• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Appliction-driven Memory System Design on FPGAs

Dai, Zefu 08 January 2014 (has links)
Moore's Law has helped Field Programmable Gate Arrays (FPGAs) scale continuously in speed, capacity and energy efficiency, allowing the integration of ever-larger systems into a single FPGA chip. This brings challenges to the productivity of developers in leveraging the sea of FPGA resources. Higher level of design abstractions and programming models are needed to improve the design productivity, which in turn require memory architectural supports on FPGAs. While previous efforts focus on computation-centric applications, we take a bandwidth-centric approach in designing memory systems. In particular, we investigate the scheduling, buffered switching and searching problems, which are common to a wide range of FPGA applications. Despite that the bandwidth problem has been extensively studied for general-purpose computing and application specific integrated circuit (ASIC) designs, the proposed techniques are often not applicable to FPGAs. In order to achieve optimized design implementations, designers need to take into consideration both the underlying FPGA physical characteristics as well as the requirements from applications. We therefore extract design requirements from four driving applications for the selected problems, and address them by exploiting the physical architectures and available resources of FPGAs. Towards solving the selected problems, we manage to advance state-of-the-art with a scheduling algorithm, a switch organization and a cache analytical model. These lead to performance improvements, resource savings and feasibilities of new approaches for well-known problems.
12

多項分配之分類方法比較與實證研究 / An empirical study of classification on multinomial data

高靖翔, Kao, Ching Hsiang Unknown Date (has links)
由於電腦科技的快速發展,網際網路(World Wide Web;簡稱WWW)使得資料共享及搜尋更為便利,其中的網路搜尋引擎(Search Engine)更是尋找資料的利器,最知名的「Google」公司就是藉由搜尋引擎而發跡。網頁搜尋多半依賴各網頁的特徵,像是熵(Entropy)即是最為常用的特徵指標,藉由使用者選取「關鍵字詞」,找出與使用者最相似的網頁,換言之,找出相似指標函數最高的網頁。藉由相似指標函數分類也常見於生物學及生態學,但多半會計算兩個社群間的相似性,再判定兩個社群是否相似,與搜尋引擎只計算單一社群的想法不同。 本文的目標在於研究若資料服從多項分配,特別是似幾何分配的多項分配(許多生態社群都滿足這個假設),單一社群的指標、兩個社群間的相似指標,何者會有較佳的分類正確性。本文考慮的指標包括單一社群的熵及Simpson指標、兩社群間的熵及相似指標(Yue and Clayton, 2005)、支持向量機(Support Vector Machine)、邏輯斯迴歸等方法,透過電腦模擬及交叉驗證(cross-validation)比較方法的優劣。本文發現單一社群熵指標之表現,在本文的模擬研究有不錯的分類結果,甚至普遍優於支持向量機,但單一社群熵指標分類法的結果並不穩定,為該分類方法之主要缺點。 / Since computer science had changed rapidly, the worldwide web made it much easier to share and receive the information. Search engines would be the ones to help us find the target information conveniently. The famous Google was also founded by the search engine. The searching process is always depends on the characteristics of the web pages, for example, entropy is one of the characteristics index. The target web pages could be found by combining the index with the keywords information given by user. Or in other words, it is to find out the web pages which are the most similar to the user’s demands. In biology and ecology, similarity index function is commonly used for classification problems. But in practice, the pairwise instead of single similarity would be obtained to check if two communities are similar or not. It is dislike the thinking of search engines. This research is to find out which has better classification result between single index and pairwise index for the data which is multinomial distributed, especially distributed like a geometry distribution. This data assumption is often satisfied in ecology area. The following classification methods would be considered into this research: single index including entropy and Simpson index, pairwise index including pairwise entropy and similarity index (Yue and Clayton, 2005), and also support vector machine and logistic regression. Computer simulations and cross validations would also be considered here. In this research, it is found that the single index, entropy, has good classification result than imagine. Sometime using entropy to classify would even better than using support vector machine with raw data. But using entropy to classify is not very robust, it is the one needed to be improved in future.
13

Επεξεργασία πολύπλοκων ερωτημάτων και εκτίμηση ανομοιόμορφων κατανομών σε κατανεμημένα δίκτυα κλίμακας ίντερνετ / Complex query processing and estimation of distribution skewness in Internet-scale distributed networks

Πιτουρά, Θεώνη 12 January 2009 (has links)
Τα κατανεμημένα δίκτυα κλίμακας Ίντερνετ και κυρίως τα δίκτυα ομοτίμων εταίρων, γνωστά και ως peer-to-peer (p2p), που αποτελούν το πιο αντιπροσωπευτικό παράδειγμά τους, προσελκύουν τα τελευταία χρόνια μεγάλο ενδιαφέρον από τους ερευνητές και τις επιχειρήσεις λόγω των ιδιόμορφων χαρακτηριστικών τους, όπως ο πλήρης αποκεντρωτικός χαρακτήρας, η αυτονομία των κόμβων, η ικανότητα κλιμάκωσης, κ.λπ. Αρχικά σχεδιασμένα να υποστηρίζουν εφαρμογές διαμοιρασμού αρχείων με βασική υπηρεσία την επεξεργασία απλών ερωτημάτων, σύντομα εξελίχτηκαν σε ένα καινούργιο μοντέλο κατανεμημένων συστημάτων, με μεγάλες και αυξανόμενες δυνατότητες για διαδικτυακές εφαρμογές, υποστηρίζοντας πολύπλοκες εφαρμογές διαμοιρασμού δομημένων και σημασιολογικά προσδιορισμένων δεδομένων. Η προσέγγισή μας στην περιοχή αυτή γίνεται προς δύο βασικές κατευθύνσεις: (α) την επεξεργασία πολύπλοκων ερωτημάτων και (β) την εκτίμηση των ανομοιομορφιών των διαφόρων κατανομών που συναντάμε στα δίκτυα αυτά (π.χ. φορτίου, προσφοράς ή κατανάλωσης ενός πόρου, τιμών των δεδομένων των κόμβων, κ.λπ.), που εκτός των άλλων αποτελεί ένα σημαντικό εργαλείο στην υποστήριξη πολύπλοκων ερωτημάτων. Συγκεκριμένα, ασχολούμαστε και επιλύουμε τρία βασικά ανοικτά προβλήματα. Το πρώτο ανοικτό πρόβλημα είναι η επεξεργασία ερωτημάτων εύρους τιμών σε ομότιμα συστήματα κατανεμημένου πίνακα κατακερματισμού, με ταυτόχρονη εξασφάλιση της εξισορρόπησης του φορτίου των κόμβων και της ανοχής σε σφάλματα. Προτείνουμε μια αρχιτεκτονική επικάλυψης, που ονομάζουμε Saturn, που εφαρμόζεται πάνω από ένα δίκτυο κατανεμημένου πίνακα κατακερματισμού. Η αρχιτεκτονική Saturn χρησιμοποιεί: (α) μια πρωτότυπη συνάρτηση κατακερματισμού που τοποθετεί διαδοχικές τιμές δεδομένων σε γειτονικούς κόμβους, για την αποδοτική επεξεργασία των ερωτημάτων εύρους τιμών και (β) την αντιγραφή, για την εξασφάλιση της εξισορρόπησης του φορτίου προσπελάσεων (κάθετη, καθοδηγούμενη από το φορτίο αντιγραφή) και της ανοχής σε σφάλματα (οριζόντια αντιγραφή). Μέσα από μια εκτεταμένη πειραματική αξιολόγηση του Saturn και σύγκριση με δύο βασικά δίκτυα κατανεμημένου πίνακα κατακερματισμού (Chord και OP-Chord) πιστοποιούμε την ανωτερότητα του Saturn να αντιμετωπίζει και τα τρία ζητήματα που θέσαμε, αλλά και την ικανότητά του να συντονίζει το βαθμό αντιγραφής ώστε να ανταλλάζει ανάμεσα στο κόστος αντιγραφής και στο βαθμό εξισορρόπησης του φορτίου. Το δεύτερο ανοικτό πρόβλημα που αντιμετωπίζουμε αφορά την έλλειψη κατάλληλων μετρικών που να εκφράζουν τις ανομοιομορφίες των διαφόρων κατανομών (όπως, για παράδειγμα, το βαθμό δικαιοσύνης μιας κατανομής φορτίου) σε κατανεμημένα δίκτυα κλίμακας Ίντερνετ και την μη αποτελεσματική ή δυναμική εκμετάλλευση μετρικών ανομοιομορφίας σε συνδυασμό με αλγορίθμους διόρθωσης (όπως ο αλγόριθμος εξισορρόπησης φορτίου). Το πρόβλημα είναι σημαντικό γιατί η εκτίμηση των κατανομών συντελεί στην ικανότητα κλιμάκωσης και στην επίδοση αυτών των δικτύων. Αρχικά, προτείνουμε τρεις μετρικές ανομοιομορφίας (το συντελεστή του Gini, τον δείκτη δικαιοσύνης και το συντελεστή διασποράς) μετά από μια αναλυτική αξιολόγηση μεταξύ γνωστών μετρικών εκτίμησης ανομοιομορφίας και στη συνέχεια, αναπτύσσουμε τεχνικές δειγματοληψίας (τρεις γνωστές τεχνικές και τρεις προτεινόμενες) για τη δυναμική εκτίμηση αυτών των μετρικών. Με εκτεταμένα πειράματα αξιολογούμε συγκριτικά τους προτεινόμενους αλγορίθμους εκτίμησης και τις τρεις μετρικές και επιδεικνύουμε πώς αυτές οι μετρικές και ειδικά, ο συντελεστής του Gini, μπορούν να χρησιμοποιηθούν εύκολα και δυναμικά από υψηλότερου επιπέδου αλγορίθμους, οι οποίοι μπορούν τώρα να ξέρουν πότε να επέμβουν για να διορθώσουν τις άδικες κατανομές. Το τρίτο και τελευταίο ανοικτό πρόβλημα αφορά την εκτίμηση του μεγέθους αυτοσύνδεσης μιας σχέσης όπου οι πλειάδες της είναι κατανεμημένες σε κόμβους δεδομένων που αποτελούν ένα ομότιμο δίκτυο επικάλυψης. Το μέγεθος αυτοσύνδεσης έχει χρησιμοποιηθεί εκτεταμένα σε συγκεντρωτικές βάσεις δεδομένων για τη βελτιστοποίηση ερωτημάτων και υποστηρίζουμε ότι μπορεί να χρησιμοποιηθεί και σε ένα πλήθος άλλων εφαρμογών, ειδικά στα ομότιμα δίκτυα (π.χ. συσταδοποίηση του Ιστού, αναζήτηση στον Ιστό, κ.λπ.). Η συνεισφορά μας περιλαμβάνει, αρχικά, τις προσαρμογές πέντε γνωστών συγκεντρωτικών τεχνικών εκτίμησης του μεγέθους αυτοσύνδεσης (συγκεκριμένα, σειριακή, ετεροδειγματοληπτική, προσαρμοστική και διεστιακή δειγματοληψία και δειγματοληψία με μέτρηση δείγματος) στο περιβάλλον ομοτίμων εταίρων και η ανάπτυξη μια πρωτότυπης τεχνικής εκτίμησης του μεγέθους αυτοσύνδεσης, βασισμένη στο συντελεστή του Gini. Με μαθηματική ανάλυση δείχνουμε ότι οι εκτιμήσεις του συντελεστή του Gini μπορούν να οδηγήσουν σε εκτιμήσεις των υποκείμενων κατανομών δεδομένων, όταν αυτά ακολουθούν το νόμο της δύναμης ή το νόμο του Zipf και αυτές, με τη σειρά τους, σε εκτιμήσεις του μεγέθους αυτοσύνδεσης των σχέσεων των δεδομένων. Μετά από αναλυτική πειραματική μελέτη και σύγκριση όλων των παραπάνω τεχνικών αποδεικνύουμε ότι η καινούργια τεχνική που προτείνουμε είναι πολύ αποτελεσματική ως προς την ακρίβεια, την πιστότητα και την απόδοση έναντι των άλλων πέντε μεθόδων. / The distributed, Internet-scale networks, and mainly, the peer-to-peer networks (p2p), that constitute their most representative example, recently attract a great interest from the researchers and the industry, due to their outstanding properties, such as full decentralization, autonomy of nodes, scalability, etc. Initially designed to support file sharing applications with simple lookup operations, they soon developed in a new model of distributed systems, with many and increasing possibilities for Internet applications, supporting complex applications of structured and semantically rich data. Our research to the area has two basic points of view: (a) complex query processing and (b) estimation of skewness in various distributions existing in these networks (e.g. load distribution, distribution of offer, or consumption of resources, data value distributions, etc), which, among others, it is an important tool to complex query processing support. Specifically, we deal with and solve three basic open problems. The first open problem is range query processing in p2p systems based on distributed hash tables (DHT), with simultaneous guarantees of access load balancing and fault tolerance. We propose an overlay DHT architecture, coined Saturn. Saturn uses a novel order-preserving hash function that places consecutive data values in successive nodes to provide efficient range query processing, and replication to guarantee access load balancing (vertical, load-driven replication) and fault tolerance (horizontal replication). With extensive experimentation, we evaluate and compare Saturn with two basic DHT networks (Chord and OP - Chord), and certify its superiority to cope with the three above requirements, but also its ability to tune the degree of replication to trade off replication costs for access load balancing. The second open problem that we face concerns the lack of appropriate metrics to express the degree of skewness of various distributions (for example, the fairness degree of load balancing) in p2p networks, and the inefficient and offline-only exploitation of metrics of skewness, which does not enable any cooperation with corrective algorithms (for example, load balancing algorithms). The problem is important because estimation of distribution fairness contributes to system scalability and efficiency. First, after a comprehensive study and evaluation of popular metrics of skewness, we propose three of them (the coefficient of Gini, the fairness index, and the coefficient of variation), and, then, we develop sampling techniques (three already known techniques, and three novel ones) to dynamically estimate these metrics. With extensive experimentation, which comparatively evaluates both the various proposed estimation algorithms and the three metrics we propose, we show how these three metrics, and especially, the coefficient of Gini, can be easily utilized online by higher-level algorithms, which can now know when to best intervene to correct unfairness. The third and last open problem concerns self-join size estimation of a relation whose tuples are distributed over data nodes which comprise an overlay network. Self-join size has been extensively used in centralized databases for query optimization purposes, and we support that it can also be used in various other applications, specifically in p2p networks (e.g. web clustering, web searching, etc). Our contribution first includes the adaptations of five well-known self-join size estimation, centralized techniques (specifically, sequential sampling, cross-sampling, adaptive and bifocal sampling, and sample-count) to the p2p environment and a novel estimation technique which is based on the Gini coefficient. With mathematical analysis we show that, the estimates of the Gini coefficient can lead to estimates of the degree of skewness of the underlying data distribution, when these follow the power, or Zipf’s law, and these estimates can lead to self-join size estimates of those data relations. With extensive experimental study and comparison of all above techniques, we prove that the proposed technique is very efficient in terms of accuracy, precision, and cost of estimation against the other five methods.

Page generated in 0.0486 seconds