde. Zellen, die mit dsRNA behandelt wurden, zeigten eine signifikante Abnahme der Proliferationsraten im Vergleich zu kontrol dsRNA-OFP-Zellen. Zellzyklusanalyse zeigte, dass die Herunterregulation von Bx42 Zellpopulationen in der G1 und G2 Phasen verringerte, gleichzeitig S-Phasen-Zellen durch Zyklusarrest vermehrete, was führte zu einem Zustand, die Zellen unfähig die zellteilung zu vervollständigen. Semi q-RT-PCR ergab, dass die Herunterregulation von Bx42 die Transkription von E2F, Dap, Cyc A und Cyc B beeinflusst. Eine Reduktion von Cyc A und Cyc B auf Proteinebene wurde auch nachgewiesen. / In order to understand the role of Bx42 in cell cycle regulation of Drosophila, I have investigated the effects of the expression of dominant negative Bx42 allele in Drosophila eye imaginal discs, as well as the effects of depleting the Bx42 protein in Drosophila S2 cells by RNAi. In my study, I found that the expression of Bx42-SNW, a truncated dominant negative version of Bx42, in eye imaginal discs resulted in small and rough eyes. Analyzing the cell cycle in the affected discs showed no significant differences in the number of S-phase cells, but a strong reduction of mitotic cells and the downregulation of Cyc A and Cyc B in the normally mitotic active SMW region of the eye disc. This study aimed also at finding factors that modify the small eye phenotype resulting from overexpression of Bx42-SNW in the eye. The defined modifiers were E2F/Dp, Rb, Tribbles, Cdk1, Cyclin B3, EGFR, Dpp and Armadillo. To gain further insight into the role of Bx42 in proliferation, dsRNA-mediated knockdown the expression of Bx42 was employed in S2 cells. Cells treated with dsRNA exhibited a significant decrease in proliferation rates compared to control dsRNA-OFP cells. Cell cycle analysis demonstrated that down-regulation of Bx42 decreased cell populations in the G1& G2 phases simultaneously augmenting S-phase cells by cycle arrest, leading to a state unable to complete cell division. Semi q-RT PCR, revealed that downregulation of Bx42 affects the transcription of E2F, Dap, Cyc A and Cyc B. A reduction of Cyc A and Cyc B was also demonstrated at the protein level.
|
83 |
Molekulare Effekte der Immunmodulation mit einem anti-CD4-AntikörperKieselbach, Brit 19 August 2004 (has links)
Das grundlegende Problem in der Transplantationsimmunologie ist es, die Langzeitakzeptanz eines fremden (allogen) Organs zu erreichen, ohne die sonstige Immunkompetenz des Empfängers zu beeinträchtigen. Die Induktion einer solchen spenderspezifischen Toleranz würde eine Alternative zum Langzeiteinsatz von Immunsuppressiva darstellen. Deswegen versucht man, während der Transplantation die Aktivierung der für die Abstoßung entscheidenden T-Helferzellen zu unterdrücken, bis eine Akzeptanz des Spenderorgans etabliert ist. Wichtig für eine Aktivierung der T-Zellen ist das für alle T-Helferzellen typische Zelloberflächenmolekül CD4. Antikörper gegen CD4 können in Tiermodellen eine Transplantattoleranz induzieren. Ein besonderes Interesse gilt der Charakterisierung der genauen Mechanismen dieser induzierten Transplantatakzeptanz, da diese noch wenig verstanden sind. Der von uns verwendete nicht-depletierende Maus-anti-Ratten-CD4mAk (RIB5/2) besitzt im allogenen Nierentransplantationsmodell der Ratte eine hohe toleranzinduzierende Wirkung und erzielt eine permanente Transplantatakzeptanz bei >80% der Empfängertiere. In dieser Arbeit wurde versucht, die Effekte dieses monoklonalen Antikörpers auf die T-Zellaktivierung näher zu untersuchen. Ausdruck der blockierten T-Zellaktivierung ist eine verminderte T-Zell-Proliferation und die Reduzierung der Synthese von TH-1-Effektorzytokinen, welche eine zelluläre Immunantwort fördern. Zu diesen für die Abstoßung gefährlichen Th-1-Effektorzytokinen gehören Interleukin 2 (=IL-2, Hauptwachstumsfaktor aktivierter T-Zellen) und Interferon gamma (=IFNgamma, wichtiger Aktivator von APC''s). Während die IL-2 Produktion vollständig verhindert wird, ist die Alloantigen-induzierte IFNgamma mRNA Expression nicht reduziert. Allerdings kommt es unter dem Einfluss des Antikörpers nicht zur IFNgamma Proteinsekretion. Wird jedoch das fehlende IL-2 ersetzt, kann sowohl die defekte Proliferation als auch die posttranskriptionelle Blockade der IFNgamma Produktion wieder aufgehoben werden. Das spiegelt sich auch in vivo wieder, da rekombinantes IL-2 auch hier den Toleranzstatus brechen kann. In dieser Arbeit konnte ein Kandidat dieser IFNgamma Translationskontrolle ermittelt werden. Zusätzlich wurde das Kochaperon p23, Teil eines Hsp90-Komplexes, in unsere Untersuchungen miteinbezogen, da es als ein differentiell reguliertes Gen in allogenen und anti-CD4mAk-behandelten T-Zellen identifiziert wurde. Hsp90 stabilisiert z.B. Kinasen, die wichtige Mediatoren der Signaltransduktion sind. p23 könnte aufgrund seiner Funktion als Kofaktor von Hsp90 an der Regulierung dieser Kinasen beteiligt sein, ist jedoch bisher kaum im Zusammenhang mit T-Zellaktivierung analysiert worden. Meine Untersuchungen ergaben, dass die p23 Expression ebenfalls durch den anti-CD4mAk reduziert wird. Da die Proliferation/p23 und die IFNgamma Synthese IL-2-abhängig reguliert werden, wurden IL-2-induzierte Signalwege auf ihre Relevanz für Proliferation und IFNgamma Regulation hin untersucht. Die Aufklärung der molekularen Mechanismen der anti-CD4mAk-Behandlung auf die T-Zellaktivierung soll mit dazu beitragen, Grundlagen für ein besseres Verständnis des Abstoßungsprozesses und damit Transplantatfunktions-Monitoring zu schaffen. / The major problem in transplantation immunology is the development of long-term donor-specific nonresponsiveness without reduction of the normal recipient immunocompetence. A tolerant state would obviate the need for continuing immunosuppressive therapy. One level of immunosuppression for inducing graft acceptance involves antibodies specific for T-cells of the recipient leading to donorspecific tolerance (e.g. by using of anti-CD4 monoclonal antibodies = aCD4mAb). CD4+ T cells play a predominant role in the cascade of immune processes following transplantation of foreign tissues. The anti-rat CD4 mAb RIB5/2 is very potent in inducing allo-specific tolerance to renal and heart allografts in rat recipients. Here I investigated the molecular mechanisms underlying anti-CD4 antibody mediated inhibition of allo-specific T cell activation and how this is antagonised by exogenous IL-2. IL-2 acts as growth factor for antigen-activated T cells by inducing the expression of cell cycle proteins and also enhances the expression of cytokines, e.g. IFNgamma in T cells. IFNgamma profoundly affects a variety of immune responses, including activation of antigen presenting cells. Anti-CD4 treatment, in vivo and in vitro, completely abrogated IL-2 production by alloreactive T cells. In contrast, anti-CD4 treated allo-activated T cells showed similar IFNgamma mRNA expression as untreated allo-activated T cells, but did not secrete any protein. Thus, the anti-CD4 antibody cannot prevent IFNgamma mRNA expression but is interfering with posttranscriptional mechanisms controlling IFNgamma production during allo-activation of T cells. The investigations revealed a candidate of these IFNgamma translation control. Additionally I investigated the heat shock protein 90 (Hsp90)-associated cochaperone p23. p23 upregulation during T cell activation is also abrogated by anti-CD4 treatment. Hsp90 chaperoning is critical for proper folding, stabilization and trafficking of a number of cellular signaling proteins as e.g. kinases. Hsp90-kinase complexes play an important role in T-cell signal transduction and little is known about the importance or even regulation of Hsp90-cochaperones like p23 during T-cell activation. I analysed the regulation of p23 and downstream effects on different kinases involved in T-cell signaling. These findings are supposed to contribute to a better understanding of the mechanisms underlying tolerance induction.
|
84 |
miR-33 regulates cell proliferation, cell cycle progression and liver regenerationSalinas, Daniel Cirera 15 March 2013 (has links)
Der Cholesterin-Stoffwechsel ist sehr streng auf zellulärer Ebene reguliert und ist essentiell für das Zellwachstum. MicroRNAs (miRNAs), eine Klasse nicht-kodierender RNAs, wurden als kritische Regulatoren der Genexpression identifiziert und entfalten ihre Wirkung vorwiegend auf posttranskriptioneller Ebene. Aktuelle Arbeiten aus der Gruppe um Fernández-Hernando haben gezeigt, dass hsa-miR-33a und hsa-miR-33b, miRNAs die in den Intronsequenzen der Gene für die Sterol-regulatorischen Element- Bindungsproteine (SREBP-2 und SREBP -1) lokalisiert sind, den Cholesterin-Stoffwechsel im Einklang mit ihren Wirtsgenen regulieren. Gleichermaßen inhibiert miR-33 Schlüsselenzyme in der Regulation der Fettsäureoxidation, einschließlich CROT, CPT1A, HADHB, SIRT6, AMPKα, genauso wie IRS2, eine wesentliche Komponente des Insulin-Signalwegs in der Leber. Diese Studie zeigt, dass hsa-miR-33 Familienmitglieder nicht nur Gene in Cholesterin- und Fettsäure-Stoffwechsel sowie Insulin-Signalwege regulieren, sondern zusätzlich die Expression von Genen des Zellzyklus und der Zellproliferation modulieren. miR-33 inhibiert die Expression der CDK6 und CCND1, wodurch sowohol die Zellproliferation als auch die Zellzyklusprogression verringert wird. Die Überexpression von miR-33 induziert einen signifikanten G1 Zellzyklusarrest. Durch eine Inhibierung der miR-33 Expression mittels 2''F/MOE-modifiziert Phosphorothioat-Backbone Antisense-Oligonukleotiden, wird die Leberregeneration nach partieller Hepatektomie (PH) in Mäusen verbessert, was auf eine wichtige Rolle für miR-33 in der Regulation der Hepatozytenproliferation während der Leberregeneration hinweist. Zusammengefasst zeigen diese Daten, dass Srebf/miR-33 Locus kooperieren, um Zellproliferation und Zellzyklusprogression zu regulieren, und könnte somit auch relevant für die menschliche Leberregeneration sein. / Cholesterol metabolism is tightly regulated at the cellular level and is essential for cellular growth. Cellular imbalances of cholesterol and fatty acid metabolism lead to pathological processes, including atherosclerosis and metabolic syndrome. MicroRNAs (miRNAs), a class of noncoding RNAs, have emerged as critical regulators of gene expression acting predominantly at posttranscriptional level. Recent work from Fernández-Hernando´s group and others has shown that hsa-miR-33a and hsa-miR-33b, miRNAs located within intronic sequences of the sterol regulatory element-binding protein (SREBP-2 and SREBP-1) genes, respectively, regulate cholesterol metabolism in concert with their host genes. Similarly, miR-33 targets key enzymes involved in the regulation of fatty acid oxidation including CROT, CPT1A, HADHB, SIRT6 and AMPKα, likewise, IRS2, an essential component of the insulin- signaling pathway in the liver. This study shows that hsa-miR-33 family members not only regulate genes involved in cholesterol and fatty acid metabolism and insulin signaling, but in addition modulate the expression of genes involved in cell cycle regulation and cell proliferation. Thus, miR-33 inhibited the expression of CDK6 and CCND1, thereby reducing cell proliferation and cell cycle progression. Over-expression of miR-33 induced a significant G1 cell cycle arrest and most importantly, inhibition of miR-33 expression using 2’F/MOE-modified phosphorothioate backbone antisense oligonucleotides improved liver regeneration after partial hepatectomy (PH) in mice, suggesting an important role for miR-33 in regulating hepatocyte proliferation during liver regeneration. Altogether, these data establish that Srebf/miR-33 locus may co-operate to regulate cell proliferation, cell cycle progression and may also be relevant to human liver regeneration.
|
85 |
Bifurcation analysis of regulatory modules in cell biologySwat, Maciej J. 13 January 2006 (has links)
Das Kernstueck der vorliegenden Arbeit ist die Betonung von kleinen Modulen als Schluesselkomponenten von biologischen Netzwerken. Unter den zahlreichen moeglichen Modulen scheinen besondere diejenigen interessant zu sein, welche die Rueckkopplungen realisieren und in regulatorischen Einheiten auftreten. Prozesse wie Genregulation, Differentiation oder Homeostasis benoetigen haeufig Autoregulation. Auf Grund dessen ist die detaillierte Kenntnis der dynamischen Eigenschaften von kleinen Modulen von groesserem Interesse. Es werden zwei biologische Systeme analysiert. Das erste beschaftigt sich mit dem Zellzyklus, das zweite Beispiel kommt aus der Immunologie und betrifft die Aktivierung von T-Zellen. Beide Modelle, d.h. ihre zugrundeliegende Netzwerke, lassen sich in Untereinheiten mit wohldefinierten Funktionen zerlegen. Diese Module entscheiden ueber das Verhalten des gesamten Netzwerkes. Mit anderen Worten, die von den Modulen getroffenen Entscheidungen, werden von dem gesamten System uebernommen. Bei der Analyse des Modells zum Zellzyklus wurde eine interessante Eigenschaft von gekoppelten Modulen deutlich, die wir dann getrennt behandelt haben. Seriell geschaltete Module mit positiver Rueckkopplung liefern ueberraschende Konstruktionsmoeglichkeiten fuer Systeme mit mehreren stabilen Gleichgewichtslagen. Obwohl nicht alle hier aufgestellten Hypothesen derzeit experimentell ueberpruefbar sind, es kann eine wichtige Aussage getroffen werden. Uebereinstimmende Strukturen und Mechanismen, die in verschiedenen biologischen Systemen vorkommen, bieten uns die Moeglichkeit einer Klassifizierung von biologischen Systemen bezueglich ihrer strukturellen Aehnlichkeiten. / The thesis emphasizes the importance of small modules as key components of biological networks. Especially, those which perform positive feedbacks seem to be involved in a number of regulatory units. Processes like gene regulation, differentiation and homeostasis often require autoregulation. Therefore, detailed knowledge of dynamics of small modules becomes nowadays an important subject of study. We analyze two biological systems: one regarding cell cycle regulation and one immunological example related to T-cell activation. Their underlying networks can be dissected into subunits with well defined functions. These modules decide about the behavior of the global network. In other words, they have decision taking function, which is inherited by the whole system. Stimulated by the cell cycle model and its interesting dynamics resulting from coupled modules, we analyzed the switching issue separately. Serial coupling of positive feedback circuits provides astonishing possibilities to construct systems with multiple stable steady states. Even though, in current stage, no exact experimental proof of all hypotheses is possible, one important observation can be made. Common structures and mechanisms found in different biological systems allow to classify biological systems with respect to their structural similarities.
|
86 |
Cyclins and their roles in cell cycle progression, transcriptional regulation and osmostress adaptation in Saccharomyces cerevisiae. A transcriptome-wide and single cell approachTeufel, Lotte 12 March 2020 (has links)
Der eukaryotische Zellzyklus ist ein streng regulierter Prozess, für dessen zeitlichen Ablauf unter anderem oszillierende Genexpression notwendig ist.
Die Regulation und die zeitliche Koordination des Zellzyklus sind nach wie vor fundamentale Fragen der Zellbiologie. Spezifische Ereignisse, wie DNA Replikation und Zellkernteilung, können vier Zellzyklusphasen zugeordnet werden, welche durch Cyclin-abhängige Kinasen, Cycline und deren Inhibitoren reguliert werden. Während in Saccharomyces cerevisiae Cyclin-abhängige Kinasen (Cdc28, Pho85) über den gesamten Zellzyklus zu Verfügung stehen, werden Cycline und ihre Inhibitoren nur in spezifischen Phasen exprimiert. In S. cerevisiae sind drei wichtige G1-Cycline (Cln1-Cln3) in die oszillierende Genexpression involviert.
In dieser Arbeit wurde die zeitaufgelöste, transkriptomweite Genexpression im Wildtyp und in Cyclindeletionsmutanten gemessen. Um die Rolle der G1-Cycline für die Feinabstimmung des Zellzykluses zu verstehen, wurden Gene nach charakteristischen Expressionsprofilen geclustert, Expressionsmaxima detektiert, ein Transkriptionsfaktornetzwerk integriert und Zellzyklusphasendauern bestimmt. Um Unterschiede zwischen der Rolle der Cycline zu verstehen, wurden die Zellen zusätzlich Osmostress ausgesetzt.
Des Weiteren wurde mit Hilfe von RNA-Fluorescence In Situ Hybridization (FISH) die Expression zweier Cycline (PCL1 und PCL9), die an Pho85 binden, auf Einzelzellniveau gemessen. Um die Expression in spezifischen Zellzyklusphasen zu quantifizieren, wurden einzelne Zellen mithilfe von Zellzyklusmarkern spezifischen Zellzyklusphasen zugeordnet. Nachdem die Expression unter normalen Wachstumsbedingungen gemessen wurde, wurde zusätzlich Osmostress angewandt.
Durch die Kombination einer Einzelzellquantifizierung und einer transkriptomweiten Methode konnten spezifische Aufgaben der Cycline, Cln1, Cln2 und Cln3, erforscht werden. Zusätzlich konnten backup Mechanismen für die Zellzyklusregulation entschlüsselt werden. / The eukaryotic cell cycle is a highly ordered process. For its timing and progression, oscillating gene expression is crucial. The stability of cell cycle regulation and the exact timing is still a fundamental question in cell biology. Specific events, like DNA replication and nuclear division can be assigned to four distinct phases. These events are regulated by cyclin-dependent kinases, cyclins and their inhibitors. In Saccharomyces cerevisiae cyclin-dependent kinases (Cdc28, Pho85) are present throughout the cell cycle, while cyclins and their inhibitors are only expressed and active during specific phases. The G1 cyclins Cln1-3 are essential players to induce oscillating gene expression and are thereby involved in the fine-tuning of the cell cycle.
To understand the role of the G1 cyclins for exact cell cycle timing and oscillating gene expression, time-resolved, transcriptome-wide gene expression in wild type and cyclin deletion mutants were measured. Characteristic expression profiles were clustered, precise peak times for each gene were estimated, a transcription factor network was integrated and cell cycle phase durations were defined. To further understand the role and differences of each cyclin osmostress was applied.
Furthermore the expression of two cyclins (PCL1 and PCL9) corresponding to the cyclin-dependent kinase Pho85 was measured in single cells. Using RNA-Fluorescence In Situ Hybridization (FISH) and cell cycle progression markers, high and low expression phases and absolute numbers of mRNAs were obtained. Gene expression was quantified under normal and osmostressed growth conditions to understand the necessity of the cyclins for osmostress adaptation in different cell cycle phases.
By the combination of a single cell and a transcriptome-wide approach distinct roles of G1 cyclins Cln1, Cln2 and Cln3 were deciphered and an insight in the backup mechanisms during cell cycle progression for normal and osmostressed growth conditions were proposed.
|
87 |
Estimating the time-dependent RNA kinetic rates in the cell cycleLiu, Haiyue 20 December 2022 (has links)
Die Menge an RNA in Eukaryonten wird durch ihre kinetischen Transkriptions-, Verarbeitungs- und Abbauraten bestimmt. Diese kinetischen Raten wurden bereits ausführlich in Zellpopulationen untersucht, allerdings unter der Annahme, dass diese in verschiedenen Zelltypen identisch sind. Die Genexpression ist jedoch während biologischer Prozesse wie z.B der Zellproliferation, Zelldifferenzierung und Zellteilung hochdynamisch. Die Untersuchung der RNA- Kinetikraten in Einzelzellen, die sich in verschiedenen Phasen desselben dynamischen Prozesses befinden, kann uns ein umfangreicheres Bild davon geben, wie RNA-Kinetikraten die Genexpression zeitabhängig koordinieren. In diesem Projekt, Wir haben die Methode der RNA- Stoffwechselmarkierung und der biochemischen Nukleosidkonversion mit der Einzelzell-RNA- Sequenzierung kombiniert. Wir leiteten ein zeitabhängiges kinetisches Geschwindigkeitsmodell ab und schätzten RNA-Transkriptions- und - Abbauraten über den zeitlichen Verlauf des Zellzyklus ab. Dabeiverwendeten wir Näherungen basierend auf der Lösung des resultierenden Differentialgleichungssystems. Wir fanden heraus, dass Transkriptions- und Abbauraten der meisten zyklischen Gene hochdynamisch sind. Unterschiedliche kinetische Regulationsmuster formen spezifische Genexpressionsprofile. Etwa 89 % der 377 von uns analysierten zyklischen Gene werden durch dynamische Transkriptions- und Abbauraten reguliert. Während der dynamischen Transkriptionsrate beobachteten wir auch, dass einige zyklische Gene durch dynamische Zerfallsraten angetrieben wurden. Unsere Studie bekräftigt die Bedeutung der zeitlichen Regulation von der Genexpression durch Produktion und Zerfall. Darüber hinaus hat die von uns entwickelte Methode das Potenzial, an verschiedene biologische Prozesse angepasst zu werden. Unser Ansatz in dieser Studie kann die Untersuchung der zeitlichen Genexpressionsregulation und der RNS- Kinetikraten voranbringen. / RNA abundance in eukaryotes is determined by its kinetic rates of transcription, processing and degradation. Each of the kinetic rates has been extensively studied in bulk cell populations assuming they are equal in different cells. However, gene expression is highly dynamic during biological processes such as cell proliferation, cell differentiation, and cell division. Investigation of RNA kinetic rates in individual cells which are in different phases of the same dynamic process can give us a more comprehensive picture of how RNA kinetic rates coordinate gene expression in a time-dependent manner. In this project, we adapted the RNA metabolic labeling and biochemical nucleoside conversion method to droplet- based single-cell RNA sequencing. We derived a time- dependent kinetic rate model and estimated RNA transcription and degradation rates over the time course of the cell cycle using approximations based on the solution of the resulting system of differential equations. We found that transcription and degradation rates of most cycling genes are highly dynamic. Different kinetic regulation patterns shape specific gene expression profiles. Around 89% of the 377 cycling genes we analyzed are regulated by dynamic transcription and degradation rates. While dynamic transcription rate was prevalent, we also observed some cycling genes were driven by dynamic decay rates. Our study underscores the importance of temporal gene expression regulation by both production and decay. Moreover, the method we developed has the potential to be adapted to different biological processes. We suggest that our approach can advance the study of temporal gene expression regulation and RNA kinetic rates.
|
88 |
Purification of A Serum Factor That Triggers Cell Cycle Re-entry In Differentiated Newt Myotubes / Aufreinigung eines Serumfactors, welcher den Zellzyklus-Wiedereintritt in differenzierten Salamander-Muskelzellen steuertStraube, Werner 30 November 2006 (has links) (PDF)
In contrast to mammals, some fish and amphibians have retained the ability to regenerate complex body structures or organs, such as the limb, the tail, the eye lens or even parts of the heart. One major difference in the response to injury is the appearance of a mesenchymal growth zone or blastema in these regenerative species instead of the scarring seen in mammals. This blastema is thought to largely derive from the dedifferentiation of various functional cell types, such as skeletal muscle, skin and cartilage. In the case of multinucleated skeletal muscle fibres, cell cycle re-entry into S-phase as well as fragmentation into mononucleated progenitors is observed both in vitro and in vivo. In order to identify molecules that initiate dedifferentiation of cells at the wound site in amphibians we have established a cellular assay with a cultured newt myogenic cell line. Using this assay we have found a serum activity that stimulates cell cycle re-entry in differentiated multinucleated newt myotubes. The activity is present in serum of all mammalian species tested so far and, interestingly, thrombin proteolysis amplifies the activity from both serum and plasma. We think this serum factor provides a link between wounding and regeneration and its identification will be a key step in understanding the remarkable differences in wound healing between mammals and amphibians. In the course of this PhD thesis we have characterized the serum factor as a thermo-labile, pH- and proteinase K-sensitive, high molecular weight protein that is resistant to denaturing conditions such as SDS, urea or organic solvents. Surprisingly, under denaturing conditions the activity behaves as a low molecular weight protein that displays charge heterogeneity on isoelectric focusing. Using these characteristics of the serum factor we have performed a systematic investigation of commonly used protein chromatography modes and separation techniques to develop a successful purification procedure. After four column chromatography steps -- cation exchange, hydrophobic interaction, heparin affinity and size exclusion chromatography under denaturing conditions -- we have achieved a 2,000-fold purification starting from a commercially available Crude Bovine Thrombin preparation. This represents about 40,000-fold purification over bovine serum. Silver stained gels of the most purified fractions revealed ten major protein bands. In order to finally identify the cell cycle re-entry factor, we are currently analyzing the purification by quantitative mass spectrometry by correlating the abundance of tryptic peptides with activity in sequential fractions across a chromatography run.
|
89 |
Regulation of the anaphase promoting complex (APC/C) in the mitotic and meiotic cell cycle of Saccharomyces cerevisiae / Regulation des Anaphase promoting Komplex (APC/C) im mitotischen und meiotischen Zellzyklus von Saccharomyces cerevisiaeBolte, Melanie 22 January 2004 (has links)
No description available.
|
90 |
Zelltyp-spezifische Interaktionen von Toxoplasma gondii und murinen Skelettmuskelzellen in vitro / Cell-type specific interactions between Toxoplasma gondii and murine Skeletal Muscle Cells in vitroSwierzy, Izabela 16 January 2014 (has links)
Toxoplasma gondii ist einer der häufigsten intrazellulären Protozoen weltweit und ein wichtiger Krankheitserreger des Menschen. Er kommt in drei Lebensstadien vor: Sporozoiten, Tachyzoiten und Bradyzoiten. Während Sporozoiten nach sexueller Vermehrung im Endwirt (Katzenartige) und Freisetzung in die Umwelt gebildet werden, entstehen Tachyzoiten und Bradyzoiten asexuell durch Endodyogenie in Zwischenwirten wie Vögeln, Säugetieren und dem Menschen. Tachyzoiten sind schnell replizierende Parasiten, die nahezu jede nukleäre Zelle des Körpers infizieren können. Dagegen bilden die nach Differenzierung von Tachyzoiten entstehenden, weitgehend ruhenden Bradyzoiten Gewebszysten und persistieren bevorzugt in neuronalen oder muskulären Geweben der Zwischenwirte. Der Verzehr von Bradyzoiten-haltigem, rohem oder ungegartem Fleisch von T. gondii-infizierten Nutztieren ist einer der Hauptübertragungswege des Parasiten auf den Menschen und kann zum Ausbruch der Toxoplasmose-Krankheit führen. Die Toxoplasmose ist vor allem bei immunsupprimierten Patienten und erstmalig infizierten Schwangeren nach Übertragung auf den Fötus klinisch gefährlich und kann sogar tödlich enden. Da Fleischverzehr infizierter Nutztiere einen der Hauptinfektionswege darstellt, weisen Skelettmuskelzellen (SkMZ) eine enorme Bedeutung für die Übertragung von Toxoplasma auf den Menschen auf.
Das Ziel dieser Arbeit war es daher, zelltyp-spezifische Faktoren zu identifizieren und zu charakterisieren, die die Toxoplasma-Entwicklung und Bradyzoitenbildung in SkMZ regulieren.
Die Untersuchungen wurden mithilfe der murinen C2C12-SkMZ-Linie in vitro durchgeführt, die von proliferierenden Myoblasten in Pferdeserum-haltigem Medium oder aufgrund erhöhter Zelldichte effektiv zu polykernigen Myotuben differenzierten. Die Effektivität der terminalen Differenzierung von C2C12-SkMZ wurde durch den Nachweis muskelspezifischer Marker wie MyoD, Myogenin und Myosin Heavy Chain (MyHC) mittels Reverse Transkriptase-qPCR (RT qPCR), Immunfluoreszenz sowie Nachweis des Zellzyklusarrests mittels BrdU-Markierung validiert.
Die Infektion von terminal differenzierten C2C12-Myotuben, proliferierenden C2C12-Myoblasten und murinen NIH3T3-Kontrollfibroblasten mit T. gondii zeigte, dass der Parasit in Myotuben deutlich mehr bradyzoitenspezifische ENO1- bzw. BAG1-Transkripte exprimierte als in Myoblasten und Fibroblasten. Außerdem war die Gewebszystenbildung bei gleichzeitig reduzierter Parasitenreplikation in terminal differenzierten C2C12-Myotuben deutlich erhöht. Demgegenüber förderten proliferierende C2C12-Myoblasten und NIH3T3-Fibroblasten die Replikation von Toxoplasma bei gleichzeitig geringer Bradyzoitenbildung. Diese Daten weisen erstmalig auf die Bedeutung des Zelltyps und dessen Differenzierung für die Parasitenentwicklung und die Stadienkonversion in SkMZ hin.
Für genauere Untersuchungen von Zelltyp-spezifischen Interaktionen mit T. gondii wurden die Transkriptome von terminal differenzierten C2C12-Myotuben und Neuronen sowie von proliferierenden NIH3T3-Fibroblasten und Astrozyten vor und nach Infektion mit T. gondii für 24 Stunden mittels High-Throughput RNA-Sequenzierung ermittelt. Die Analysen zeigten einen deutlich größeren Einfluss der zelltyp-spezifische Genexpression auf das Gesamttranskiptom der vier Zelltypen als die Expressionsveränderungen aufgrund der Toxoplasma-Infektion. Allerdings wurden auch Gengruppen identifiziert, die in den terminal differenzierten SkMZ und Neuronen im Vergleich zu Fibroblasten und Astrozyten differentiell exprimiert waren. Des Weiteren bewirkte die T. gondii-Infektion eine signifikante Expressionssteigerung u. a. von Zellzyklus-regulierenden Transkripten spezifisch in terminal differenzierten SkMZ und Neuronen, was auf ihre mögliche Beteiligung an der Toxoplasma-Stadienkonversion hindeutete. Daher wurden anschließend die Expressionsprofile ausgesuchter Zellzyklusregulatoren im Laufe der terminalen C2C12-SkMZ-Differenzierung und der Toxoplasma-Infektion mittels RT qPCR- und Western Blot-Analysen untersucht. Während die Transkription der negativen Zellzyklus-Modulatoren Tspyl2 und dem ‚down stream‘-liegenden Targetgen p21 im Laufe der terminalen Differenzierung von C2C12-Myoblasten zunahm, sank begleitend die Transkription der Uhrf1- und Ccnb1- (CyclinB1) Aktivatoren. Nach Infektion wurde spezifisch in Myotuben, nicht aber in Myoblasten oder Fibroblasten, eine weitere Steigerung der Tspyl2-Transkripte durch RT-qPCR-Analysen nachgewiesen. Gleichzeitig reagierten C2C12-Myotuben auch mit Hochregulation der Uhrf1- und Ccnb1-Transkription auf Toxoplasma-Infektion. Allerdings wurde durch BrdU-Markierung nachgewiesen, dass die spezifische Modulation von Zellzyklusregulatoren nach Infektion von Myotuben den Zellzyklusarrest nicht aufhob und C2C12-Myotuben nicht zur Zellteilung anregte.
Da Überexpression von CDA-1 (humanes Tspyl2-Ortholog) in humanen Fibroblasten die Stadienkonversion von T. gondii fördert, wurde die Funktion des Tspyl2-Zellzyklusregulators in SkMZ analysiert. ‚Knock-down‘ von Tspyl2 mittels shRNA unterdrückte effektiv die terminale C2C12-Myoblastendifferenzierung. Bemerkenswerterweise führte dies nach T. gondii-Infektion zweier ausgesuchter Tspyl2 shRNA-C2C12-Transfektanten zu einer verstärkten Toxoplasma-Replikation im Vergleich zu Kontrolltransfektanten und WT Myotuben. Gleichzeitig war in Tspyl2-‚Knock-down‘-Mutanten die Parasitendifferenzierung zum Bradyzoitenstadium sowie die Gewebezystenbildung vermindert. Diese Ergebnisse zeigen erstmalig, dass in SkMZ die spontane Differenzierung von T. gondii zum Bradyzoiten wesentlich von dem Zellzyklusregulator Tspyl2 und der terminalen Myotubendifferenzierung abhängt.
Differenzierung von SkMZ führte u.a. auch zu veränderten Expressionsprofilen von Zytokinen und Chemokinen in C2C12-Myotuben, -Myoblasten und Kontrollfibroblasten. So wurden mehrere pro-inflammatorischen Zytokine in Myotuben deutlich stärker als in Myoblasten oder Fibroblasten exprimiert. Nach Infektion von C2C12-Myotuben stiegen die Transkriptmengen von IL-23, IL 1α und IL 1β an. Diese Ergebnisse könnten neben Zellzyklusregulatoren auch auf den Einfluss von Immunfaktoren bei der Zelltyp-spezifischen Stadienkonversion in differenzierten SkMZ hindeuten
In dieser Arbeit wurde zum ersten Mal gezeigt, dass der Differenzierungsstatus der SkMZ die Stadienkonversion und die Gewebszystenbildung eindeutig beeinflusst. Da die terminale SkMZ-Differenzierung von Zellzyklusregulatoren eingeleitet wird und ihre Expressionen offensichtlich unter dem Einfluss der T. gondii-Infektion stehen, könnten sie einen Einflus auf die Induktion der Stadiendifferenzierung von schnell replizierenden Tachyzoiten zu persistierenden Bradyzoiten ausüben, was am Beispiel des negativen Zellzyklusregulators Tspyl2 in dieser Arbeit nachgewiesen wurde. Des Weiteren wurde gezeigt, dass Myotuben mit der Produktion von proinflammatorischen Molekülen aktiv auf die Toxoplasma-Infektion reagieren und ihre Expression zur lokalen Immunantwort der SkMZ beitragen dürften.
|
Page generated in 0.088 seconds