• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 13
  • 12
  • 9
  • 9
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 122
  • 122
  • 17
  • 15
  • 15
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Probing The Nanoscale Interaction Forces And Elastic Properties Of Organic And Inorganic Materials Using Force-distance (f-d) Spectroscopy

Vincent, Abhilash 01 January 2010 (has links)
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 µN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
92

Formulation and characterization of lipid-based nanocarriers for the delivery of antimicrobial peptide

Saha, Srijani January 2022 (has links)
Bakterier som är resistenta mot antibiotika har de senaste åren blivit ett stort hot mot mänskligheten. Att utveckla nya antibiotikaläkemedel är väldigt tidskrävande samt kommer med en dyr prislapp. Det är några av anledningarna att forskare har inriktat sig på antimikrobiella peptider (AMPs) som ett alternativ till traditionella antibiotika. Dessa peptider finns i alla levande organismer och uppvisar en snabb och ospecifik mekanism. Vidare så är de mindre benägna att utveckla resistens hos bakterierna. Däremot så har dessa AMPar visat sig ha låg stabilitet och en del toxiska biverkningar. Olika typer av nanobärare kan användas för att överkomma dessa kommakortanden. Syftet med denna studie var att utveckla en optimerad nanobärare för AMPen AP114. Peptiden har blivit inkluderad i nanostrukturerade lipidbärare (NLC) samt liposomer. Dessa har producerats med smält emulsifieringsmetod och lösningsinjektion metoden. De fysikalkemiska karaktäristik hos olika blanka samt AP115 laddade nanoformuleringar har analyserats samt jämförts. Resultaten indikerade att liposomformuleringarna hade den lägsta partikelstorleken och storleksfördelning men en kontrollerad in vitro frisättning av peptiden över 48 timmar. Generellt, så indikerar de preliminära resultaten en potential nanoformulering för peptiden AP114. / In the past few years, bacterial resistance to antibiotics has posed a major threat to humankind. Development of substitutes for traditional antibiotics is a highly time consuming and expensive venture. For this reason, researchers are focusing on using antimicrobial peptides (AMP) as an alternate. These peptides are found in all living organisms and exhibit a fast and non-targeted mechanism of action. Besides, they are less susceptible to microbial resistance. However, these therapeutic peptides are not stable and have toxic side effects. To overcome these limitations, drug delivery systems have been explored. In this study, the aim was to develop an optimized drug delivery system for AP114. The peptide has been encapsulated in nanostructured lipid carriers (NLC) and liposomes, produced by melt emulsification method and solvent injection method, respectively. The physicochemical characterization of different blank and AP114 loaded nanoformulations were analyzed and compared. The results indicated the liposome samples to have the lowest particle size distribution and polydispersity, with a controlled in vitro release of the peptide over 48 hours. Overall, these preliminary findings suggest a promising potential for the formulation of a nanocarrier for AP114 peptide.
93

Biomedical Applications Employing Microfabricated Silicon Nanoporous Membranes

Smith, Ross Andrew 22 July 2010 (has links)
No description available.
94

Untersuchungen zu Eigenschaften und Funktionen ausgewählter (Bio-)Tenside beim mikrobiellen Schadstoffabbau mittels kalorimetrischer und oberflächenanalytischer Methoden

Frank, Nicole 11 March 2013 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurden die Wechselwirkungen im System Bakterium –Tensid – Schadstoff mittels kalorimetrischer Untersuchungen (ITC, DSC) sowie mit XPS-Analysen und durch Zeta-Potential-Messungen an Bakterienoberflächen charakterisiert. Für die Untersuchungen wurden zwei Gram-positive Rhodococcus-Stämme und ein Gram-negativer Pseudomonas putida-Stamm verwendet. Als Biotenside wurden das Rhamnolipid JBR 425 und der von Rhodococcus erythropolis B7g produzierte Trehalosetetraester (THL-4) ausgewählt. Das synthetische Tensid SDS diente als Referenzsubstanz. Aus den kalorimetrischen Experimenten konnte eine starke Wechselwirkung zwischen den Tensiden und den aktiven Bakterienkulturen abgeleitet werden. THL-4 führte beim Wachstum der Rhodococcen auf n-Hexadecan zur Verkürzung der lag-Phase. SDS wies hingegen eine toxische Wirkung für die Bakterienstämme auf. Thermodynamische Betrachtungen ergaben, dass Wechselwirkungen des SDS mit den Bakterienzellen gegenüber der Mizellbildung bevorzugt werden.
95

Plasma-based surface modifications of polyester fabrics and their interaction with cationic polyelectrolytes and anionic dyes

Salem, Tarek Sayed Mohamed 08 February 2012 (has links) (PDF)
Plasma-based surface modifications offer many interesting possibilities for the production of high value-added polymeric materials. In this work, different plasma-based synthetic concepts were employed to endow poly(ethylene terephthalate) (PET) fabrics with accessible amine functionalities. These concepts were compared to find out the appropriate engineering methods, which can be further accepted by textile industries to overcome the limited reactivity of PET fabric surfaces, while the bulk characteristics are kept unaffected. Amine functionalities were introduced onto the surface of PET fabrics using either low-pressure ammonia plasma treatment or coating oxygen plasma-treated PET fabric with cationic polyelectrolytes. Two different cationic polyelectrolytes were used in this study namely poly(diallyldimethylammonium chloride) as an example of strong polyelectrolytes and poly(vinyl amine-co-vinyl amide) as an example of weak polyelectrolytes. The modified surfaces were characterized by a combination of various surface-sensitive techniques such as X-ray photoelectron spectroscopy (XPS), electrokinetic measurements and time-dependent contact angle measurements. Furthermore, the amine functionalities introduced by different surface modifications were used for the subsequent immobilization of various classes of anionic dyes to evaluate the efficiency of different surface modifications. Color strength (K/S) and fastness measurements of colored fabrics were also explored. Their results can be taken as a measure of the extent of the interaction between different modified surfaces and anionic dyes. Finally, it was demonstrated that anchoring poly(vinyl amine-co-vinyl amide) layer onto PET fabric surfaces modified with low-pressure oxygen plasma is an efficient approach to improve coloration behavior and to overcome different problems related to PET fabrics coloration, such as coloration of PET/wool blend fabric with a single class of dyes. This is a crucial step towards the substrate independent surface coloration, which becomes dependent on the properties of the top layer rather than chemical structure of the fibers.
96

Plasma-based surface modifications of polyester fabrics and their interaction with cationic polyelectrolytes and anionic dyes

Salem, Tarek Sayed Mohamed 04 January 2012 (has links)
Plasma-based surface modifications offer many interesting possibilities for the production of high value-added polymeric materials. In this work, different plasma-based synthetic concepts were employed to endow poly(ethylene terephthalate) (PET) fabrics with accessible amine functionalities. These concepts were compared to find out the appropriate engineering methods, which can be further accepted by textile industries to overcome the limited reactivity of PET fabric surfaces, while the bulk characteristics are kept unaffected. Amine functionalities were introduced onto the surface of PET fabrics using either low-pressure ammonia plasma treatment or coating oxygen plasma-treated PET fabric with cationic polyelectrolytes. Two different cationic polyelectrolytes were used in this study namely poly(diallyldimethylammonium chloride) as an example of strong polyelectrolytes and poly(vinyl amine-co-vinyl amide) as an example of weak polyelectrolytes. The modified surfaces were characterized by a combination of various surface-sensitive techniques such as X-ray photoelectron spectroscopy (XPS), electrokinetic measurements and time-dependent contact angle measurements. Furthermore, the amine functionalities introduced by different surface modifications were used for the subsequent immobilization of various classes of anionic dyes to evaluate the efficiency of different surface modifications. Color strength (K/S) and fastness measurements of colored fabrics were also explored. Their results can be taken as a measure of the extent of the interaction between different modified surfaces and anionic dyes. Finally, it was demonstrated that anchoring poly(vinyl amine-co-vinyl amide) layer onto PET fabric surfaces modified with low-pressure oxygen plasma is an efficient approach to improve coloration behavior and to overcome different problems related to PET fabrics coloration, such as coloration of PET/wool blend fabric with a single class of dyes. This is a crucial step towards the substrate independent surface coloration, which becomes dependent on the properties of the top layer rather than chemical structure of the fibers.
97

Untersuchungen zu Eigenschaften und Funktionen ausgewählter (Bio-)Tenside beim mikrobiellen Schadstoffabbau mittels kalorimetrischer und oberflächenanalytischer Methoden

Frank, Nicole 22 February 2013 (has links)
Im Rahmen der vorliegenden Arbeit wurden die Wechselwirkungen im System Bakterium –Tensid – Schadstoff mittels kalorimetrischer Untersuchungen (ITC, DSC) sowie mit XPS-Analysen und durch Zeta-Potential-Messungen an Bakterienoberflächen charakterisiert. Für die Untersuchungen wurden zwei Gram-positive Rhodococcus-Stämme und ein Gram-negativer Pseudomonas putida-Stamm verwendet. Als Biotenside wurden das Rhamnolipid JBR 425 und der von Rhodococcus erythropolis B7g produzierte Trehalosetetraester (THL-4) ausgewählt. Das synthetische Tensid SDS diente als Referenzsubstanz. Aus den kalorimetrischen Experimenten konnte eine starke Wechselwirkung zwischen den Tensiden und den aktiven Bakterienkulturen abgeleitet werden. THL-4 führte beim Wachstum der Rhodococcen auf n-Hexadecan zur Verkürzung der lag-Phase. SDS wies hingegen eine toxische Wirkung für die Bakterienstämme auf. Thermodynamische Betrachtungen ergaben, dass Wechselwirkungen des SDS mit den Bakterienzellen gegenüber der Mizellbildung bevorzugt werden.
98

Syntéza kvantových teček pro in-vivo zobrazování / Synthesis of quantum dots for in-vivo imaging

Ferdusová, Helena Unknown Date (has links)
The aim of this work was to synthesise water-soluble QDs using different precursors and stabilizers and to determine the toxicity of the synthesized QDs by in vivo imaging. Experiments were performed on water-soluble QDs (MPA-CdTe, MPA-CdTe/ZnS, MSA-CdTe, MSA-CdTe/ZnS, GSH-CdTe, GSH-CdTe/ZnS, TGA-CdTe, TGA-CdTe/ZnS, GSH-ZnSe and GSH-ZnSe/ZnS ) and toxicity was measured. Synthesized QDs were characterized by high intensity (fluorescence spectroscopy), FWHM and zeta potential (ZS Zetasizer) were selected due to their suitability for this task. The toxicity of QDs was determined by the MTT assay on the cell line HEK 293. The experiments show that a core/shell structure is less toxic than a core structure. The results indicate that the toxicity of our synthesized QDs is the lowest for MPA-CdTe (core structure) and MPA-CdTe/ZnS (core/shell structure).
99

Aqueous Processing of WC-Co Powders

Andersson, Karin M. January 2004 (has links)
The object of this work is to obtain a fundamentalunderstanding of the principal issues concerning the handlingof an aqueous WC-Co powder suspension. The WO3 surface layer on the oxidised tungsten carbidepowder dissolves at pH&gt;3 with the tungsten concentrationincreasing linearly with time. Adding cobalt powder to thetungsten carbide suspension resulted in a significant reductionof the dissolution rate at pH&lt;10. Electrokinetic studiesindicated that the reduced dissolution rate may be related tothe formation of surface complexes; the experiments showed thatCo species in solution adsorb on the oxidised tungsten carbidepowder. The surface forces of oxidised tungsten and cobalt surfaceswere investigated using the atomic force microscope (AFM)colloidal probe technique. The interactions at various ionicstrengths and pH values are well described by DLVO theory. Theadsorption of cobalt ions to tungsten oxide surfaces resultedin an additional non-DLVO force and a reduced absolute value ofthe surface potential. It was shown that the adsorption ofpoly(ethylene imine) (PEI) to the WO3 surfaces induces anelectrosteric repulsion. The properties of spray-dried WC-Co granules were related tothe WC primary particle size, and the poly(ethylene glycol)(PEG) binder and PEI dispersant content in aqueous WC-Cosuspensions. The granule characterisation includes a new methodfor measuring the density of single granules. The increase inthe fracture strength of granules produced from suspensionsthat were stabilised with PEI was related to a more densepacking of the WC-Co particles. The AFM was used to study the friction and adhesion ofsingle spray-dried WC-Co granules containing various amounts ofPEG binder. The adhesion and friction force between two singlegranules (intergranular friction) and between a granule and ahard metal substrate (die-wall friction) have been determinedas a function of relative humidity. The granule-wall frictionincreases with binder content and relative humidity, whereasthe granule-granule friction is essentially independent of therelative humidity and substantially lower than the granule-wallfriction at all PEG contents. Key words:Hard Metal, Cemented Carbide, WC-Co, TungstenCarbide, Cobalt, Oxidation, Dissolution, Surface Complexation,XPS, AFM, Colloidal Probe, Hamaker Constant, Cauchy, WO3,CoOOH, ESCA, Zeta-Potential, Surface Potential, Poly(ethyleneimine), PEI, Suspension, van der Waals, Steric, Spray-Dried,Poly(ethylene glycol), Strength, Density, Friction, Adhesion,Granule, PEG, Pressing, FFM. / <p>QC 20161027</p>
100

The influence of the Ionic Liquid [C14MIM][Cl] on the structural and thermodynamic features of zwitterionic and anionic model membrane / A influência do Líquido Iônico [C14MIM][Cl] nas características estruturais e termodinâmicas de membranas modelos zwiterionicas e ânionicas.

Oliveira, Luma Melo de 17 March 2017 (has links)
Ionic Liquids (ILs) has been attracting attention, both from academia and industry, given the numerous applications of these systems. ILs are salts, usually composed by an organic ion, and a counterion which could be organic or inorganic, and, interestingly they are found at liquid state at room temperature. Our interest in studying ILs comes from its low toxicity. Some recent studies have shown that the toxicity of the ILs ishigher than believed, in particular for biologically relevant systems. The main goal of this research is to study the influence of the ionic liquid 1-tetradecyl-3-methylimidazolium chloride ([C14MIM][Cl]) with membrane systems. To do so, we made use of different lipids: POPC, Sphingomyelin, Cholesterol, POPG, DPPC, DPPG and DMPC. For each of these systems, the influence of ILs concentration were elucidated by means of a systematic study through different experimental techniques: Small Angle X-ray scattering (SAXS), dynamic light scattering (DLS), fluorescence anisotropy, optical microscopy and z-potential. Since [C14MIM][Cl] has a positive charge on the imidazolium group, the superficial charge of all vesicles increased. For zwitterionic vesicles no significant change in size and melting temperature were noticed. The imidazolium-based ionic liquid diminished the gel-fluid transition temperature for negatively charged lipids. For DPPC:DPPG (1:1), for instance, the transition temperature decreased from 42.50±0.13oC to 25.27±0.33oC and for DPPG from 46.12±0.22 oC to 36.6±0.38 oC. For DPPG, the vesicle hydrodynamic diameter increased from 84±0.1nm to 176±0.1nm, whereas for DPPC:DPPG it increased from 95±0.1nm to 196±0.1nm. The electronic density profile, obtained by SAXS, supported the penetration of the [C14MIM][Cl] into the negative bilayer structure. 15 mol% of [C14MIM][Cl] increased the polar head thickness of DPPC vesicles from 11.1±0.6 Å to 18.0±0.7 Å, without alter significantly the inner region of the membrane.Qualitative results obtained with optical microscopy showed that the IL incorporation destabilize the membrane asymmetry (between the leaflets) leading to the formation of pores (evidenced by optical contrast lost) and the presence of buds. We believe that this work could improve the understanding of the effects of ILs in the presence of biological relevant systems / Os líquidos iônicos (LI) tem atraído grande atenção, tanto da academia quanto da indústria, devido às suas numerosas aplicações. LI são sais, normalmente compostos por um íon orgânico, e um contra-íon que pode ser orgânico ou inorgânico, mas que tem como característica ser encontrado no estado líquido à temperaturas próximas a ambiente. Nosso interesse em estudar LIs vem de sua baixa toxicidade, atribuída a sua baixa volatilidade. Entretanto, alguns estudos recentes mostraram que a toxicidade dos LI é maior do que se acreditava, em particular com sistemas de relevância biológica.O objetivo principal desta dissertação é estudar a influência do líquido iônico 1-tetradecil-3-metilimidazólio cloreto ([C14MIM][Cl]) com sistemas de membrana. Para isso, utilizamos diferentes lipídios, como o POPC, esfingomielina, colesterol, POPG, DPPC,DPPG e o DMPC. Para cada um destes sistemas, a influência da concentração de LI foi elucidada por meio de um estudo sistemático através de diferentes técnicas experimentais, tais como: espalhamento de raio-X a baixos ângulos (SAXS), espalhamento dinâmico de luz (DLS), anisotropia de fluorescência, microscopia óptica e potencial-z. Uma vez que o componente iônico de [C14MIM][Cl] tem uma carga positiva no grupo imidazólio, a carga superficial de todas as vesículas estudadas aqui aumentou. Entretanto, para asvesículas compostas pelos lipídeos zwitteriónicos, não tenha sido observada qualquer alteração significativa no tamanho e na temperatura de transição de fase gel-fluido. O [C14MIM][Cl] altera a organização interna entre as moléculas de lipídio com carga negativa. Consequentemente, à medida que a quantidade de LI aumenta, a temperatura de transição de fase diminui e o tamanho médio das vesículas aumenta. Para o sistema DPPC:DPPG (1:1) a temperatura de transição de fase caiu de 42.50 ± 0.13 oC para 25.27 ± 0.33 oC e para as vesículas de DPPG de 46.12±0.22 oC para 36.6±0.38 oC. Quanto ao diâmetro hidrodinâmico médio, no caso do DPPG este valor aumentou de 84±0.1 nm para 176±0.1 nm, enquanto que para a mistura DPPC:DPPG (1:1) ele passou de 95±0.1nm para 196±0.1nm. Indicando assim que o LI incorpora na bicamada lipídica negativamente carregada. O perfil de densidade eletrônica, obtido por SAXS, confirma a penetração do [C14MIM][Cl] na bicamada lipídica. Diferentemente, para a membrana lipídica zwitteriónica o LI tende a se situar perto da região da cabeça polar sem afetar significativamente a região do interior da bicamada lipídica. Por outro lado, a presença de15 mol% de [C14MIM][Cl] aumenta a espessura da região polar das bicamadas das vesículas de DPPC de ~ 11.1±0.6 Å para ~ 18.0±0.7 Å. Os resultados qualitativos da microscopia óptica mostraram que a incorporação da LI desestabiliza a assimetria da membrana entre as camadas interna e externa, além de sugerir o aparecimento de poros (evidenciado pela perda do contraste ótico das vesículas) e estruturas chamadas de buds. Esperamos que este trabalho melhore a compreensão dos efeitos do LI na presença de organismos biológicos.

Page generated in 0.069 seconds